
1SCIenTIfIC REPOrTs |  (2018) 8:1362  | DOI:10.1038/s41598-018-19333-x

www.nature.com/scientificreports

Gene annotation bias impedes 
biomedical research
Winston A. Haynes   1,2,3, Aurelie Tomczak1,2 & Purvesh Khatri   1,2

We found tremendous inequality across gene and protein annotation resources. We observed that this 
bias leads biomedical researchers to focus on richly annotated genes instead of those with the strongest 
molecular data. We advocate that researchers reduce these biases by pursuing data-driven hypotheses.

After analyzing samples with a high throughput technology, the de facto first step is to perform pathway or net-
work analysis to identify biological processes that are statistically enriched in the data1. Researchers typically form 
hypotheses for their follow up experiments based on the genes or proteins involved in the enriched processes. 
Commonly used resources for identifying gene functions and interactions include the Gene Ontology (GO)2, 
Reactome3, Comparative Toxicogenomics Database (CTD)4, DrugBank5, Protein Data Bank (PDB)6, Pubpular7, 
and NCBI GeneRIF. Since these resources are created by curation of the scientific literature, they typically only 
contain functional annotations for genes with published experimental data. Although GO includes predicted 
functional annotations for genes, they are considered of low quality8. Consequently, researchers select those genes 
or proteins for further validation that have prior experimental evidence, which, in turn, leads to more functional 
annotations for those genes at the expense of under-studied genes9–12.

We hypothesized that this experimental paradigm has led to a gene-centric disease research bias where 
hypotheses are confounded by the streetlight effect of looking for “answers where the light is better rather than 
where the truth is more likely to lie”13–16. To test this hypothesis, we examined the annotation inequality for the 
human genome across a number of biomedical databases using the Gini coefficient, which is a measure of ine-
quality such that high coefficient value indicates higher inequality17.

Results
Annotation inequality is increasing over time.  Despite the tremendous growth of Gene Ontology 
Annotations (GOA) from 32,259 annotations for 9,664 human genes in 2001 to 185,276 annotations for 17,314 
genes in 2017, annotation inequality in GO has increased from a Gini coefficient of 0.25 in 2001 to 0.47 in 2017 
(Fig. 1A) with tight confidence intervals (Figure S1A). We compared inequality in GOA data using eight ine-
quality metrics: Gini coefficient, Ricci-Schutz coefficient, Atkinson’s measure, Kolm’s measure, Theil’s entropy, 
coefficient of variation, squared coefficient of variation, and generalized entropy. We observed increases in ine-
quality over time irrespective of the metric used (Figure S1B). We used the Gini coefficient for the remainder of 
this manuscript since it demonstrated the most conservative estimate of the increase in inequality. Similarly, GOA 
inequality trends are not substantially affected by the inclusion or exclusion of particular types of annotations or 
ontology terms (Figure S1C).

We simulated changes in GOA equality using the first GO release as a baseline measurement. We estimated 
how inequality levels would have changed under different models, including equal growth across genes, growth 
consistent with the initial levels of inequality, and growth increasingly biased towards genes that began with many 
annotations. When we compared these different trajectories, we observed that the actual changes in inequality 
most closely matched the models of increasingly biased growth (Fig. 1B). Our findings further validate that genes 
with existing annotations continue to receive even more annotations18.

Annotation inequality persists across organisms and databases.  We computed annotation inequal-
ity in 12 other organisms over time for comparison including arabidopsis, chicken, cow, dicty, dog, fly, mouse, 
pig, rat, worm, yeast, and zebrafish (Figure S1A). When comparing the first version for each organism, human 
annotations exhibited the second greatest level of equality. In the most current versions of Gene Ontology anno-
tations, humans exhibit the fourth highest inequality. The longitudinal trends varied across organisms, including 
organisms with both increasing and decreasing inequalities. Mouse and rat, the primary model organisms for 
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human disease, exhibit increases in Gene Ontology annotations that are consistent with the patterns observed in 
the human data.

We examined other gene annotation databases to ensure that the observed phenomena was not specific to 
the GO. Other pathway databases, including Reactome (Gini = 0.33)3 and the CTD Pathway (Gini = 0.47)4, have 
a similarly high level of inequality (Fig. 1A). Indeed, every gene annotation resource we examined displayed 
a similarly high level of annotation inequality, including CTD chemical-gene associations (Gini = 0.63)4, PDB 
3D protein structures (gini = 0.68)6, DrugBank drug-gene associations (Gini = 0.70)5, GeneRIF gene publication 
annotations (Gini = 0.79), and Pubpular disease-gene publication associations (Gini = 0.82)7,19. When consider-
ing the number of annotations pooled across all these databases, global gene annotation Gini coefficient was 0.63.

Annotation inequality bias affects biomedical research.  Next, we explored whether disease research 
may be affected by the inequality in gene annotation databases. Concerns that most published findings are false20, 
many results are inflated21, and research funding is being wasted22,23 have led to a number of proposals for repro-
ducible and clinically relevant findings24–26. We have previously described a multi-cohort analysis framework27–29 
that leverages biological and technical heterogeneity across multiple independent datasets to identify robust dis-
ease signatures. Using this framework, we have repeatedly demonstrated that it can identify robust disease sig-
natures across a broad spectrum of diseases including organ transplant27, infections30–33, autoimmune disease34, 
cancer35–37, vaccination38, and neurodegenerative diseases39 for identifying diagnostic and prognostic markers, 
novel drug targets, and repurposing FDA-approved drugs.

In our manually curated meta-analyses of 104 distinct human conditions, we have integrated transcriptome 
data from over 41,000 patients and 619 studies to calculate an effect size for disease-gene associations28. Our 
analyses included diverse classes of human conditions such as cancer, autoimmune disease, viral infection, neu-
rodegenerative and psychiatric disorders, pregnancy, and obesity. For these conditions, we extracted all disease 
gene associations with at least ten publications7,19. Published disease-gene associations exhibited no significant 
correlation with differential gene expression false discovery rate (FDR) rank (Spearman’s correlation = −0.003, 
p = 0.836, Fig. 2A) Overall, only 19.5% of published disease-gene associations were identified in gene expression 
analyses at a FDR of 5% that is consistent with previous publications that have successfully replicated between 
11–25% of research studies40,41 (Figure S2A).

To observe whether this phenomenon was specific to gene expression, we extracted genome wide significant 
single nucleotide polymorphisms (SNPs) from the GWAS catalog42. We observed a non-significant correlation 
between the number of publications and SNP p-values, indicating a lack of concordance between genetic muta-
tions and disease-gene publications (Spearman’s correlation = 0.017, p = 0.836, Figure S2B).

Based on these results, we hypothesized that the lack of correlation with molecular evidence may be an artifact 
of research bias towards well-characterized genes. Therefore, we examined correspondence between publications 
about a disease-gene pair and existing knowledge about that gene as indicated by the number of GO annotations. 
Indeed, the number of GO annotations for a gene of interest was significantly correlated with the published 
disease-gene associations (Spearman’s correlation = 0.110, p = 2.1e-16, Fig. 2B), but not with gene expression 
effect size FDR rank in disease (Spearman’s correlation = −0.023, p = 0.080, Figure S2C)2.

Many of the highly published disease-gene associations may have been studied for reasons that would not 
be directly reflected in gene expression analysis, including BRCA1 in breast cancer and CD4 in human immu-
nodeficiency virus. The more troubling bias occurs when associations with strong molecular evidence have no 
publication record. Disease-gene associations we have reported in our published meta-analyses were typically 
novel findings with few Gene Ontology annotations, despite having extremely low false discovery rates and high 

Figure 1.  Inequality in gene annotations. (A) We measured the Gini coefficient across a variety of gene 
annotation resources. (B) We compared the growth in the Gini coefficient of the Gene Ontology to different 
models of increasing and decreasing inequality. See also Figure S1.
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effect sizes27,30,35 (orange points in Fig. 2). We observed similar patterns when we performed the same analysis on 
similar publication and GWAS data from HuGE Navigator43,44 (Figure S2D–F).

Discussion
Collectively, our results provide an evidence of a strong research bias in literature that focuses on well-annotated 
genes instead of those with the most significant disease relationship in terms of both expression and genetic 
variation. We show that the inequality follows a “rich-getting-richer” pattern, where annotation growth is biased 
towards genes that were richly annotated in the initial versions of GO. We believe this stems from the typical 
experimental design. To illustrate this, consider an omics experiment that generates a list of hundreds or thou-
sands of interesting genes. To interpret these genes, researchers use GO and pathway analysis tools. The research-
ers then generate targeted hypotheses for validation by interpreting the list of significant GO terms, focusing the 
genes or proteins annotated with that GO term. The researchers learn more about those targeted genes, leading to 
additional GO annotations for the already annotated genes. In this process, the list of unannotated genes is simply 
ignored because pathway analysis tools cannot map them to any GO terms. Hence, the self-perpetuating cycle of 
inequality continues.

While focusing research on the best characterized genes may be natural because it is easy to formulate a mech-
anistic hypothesis of the gene’s function in disease, we propose that the researchers in the era of omics should 
instead allow data to drive their hypotheses. We have repeatedly shown that expanding research outside of the 
streetlight of well characterized genes identifies novel disease-gene relationships35–37, identifies FDA-approved 
drugs that can be repurposed for other diseases27, and identifies clinically translatable diagnostic and prognostic 
disease signatures27,30–34,39. For example, we have previously identified PTK7 as causally involved in non-small 
cell lung cancer37. At the time of publication, PTK7 was labelled as an orphan tyrosine kinase receptor. In a very 
short span, this finding was transformed into an antibody-drug conjugate targeting PTK7 that induced sustained 
tumor regression, outperformed standard-of-care chemotherapy, and reduced frequency of tumor-initiating cells 
in a preclinical study45. A Phase 1 clinical trial (NCT02222922) of PTK7 antibody-drug conjugate, PF-06647020, 
has already completed with acceptable and manageable safety profile, and is now being considered for further 
clinical development. To enable researchers to pursue data-driven hypotheses, we have made our rigorously val-
idated gene expression multicohort analysis data publicly available (http://metasignature.stanford.edu) where it 
may be explored based on either diseases or genes of interest29,46. Focusing on genes with the strongest molecular 
evidence instead of the most annotations would enable researchers to break the self-perpetuating annotation 
inequality cycle that results in research bias.

Methods
Inequality metrics calculations.  We used the R package ineq to compute eight inequality metrics: (1) 
Gini coefficient, (2) Ricci-Schutz coefficient, (3) Atkinson’s measure, (4) Kolm’s measure, (5) Theil’s entropy, (6) 
coefficient of variation, (7) squared coefficient of variation, and (8) generalized entropy.

Gini coefficient.  The R package ineq47 calculates the Gini coefficient as:

Figure 2.  Published Disease-Gene Associations Not Reflected in Molecular Data. (A) The number of 
publications for every disease-gene pair was not significantly correlated with the gene expression multicohort 
analysis effect size FDR rank [Spearman’s correlation = −0.003, p = 0.836]. (B) The number of publications for 
every disease-gene pair correlated with the number of non-inferred from electronic annotation (non-IEA) Gene 
Ontology annotations [Spearman’s correlation = 0.110, p = 2.1e–16]. Orange points represent disease-gene 
associations published in our prior meta-analyses27,30,37. Purple points have at least 1000 publications. See also 
Figure S2.

http://metasignature.stanford.edu
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where n is the number of genes and xi is the number of annotations for a gene i17. We included all human genes 
with at least one annotation in the Gini calculations.

List of human gene names.  We used the Entrez Gene list downloaded in February 2017 of 20,698 current, 
protein-coding, human genes as our source of human genes.

Gene Ontology Annotations data.  We calculated the number of annotations for each human gene in the 
Gene Ontology2. in every version of GO annotations since 2001 that was available at http://http.ebi.ac.uk/pub/
databases/GO/goa/old. Duplicate annotations that only differ in evidence codes were counted once.

We examined the Gini coefficient for the different classes of evidence codes (experimental, computational 
analysis, author statement, curatorial statement, and automatically assigned) and namespaces (cellular compo-
nent, biological process, molecular function). We found no substantial differences in the Gini coefficient values 
and trends regardless of the terms being considered (Figure S1D). To focus on terms with the strongest evidence, 
the remainder of our manuscript excluded the evidence codes IEA, ND, and NR8. To focus on terms related 
to functional understanding of genes, we only considered the biological process and molecular function GO 
namespaces.

GOA for other organisms.  We downloaded historic Gene Ontology annotation data for all 12 organisms 
available from http://http.ebi.ac.uk/pub/databases/GO/goa/old/. These organisms included arabidopsis, chicken, 
cow, dicty, dog, fly, mouse, pig, rat, worm, yeast, and zebrafish.

Confidence intervals.  Using bootstrap resampling, we calculated 95% confidence intervals around our 
Gini coefficients based on 1000 permutations of each version of the human Gene Ontology annotation data 
[Figure S1B].

Modeling Gini coefficient over time.  We used the first available version of the human GO annotations 
(http://http.ebi.ac.uk/pub/databases/GO/goa/old/HUMAN/gene_association.goa_human.1.gz) as our baseline 
measurement in all models. We modeled every release of GO under different growth models, distributing the 
number of new annotations from that release across genes according to the model. We define our update step as:

n n n pjgene gene 1 geneij ij i1
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+
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Other gene annotation database Gini coefficient calculation.  Pubpublar. We manually downloaded 
gene-publication data in August 2016 from Pubpular for 102 of the diseases in our gene expression database7,19. 
“Pubpular Total” refers to the inequality of gene-publication data across all diseases. “Pubpular Median” refers to 
the median inequality of gene-publication for each disease.

Reactome. We downloaded Reactome pathway data from the complete database release 593. We downloaded 
data in MySQL format and parsed pathways into UniProt identifiers using custom scripts. We converted UniProt 

http://http.ebi.ac.uk/pub/databases/GO/goa/old
http://http.ebi.ac.uk/pub/databases/GO/goa/old
http://http.ebi.ac.uk/pub/databases/GO/goa/old/
http://http.ebi.ac.uk/pub/databases/GO/goa/old/HUMAN/gene_association.goa_human.1.gz


www.nature.com/scientificreports/

5SCIenTIfIC REPOrTs |  (2018) 8:1362  | DOI:10.1038/s41598-018-19333-x

identifiers to gene names using the UniProt identifier conversion tool48. We calculated the number of pathways 
including each gene name.

CTD. We downloaded the CTD4 data in February 2017, with the chemical-gene associations and the 
gene-pathway associations. We calculated the number of chemical-gene and gene-pathway associations for each 
gene name.

GeneRIFs. We downloaded GeneRIFs from the NCBI in February 2017. We included all human GeneRIFS 
(Tax ID: 9606). We calculated the number of GeneRIFs for each gene.

Protein Data Bank. We downloaded the gene names associated with protein structures from the Protein Data 
Bank6 in February 2017 and calculated the number of structures per gene name.

DrugBank. We downloaded the DrugBank5 database version 5.0.5 and identified all drugs with known activ-
ities on human genes. We calculated the number of drugs targeting each gene.

Gene expression data collection and multicohort analysis.  Gene expression multicohort analysis 
data was compiled from the MetaSignature database28. MetaSignature includes data from manual multicohort 
analysis of over 41,000 samples, 619 studies, and 104 diseases. Briefly, relevant data were downloaded from Gene 
Expression Omnibus and ArrayExpress49,50. Cases and controls were manually labeled for each disease and mul-
ticohort analysis was performed using the MetaIntegrator package28. We used the Hedges’ g summary effect size, 
standard error, and false discovery rate which the MetaIntegrator package calculates for every gene.

Data collection for disease-gene publications and SNP data.  We downloaded the number of publi-
cations for each disease-gene relationship from PubPular and HuGE Navigator in August 2016 for as many of the 
104 disease in MetaSignature as were present in the databases (102 in PubPular and 81 in HuGE)7,19,43. PubPular 
gave the top 261 gene associations, and HuGE gave all known associations. For all correlations, we only consid-
ered disease-gene associations with at least 10 publications to limit false positive associations.

We downloaded disease-SNP relationships, including gene mappings, odds ratios, and p-values, from the 
GWAS Catalog and HuGE Navigator for 61 and 54, respectively, of the 103 diseases in MetaSignature42,44. From 
Gene Ontology, we calculated the counts of non-Inferred from Electronic Annotation annotations for all the 
genes in the MetaSignature database2. The Spearman rank correlation was used for all correlations.

Our plots show the top 10,000 gene associations for each disease by effect size FDR rank. Correlation calcula-
tions do not include a similar limit.

Code and data availability.  The code and data we used to run this analysis is available at https://kha-
trilab.stanford.edu/researchbias and https://figshare.com/projects/Gene_annotation_bias_impedes_bio-
medical_research/27124 (https://doi.org/10.6084/m9.figshare.5660824.v2 and https://doi.org/10.6084/
m9.figshare.5648332.v6).
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