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Abstract

Modified Bloom–Richardson (mBR) grading is known to have prognostic value in breast cancer 

(BCa), yet its use in clinical practice has been limited by intra- and interobserver variability. The 

development of a computerized system to distinguish mBR grade from entire estrogen receptor-

positive (ER+) BCa histopathology slides will help clinicians identify grading discrepancies and 

improve overall confidence in the diagnostic result. In this paper, we isolate salient image features 

characterizing tumor morphology and texture to differentiate entire hematoxylin and eosin (H and 

E) stained histopathology slides based on mBR grade. The features are used in conjunction with a 

novel multifield-of-view (multi-FOV) classifier—a whole-slide classifier that extracts features 

from a multitude of FOVs of varying sizes—to identify important image features at different FOV 

sizes. Image features utilized include those related to the spatial arrangement of cancer nuclei (i.e., 

nuclear architecture) and the textural patterns within nuclei (i.e., nuclear texture). Using slides 
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from 126 ER+ patients (46 low, 60 intermediate, and 20 high mBR grade), our grading system was 

able to distinguish low versus high, low versus intermediate, and intermediate versus high grade 

patients with area under curve values of 0.93, 0.72, and 0.74, respectively. Our results suggest that 

the multi-FOV classifier is able to 1) successfully discriminate low, medium, and high mBR grade 

and 2) identify specific image features at different FOV sizes that are important for distinguishing 

mBR grade in H and E stained ER+ BCa histology slides.

Index Terms

Breast cancer (BCa); digital pathology; image analysis; modified Bloom–Richardson (mBR) 
grade; multi-field-of-view (multi-FOV); nuclear architecture; nuclear texture

I. Introduction

WHILE breast cancer (BCa) is an increasingly common cancer diagnosis in women [1], 

advancements in screening, diagnostic, and therapeutic techniques have improved survival 

rates in recent years [2]. A number of prognostic criteria have been developed to 

characterize the level differentiation of BCa tumor cells via visual analysis of hematoxylin 

and eosin (H and E) stained histopathology, including the Bloom–Richardson and 

Nottingham grading schemes [3]. In particular, the modified Bloom–Richardson (mBR) 

system has gained popularity due to the integration of different morphological signatures 

that are related to BCa aggressiveness [4]. Recently, the close relationship between BCa 

grade and prognosis (i.e., patient outcome) has been explored [5], [6]; yet clinical usage of 

mBR grade is often limited by concerns about intra-and interrater variability [7]–[9]. Meyer 

et al. [9] showed that agreement between seven pathologists is only moderately reproducible 

(κ = 0.50–0.59), while Dalton et al. [8] further illustrated the suboptimal treatment that can 

result from incorrect mBR grading. Boiesen et al. [7] demonstrated similar levels of 

reproducibility (κ = 0.50–0.54) across a number of pathology departments. A possible 

reason for this discrepancy is that pathologists currently lack the automated image analysis 

tools to accurately, efficiently, and reproducibly quantify mBR grade in histopathology.

The primary goal of this paper is to identify a quantitative image signature that allows for 

discrimination of low versus high, low versus intermediate, and intermediate versus high 

mBR grade on whole-slide estrogen receptor-positive (ER+) BCa histopathology images. 

The mBR grading system encompasses three visual signatures (degree of tubular formation, 

nuclear pleomorphism, and mitotic activity), each of which is scored on a scale of 1–3 to 

produce a combined mBR scale of 3–9 [4]. We quantify various aspects of mBR grade by 

focusing on the architectural and textural descriptors in BCa tissue. Variations in nuclear 

architecture (i.e., the 2-D spatial arrangement of cancer nuclei in histopathology) are 

important in clinical practice because they allow pathologists to distinguish between normal 

and cancerous tissues as well as between levels of differentiation and tubule formation in 

BCa tumor cells [4]. Textural information from nuclear regions (i.e., nuclear texture) 

represents the variation in chromatin arrangement [10], which is generally more 

heterogeneous in rapidly dividing, higher grade BCa cells. Computerized modeling of the 

phenotypic appearance of BCa histopathology has traditionally focused on quantifying 
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nuclear morphology [11]–[14] as well as various textural representations of image patches 

[10], [11], [15]–[17]. In this paper, we address some of the shortcomings in previous works, 

including 1) comprehensive analysis of whole-slide histology rather than individual nuclei 

[10], [11] and 2) consideration of the intermediate mBR grade rather than a limited low- 

versus high-grade evaluation [13]. Recently, researchers have used also fractals to describe 

the variations architectural complexity of epithelial tissue with respect to the level of 

differentiation of cells in BCa tumors [18]–[21]. While these studies are extremely 

promising, their results are still preliminary because evaluation has generally been limited to 

isolated fields-of-view (FOVs) (e.g. individual cells in [19] and tissue microarrays (TMAs) 

in [20]), relatively small cohorts [19], and specialized stains [20].

In order to differentiate entire ER+BCa histopathology slides based on their mBR grades, 

we utilize a multi-FOV classifier that automatically integrates image features from multiple 

FOVs at various sizes [22], [23] (see Fig. 3). While clinicians perform this task implicitly, 

the a priori selection of an optimal FOV (i.e., image patch) size for computerized analysis of 

entire histopathology slides is not straightforward. For example, in Fig. 1(a), while the 

smallest FOV simply looks like necrotic tissue, the medium-sized FOV would be accurately 

classified as ductal carcinoma in situ (DCIS). At the other end of the spectrum, the largest 

FOV (i.e., entire image) containing both DCIS and invasive cancer would be classified 

ambiguously since it is too heterogeneous. It is important to note that the multi-FOV 

framework differs from traditional multiscale (i.e., multiresolution) classifiers that operate 

on a fixed FOV at multiple spatial resolutions [24]–[26] [see Fig. 1(b)]. While this approach 

is often useful for evaluating large images in a hierarchical manner [26], it may not be able 

to capture the local heterogeneity found in large BCa histopathology slides [27], [28] (see 

Fig. 2).

The main novel contributions of this study are the following.

1. A multi-FOV classifier able to apply a single operator across a multitude of FOV 

at different sizes in order to extract relevant histomorphometric information.

2. The incorporation of a robust feature selection scheme into the multi-FOV 

framework to independently identify salient image features at each FOV size.

3. The first image-based classifier specifically correlating with BCa grade that 

comprehensively analyzes digitized whole-slide histopathology images rather 

than arbitrarily selected FOVs.

The rest of the paper is organized as follows. Previous work and novel contributions are 

explained in Section II. Section III details the methods used for feature extraction, feature 

selection, and patient classification. The experimental design is presented in Section IV, 

followed by quantitative results in Section V, and concluding remarks in Section VI.

II. Previous Related Work

In this paper, we employ multiple classes of quantitative image features characterizing both 

the architecture and texture of BCa cancer nuclei, both of which reflect various aspects of 

the mBR grading system. Here, this concept is modeled by using individual nuclei as 
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vertices for the construction of graphs (Voronoi Diagram (VD), Delaunay Triangulation 

(DT), and Minimum Spanning Tree (MST) and, subsequently, extracting relevant statistics 

related to the size, shape, and length of the graphs. Such graph-based features have 

previously been used to accurately distinguish variations in lymphocytic infiltration [14], 

cancer type [29], tumor grade [13], [30], and prognosis [30] in digitized BCa histopathology, 

as well as hierarchical tissue structure in glioma [31] and tumor grade in prostate [32]. In 

addition, researchers have recently demonstrated the ability to identify high-grade regions 

within individual BCa histopathology slides via sparse analysis of VDs [33]. Hence, the 

applicability of graph-based features for a wide range of diseases and classification tasks 

suggests that they are able to quantify the general large-scale patterns that reflect varying 

levels of tissue organization across different disease states.

The diagnostic importance of nuclear texture has been widely studied [15], [34]–[36]; yet 

recent work in differentiating BCa grade via analysis of nuclear texture has been limited. For 

example, Weyn et al. performed a limited study that explored the ability of wavelet, 

Haralick, and densitometric features to distinguish nuclei from low, intermediate, and high 

BCa tissues [10]. More recently, Petushi et al. [15]. found that the extent of cell nuclei with 

dispersed chromatin is related to BCa tumor grade. Note that this differs from studies that 

have relied on the extraction of textural statistics from entire FOVs (i.e., global texture) [13], 

[26]. Doyle et al. utilized gray-level, Gabor, and Haralick texture features extracted from 

entire FOVs to discriminate low- and high-grade tumors in both prostate [26] and BCa [13] 

histopathology. In this paper, Haralick texture features [37] (i.e., second-order statistics 

calculated from a graylevel co-occurrence matrix) are calculated within segmented nuclear 

regions. Haralick features have previously been used in both nuclear and global textural 

analysis for classification of tumor grade in numerous cancers, including the breast [10], 

[15], prostate [26], and thyroid [36].

The identification of relevant image features is undoubtedly important; yet, the selection of 

appropriate FOVs must also be considered in the analysis of large histopathology slides. 

Prior work in histological image analysis has traditionally involved empirical selection of 

individual FOVs at a fixed size based on experimental results [13]–[15], [30], [38], [39], 

leading to potential bias and cost (in terms of both time and money) associated with user 

intervention. Note that manual FOV selection is also intrinsic to the TMA analysis, in which 

small tissue “spots” are sampled from larger regions of interest by an expert pathologist [40]. 

Some researchers have utilized randomized FOV selection in an effort to address the bias 

associated with manual FOV selection [10], [19], [41]. However, random sampling 

introduces variability into the classification results that can be difficult to overcome, 

especially in heterogeneous cancers such as BCa where random FOVs may not be 

representative of the overall histopathology slide. More recently, Huang et al. have 

approached FOV selection from a holistic perspective through the use of dynamic sampling, 

which incorporates domain information into the identification of salient regions of interest 

[33]. By contrast, the multi-FOV approach does not require empirical selection of FOVs or 

an optimal FOV size for classification; rather this approach combines class predictions from 

image features across all FOV sizes.
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III. Methods

For all methods, an image scene  = (C, g) is defined as a 2-D set of pixels c ∈ C with 

associated vectorial function g assigning the red, green, and blue (RGB) color space and 

class label ( ) ∈ {0, 1}.

For each  and FOV size τ ∈ T, a grid containing FOVs  is 

constructed, where , m ∈ {1, 2, …, M (τ)} is a square FOV with edge length of τ 
pixels and M(τ) is the total number of FOVs for a given τ. We define  as the function 

that extracts features from each . Grid construction and feature extraction are repeated 

likewise for each τ ∈ T.

A. Nuclear Detection and Segmentation

The extraction of features describing nuclear architecture and nuclear texture first require: 1) 

identification of the centroids of individual cancer nuclei; and 2) the segmentation of nuclear 

regions, respectively. For both tasks, we take advantage of the fact that hematoxylin 

primarily stains nuclear structures.

1) Color Deconvolution—First, color deconvolution [42], [43] is used to convert each 

FOV from the RGB color space g to a new color space ḡ defined by hematoxylin H, eosin E, 

and background K (i.e., white) channels [see Fig. 4(b) and (c)]. The relationship between 

color spaces g and ḡ is defined as g = Aḡ, where the transformation matrix is given by

(1)

where ĤR, ĤG, and ĤB denote the predefined, normalized RGB values, respectively, for the 

H channel. The second and third rows of A are defined analogously for the E and K 
channels, respectively. In this paper, the predefined values in A are selected based on 

published values by Ruifrok and Johnston [42]. The intensity of a pixel c in the new color 

space is defined as ḡ(c) = A−1 (c)g(c), where g(c) and ḡ(c) are 3 × 1 column vectors. The 

extent of hematoxylin staining H(C) = {H(c): ∀c ∈ C} is subsequently isolated [see Fig. 

4(d)]. Centroids of individual nuclei are identified by applying morphological opening to the 

hematoxylin channel and thresholding the result [see Fig. 4(e)–(g)]. Note that this method 

does not detect each and every nucleus; instead, it identifies a sufficient number of nuclei to 

reflect variations in their spatial arrangement in the entire FOV.

2) Color Gradient Based Geodesic Active Contour—To segment nuclear regions, 

the hematoxylin channel [see Fig. 4(d)] is used to initialize a color gradient based geodesic 

active contour (CGAC) model [44]. Assuming the image plane Ω ∈ ℝ2 is partitioned into 

two nonoverlapping regions, the foreground Ωf and background Ωb, by a zero level set 

function φ. The optimal partition can be obtained through minimizing the energy functional 

as follows:
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(2)

where the first and second terms are the energy functional of a traditional GAC model [45] 

and the balloon force [46], respectively. An additional third term is added to the energy 

functional to remove the reinitialization phase which is required as a numerical remedy for 

maintaining stable curve evolution in traditional level set methods [47]. The edge-detector 

function in the traditional GAC model and the balloon force are based on the calculation of 

the gray scale gradient of the image [45]. In this paper, the edge-detector function is based 

on the color gradient which is defined as . Here, s(g(c)) is the local 

structure tensor based color gradient which is defined as  [48], where λ
+ and λ− are the maximum and minimum eigenvalues of the local structure tensor of each 

pixel in the image. By locally summing the gradient contributions from each image channel, 

this term is able to represent the extreme rates of change in the direction of the 

corresponding eigenvectors. The final boundaries of the CGAC model are used to define a 

mask denoting nuclear regions [see Fig. 4(j)]. Note that we aim to segment only nuclei 

belonging to cancerous epithelial cells while avoiding the darker nuclei representing 

lymphocytes and fibroblasts.

B. Feature Extraction

For each FOV , we extract two sets of quantitative image features [i.e., nuclear 

architecture  and nuclear texture ] that reflect the phenotypic variations seen 

across BCa grades.

1) Quantification of Nuclear Architecture via Graph-Based Features—Utilizing 

individual nuclei for the construction of graphs allows for the quantification of tissue 

architecture. A graph is defined as a set of vertices (i.e., BCa nuclei) with corresponding 

edges connecting all nuclei. In this paper, we consider three graphs: VD, DT, and MST). For 

a particular FOV, the VD constructs a polygon around each nucleus such that each pixel in 

the image falls into the polygon associated with the nearest nucleus. The DT is simply the 

dual graph of the VD and is constructed such that two nuclei are connected by an edge if 

their associated polygons share an edge in the VD [see Fig. 5(b)–(d)]. The MST connects all 

nuclei in the image while minimizing the total length of all edges. A total of 25 features 

describing variations in these graphs are extracted (see Table I). An additional 25 features 

are calculated directly from individual nuclei to quantify nearest neighbor (NN) and global 

density statistics (see Table I), resulting in a total of 50 features  describing nuclear 

architecture for each FOV .

2) Quantification of Nuclear Texture via Haralick Features—Using the nuclear 

mask to restrict analysis to the desired region, Haralick co-occurrence features [26], [37] are 

extracted from each FOV. First, the FOV is transformed from the RGB color space to the 

HSV color space since the latter is more similar to the manner in which humans perceive 
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color [49]. At each relevant pixel, a co-occurrence matrix is constructed to quantify the 

frequency of pixel intensities in a fixed neighborhood. A set of 13 Haralick features [37] are 

extracted from the co-occurrence matrices (Contrast Energy, Contrast Inverse Moment, 

Contrast Average, Contrast Variance, Contrast Entropy, Intensity Average, Intensity 

Variance, Intensity Entropy, Entropy, Energy, Correlation, and two Information Measures of 

Correlation), from which the mean, standard deviation, and disorder statistics are calculated 

for each FOV [see Fig. 5(f)–(h)]. This task is repeated for each of the three channels in the 

HSV color space, resulting in a total of 117 nuclear texture features  for each FOV 

.

C. Feature Selection via Minimum Redundancy Maximum Relevance

Conceptually, a large number of descriptive features are highly desirable in terms of 

distinguishing patients based on mBR grade. In reality, however, large feature sets present 

problems in data classification such as 1) the curse of dimensionality [50], which calls for an 

exponential growth in the data cohort for each additional feature used; and 2) the presence of 

redundant features that do not provide additional class discriminatory information.

We address both issues by using minimum redundancy maximum relevance (mRMR) 

feature selection [51], which has previously been used in various biomedical applications 

ranging from the isolation of salient genes in microarray data [52] to insight into drug 

interactions of various protein groups [53]. Given a feature set f, the mRMR scheme 

identifies a subset f̄ ⊂ f that maximizes “relevance” and minimizes “redundancy” between 

individual features. In practice, feature fj is incrementally included in f̄ based on the criteria

(3)

where I is mutual information,  is the class label associated with a given sample, and |f̄| 
represents the cardinality of selected feature set. In this paper, relevant features are isolated 

from both nuclear architecture f̄NA ⊂ fNA and nuclear texture f̄NT ⊂ fNT feature sets based 

on their ability to distinguish BCa histopathology slides with low, intermediate, and high 

mBR grades.

D. Multi-FOV Approach for Whole-Slide Classification

The multi-FOV framework [22] (see Fig. 3) is employed in terms of its ability to classify 

large, heterogeneous images in an automated and unbiased fashion as described in the 

algorithm below. For a single slide , a pretrained Random Forest [54] classifier 

 is first used to assign an initial class prediction for each individual FOV 

 with associated features f. Predictions are aggregated (i.e., mean prediction) for all FOVs 

Dτ at a single size τ ∈ T to achieve a combined prediction H(Dτ ; τ, f). Subsequently, the 

multi-FOV classification H(D; f), where D = {Dτ : ∀τ ∈ T} is the collective data over all 

FOV sizes, is achieved via a consensus prediction across all FOV sizes. In this paper, 

consensus is achieved via averaging of H(Dτ ; τ, f), ∀ τ ∈ T.
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Input: Image . FOV sizes T = {t1, t2, …, tN}. Classifier  for each τ ∈ T.

Output: Multi-FOV classification H(D; f) for image .

1. for all τ ∈ T do

2. From , define M(τ) FOVs .

3. Extract features f from , .

4. Initial classification  of each .

5. For all FOVs Dτ at size τ, make class prediction 

.

6. end for

7. Across all FOV sizes τ ∈ T, make multi-FOV prediction 

.

IV. Experimental Design

A. Data Cohort

BCa histopathology slides were obtained from 126 patients (46 low mBR, 60 intermediate 

mBR, and 20 high mBR) at the Hospital of the University of Pennsylvania and The Cancer 

Institute of New Jersey. All slides were digitized via a whole-slide scanner at 10× 

magnification (1 µm/pixel resolution). Each slide is accompanied by mBR grade as 

determined by an expert pathologist. Note that commonly accepted clinical cutoffs are used 

to define the low (mBR 3–5), intermediate (mBR 6–7), and high (mBR 8–9) grade classes 

used as ground truth in this paper. For each experiment, our BCa grading system is evaluated 

via a series of two-class classification tasks to distinguish slides with low versus high mBR 

grade, low versus intermediate mBR grade, and intermediate versus high mBR grade. In 

addition, a wide range of FOVsizes T = 4000, 2000, 1000, 500, 250}µm was selected 

empirically based on classification of individual FOV sizes in previous work [22], [23].

B. Experiment 1: Whole-Slide Classification Using Nuclear Architecture

We first evaluate the ability of our BCa grading system to discriminate entire BCa 

histopathology slides based on mBR grade via architectural features f̄NA. Since the multi-

FOV classifier utilizes a trained classifier, it is susceptible to the arbitrary selection of 

training and testing data. A threefold cross-validation scheme is used to mitigate this bias by 

splitting the data cohort into three subsets in a randomized fashion, from which two subsets 

are used for training and the remaining subset is used for evaluation. The subsets are 

subsequently rotated until a multi-FOV prediction H(D;f̄NA) is made for each slide. The 

multi-FOV predictions for all slides are thresholded to create receiver operating 

characteristic (ROC) curves using the respective mBR grades as ground truth. The entire 

cross-validation procedure is repeated 20 times, with the mean and standard deviation of the 

area under the ROC curve (AUC) reported.
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C. Experiment 2: Whole-Slide Classification Using Nuclear Texture

Similar to the procedure outlined in Experiment 1, the BCa grading system is evaluated 

using the Haralick co-occurrence texture features f̄NT. A multi-FOV prediction H(D;f̄NT) is 

made for each slide and results over 20 trials of threefold cross-validation are reported, as 

described in Section IV-B.

D. Experiment 3: Comparison to Classification Across Multiple Image Resolutions

Although this paper focuses on the combination of FOVs of different sizes, the ability to 

integrate image information at various spatial resolutions is also important for the 

characterization of digitized histopathology slides [22]. For comparison to the multi-FOV 

approach, a multiresolution classifier is constructed by reextracting each FOV of size τ = 

1000 µm at spatial resolutions of κ ∈ {0.25, 0.5, 1, 2, 4} µm/pixel. A consensus 

multiresolution prediction is achieved for each histopathology slide in a manner analogous 

to the multi-FOV approach (see Section III-D), whereby data are aggregated over all spatial 

resolutions rather than FOV sizes.

V. Results and Discussion

Quantitative results (see Table VIII) suggest that predictions made by nuclear architecture 

H(D;f̄NA) and nuclear texture H(D;f̄NT) both perform well in characterizing mBR grade in 

entire ER+ BCa histopathology slides (see Fig. 6). Specifically, nuclear architecture appears 

to yield higher AUC values than nuclear texture (AUC of 0.93 and 0.86) in terms of 

discriminating low- versus high mBR grade. By contrast, both nuclear architecture and 

nuclear texture yield similar results for distinguishing low versus intermediate (AUC of 0.72 

and 0.68) and intermediate versus high mBR grade (AUC of 0.71 and 0.74) slides, 

respectively.

A. Experiment 1: Feature Selection in Nuclear Architecture

To mitigate the challenges associated with large feature sets (as discussed in Section III-C), 

the ROC curves in Fig. 6 were constructed using feature subsets selected by the mRMR 

algorithm. For each experiment, Tables II–VI show the features selected at each FOV size 

along with the cumulative classification accuracy of the multi-FOV approach with the 

inclusion of each additional feature. Note that some experiments, e.g., nuclear architecture 

for low versus high grading (see Table II) and nuclear texture for intermediate versus high 

grading (see Table VII), demonstrate considerable improvement in classification accuracy 

with the addition of relevant features, while other experiments, e.g., nuclear texture for low 

versus intermediate grading (see Table VI) reach a plateau with the selection of only one or 

two features.

In addition to improved classification accuracy, the feature selection process also reveals the 

specific features that best distinguish low- and high-grade cancers. For example, Table II 

suggests that the average number of neighboring nuclei in a 10-µm radius around each 

nucleus is the most discriminating feature in smaller FOVs (1000, 500, and 250 µm), but has 

lesser importance in larger FOV sizes of 2000 and 4000 µm, where it is ranked third and 

fourth, respectively. Conversely, graph-based features derived from the VD and DT appear to 
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play a greater role in larger FOVs, where variations in VD chord length, DT side length, and 

DT area are more important than NN statistics. This pattern is further reinforced in the 

features selected for distinguishing low versus intermediate grades (see Table III) and 

intermediate versus high grades (see Table IV).

B. Experiment 2: Feature Selection in Nuclear Texture

By examining the features selected for nuclear texture (see Tables V–VII), the dominant role 

of contrast statistics (especially variance and entropy) is immediately apparent. In addition, 

the information measure of correlation is shown to have importance for discriminating 

smaller FOVs (τ ∈ {250, 500}) and data across all three channels (hue, saturation, and 

intensity) appear to be equally relevant in terms of meaningful feature extraction.

C. Experiment 3: Comparison to Multiresolution Classifier

Using all selected features from each classification task (see Tables II–VII), the multi-FOV 

approach is further evaluated via comparison to a multiresolution scheme. A comparison of 

AUC values between the two methods (see Table VIII) suggests that the aggregation of 

image features at multiple FOVs (i.e., multi-FOV classifier) is able to outperform the 

aggregation of image features at multiple spatial resolutions (i.e., multiresolution classifier) 

for the grading of BCa histopathology slides. For nuclear architecture fNA, the superiority of 

the multi-FOV approach in terms of differentiating low versus high grades (AUC = 0.93 

± 0.012), low versus intermediate grades (AUC = 0.72 ± 0.037), and intermediate versus 

high grades (AUC = 0.71 ± 0.051) is expected since the spatial arrangement of nuclei is 

invariant to changes in image resolution. In addition, the ability of a nuclear textural features 

fNT to perform comparably to nuclear architecture in distinguishing low versus high grades 

(AUC = 0.84 ± 0.036) and low versus intermediate grades (AUC = 0.67 ± 0.074) is also 

unsurprising since textural representations of nuclei will reveal different types of class 

discriminatory information at various image resolutions. These results suggest that an 

intelligent combination of the multi-FOV and multiresolution approaches may yield 

improved classification of tumor grade in whole-slide BCa histology.

VI. Concluding Remarks

The development of a quantitative, reproducible grading system for whole-slide 

histopathology will be an indispensable diagnostic and prognostic tool for clinicians and 

their patients. In this paper, we demonstrate a computerized grading scheme for ER+ BCa 

that uses only image features from entire H and E stained histopathology slides. Specifically, 

we exhibit 1) a multi-FOV classifier with robust feature selection for classifying entire ER

+BCa histopathology slides into low, intermediate, and high mBR grades; 2) a BCa grading 

system that utilizes all image information on a digitized histopathology slide rather than 

arbitrarily selected FOVs; and 3) image features describing both nuclear architecture (i.e., 

spatial arrangement of nuclei) and nuclear texture (i.e., textural patterns within nuclei) that 

are able to quantify mBR grade. It is important to note that, while the initial multi-FOV 

scheme was formulated in [22], the implementation presented in this paper involves a much 

larger cohort as well as experiments involving the classification of intermediate mBR grades. 

This paper also introduces the addition of a feature selection scheme, yielding both 
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improvements in classifier performance and specific image features that play an important 

role in computerized BCa grading.

Unsurprisingly, the grading system performs best when differentiating patients with low- 

and high-grade tumors. We were also able to achieve reasonable performance for 

distinguishing patients with low- and intermediate-grade tumors and patients with 

intermediate- and high-grade tumors. Future work will involve the incorporation of 

additional feature sets (e.g., tubule formation patterns, fractal-based, and textural) as well as 

novel methods for producing an intelligent combination of various feature sets. In addition, 

we will explore the possibility of integrating the multi-FOV and multiresolution approaches, 

which may yield improved results with respect to features that vary at different image 

resolutions (e.g., textural representations).

An issue worth investigating in future work will be as to how class balance affects the 

performance of the classifier and the corresponding features. Class balance refers to the 

differences in the number of low-, intermediate-, and high-grade studies, an issue that has 

been known to bias classifier performance [55]. The lack of class balance in our cohort is 

representative of the ER+ BCa population as a whole, in which women are more likely to be 

diagnosed in the earlier stages of the disease. While we have previously discussed its 

importance in the classification of digital pathology [56], a more rigorous analysis of the 

effect of class balance on the multi-FOV classifier will need to be addressed in future work.
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Fig. 1. 
(a) Multi-FOV framework presented in this paper operates by maintaining a fixed scale 

while analyzing several FOV sizes. (b) Conversely, a multiscale framework would operate 

by analyzing a fixed FOV at different spatial resolutions.
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Fig. 2. 
FOVs taken from a single histopathology slide illustrate the high level of intratumoral 

heterogeneity in ER+ BCa. The green annotation represents invasive cancer as determined 

by an expert pathologist. Note the disorganized tissue structure of FOVs with higher 

malignancy (top, bottom) compared to the FOV containing benign tissue (middle).
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Fig. 3. 
Flowchart outlining the methodological steps of the automated BCa grading system, 

whereby (a) an ER+ BCa histopathology slide is first divided into (b) FOVs of various sizes. 

(c) Image features that quantify mBR grade phenotype are extracted from each FOV and (d) 

a feature selection scheme is used to identify salient features at each FOV size. (e) 

Pretrained classifiers are used to predict (f) mBR grade for each FOV (illustrated by red and 

green squares). (g) Predictions for individual FOVs are aggregated to achieve a class 

prediction H(τ) for an entire FOV size τ. (h) Class predictions from FOV sizes are combined 

to achieve a final classification result for the entire ER+ BCa histopathology slide.
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Fig. 4. 
(a) High-grade histopathology image with its (b) hematoxylin and (c) eosin channels 

separated by color deconvolution. The green box in (b) denotes an inset providing more 

detailed visualization of the nuclear detection and segmentation process in (d)–(k). For 

nuclear detection, (d) the intensity of the hematoxlyin channel undergoes, (e) morphological 

opening, and (f) thresholding. (g) Centroids of the individual nuclei are later used for graph 

construction. The nuclear segmentation process also uses (d) the intensity of the 

hematoxylin channel, applying (h) morphological erosion, (i) thresholding, and (j) the color 

gradient based active contour model (CGAC), to achieve (k) a final segmentation result that 

is used for extraction of nuclear texture.
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Fig. 5. 
(a) Centroids of nuclei are isolated from the hematoxylin channel and used as vertices for 

the construction of graphs such as the (b)–(d) DT at various FOV sizes, from which features 

describing nuclear architecture are extracted. (e) The segmentation of nuclei allows for 

extraction of Haralick texture features such as (f)–(h) Contrast Variance in FOVs of various 

sizes. For all images, note that green boxes represent FOVs of different sizes and blue boxes 

represent insets to enhance visualization.
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Fig. 6. 
Mean ROC curves over 20 trials of threefold cross-validation for (a) low versus high grade, 

(b) low versus intermediate grade, and (c) intermediate versus high grade classification 

tasks. For each task, ROC curves are shown for both nuclear architecture and nuclear texture 

feature sets along with associated AUC values.
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TABLE I

Fifty Nuclear Architecture Features Used in This Paper, Derived From VD, DT, and MST Graphs, as Well as 

NN Statistics

Type Name

VD (13)

Total area of polygons

Polygon area: mean, std dev, min/max ratio, disorder

Polygon perimeter: mean, std dev, min/max ratio, disorder

Polygon chord length: mean, std dev, min/max ratio, disorder

DT (8)
Triangle side length: mean, std dev, min/max ratio, disorder

Triangle area: mean, std dev, min/max ratio, disorder

MST (4) Edge length: mean, std dev, min/max ratio, disorder

NN (25)

Nuclear density

Distance to 3 nearest nuclei: mean, std dev, disorder

Distance to 5 nearest nuclei: mean, std dev, disorder

Distance to 7 nearest nuclei: mean, std dev., disorder

# nuclei in 10 µm radius: mean, std dev, disorder

# nuclei in 20 µm radius: mean, std dev, disorder

# nuclei in 30 µm radius: mean, std dev, disorder

# nuclei in 40 µm radius: mean, std dev, disorder

# nuclei in 50 µm radius: mean, std dev, disorder
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TABLE II

Selected Nuclear Architecture Features for Low versus High mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 VD chord length: min/max ratio

0.85 ± 0.033

2000 DT side length: min/max ratio

1000 # nuclei in 10 µm radius: mean

500 # nuclei in 10 µm radius: mean

250 # nuclei in 10 µm radius: mean

2

4000 DT area: min/max ratio

0.86 ± 0.056

2000 DT area: disorder

1000 # nuclei in 10 µm radius: disorder

500 DT area: min/max ratio

250 Dist. to 5 nearest nuclei: disorder

3

4000 VD area: min/max ratio

0.88 ± 0.038

2000 # nuclei in 10 µm radius: mean

1000 DT area: min/max ratio

500 # nuclei in 10 µm radius: disorder

250 DT area: min/max ratio

4

4000 # nuclei in 10 µm radius: mean

0.91 ± 0.023

2000 MST edge length: min/max ratio

1000 MST edge length: min/max ratio

500 DT side length: min/max ratio

250 Dist. to 7 nearest nuclei: disorder

5

4000 VD perimeter: min/max ratio

0.91 ± 0.015

2000 # nuclei in 10 µm radius: disorder

1000 DT side length: min/max ratio

500 Dist to 7 nearest nuclei: disorder

250 DT side length: min/max ratio
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TABLE III

Selected Nuclear Architecture Features for Low Versus Intermediate mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 VD perimeter: min/max ratio

0.71 ± 0.0042

2000 DT area: disorder

1000 DT area: disorder

500 # nuclei in 10 µm radius: disorder

250 DT side length: min/max ratio

2

4000 VD chord length: min/max ratio

0.71 ± 0.011

2000 DT side length: min/max ratio

1000 VD chord length: min/max ratio

500 Dist. to 7 nearest nuclei: disorder

250 # nuclei in 10 µm radius: mean

3

4000 DT area: disorder

0.73 ± 0.028

2000 # nuclei in 10 µm radius: mean

1000 # nuclei in 10 µm radius: mean

500 Dist. to 5 nearest nuclei: disorder

250 Dist. to 3 nearest nuclei: disorder

4

4000 MST edge length: min/max ratio

0.74 ± 0.037

2000 VD perimeter: min/max ratio

1000 VD perimeter: min/max ratio

500 DT area: min/max ratio

250 # nuclei in 10 µm radius: disorder
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TABLE IV

Selected Nuclear Architecture Features for Intermediate Versus High mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 VD area: min/max ratio

0.70 ± 0.035

2000 DT area: disorder

1000 DT area: disorder

500 VD area: std. dev.

250 DT area: min/max ratio

2

4000 DT area: disorder

0.71 ± 0.054

2000 VD perimeter: min/max ratio

1000 VD chord length: min/max ratio

500 # nuclei in 10 µm radius: mean

250 Dist. to 7 nearest nuclei: disorder

3

4000 DT side length: min/max ratio

0.72 ± 0.048

2000 # nuclei in 10 µm radius: mean

1000 MST edge length: min/max ratio

500 DT area: disorder

250 # nuclei in 40 pm radius: mean

4

4000 VD chord: min/max ratio

0.73 ± 0.056

2000 DT side length: min/max ratio

1000 DT side length: min/max ratio

500 DT area: min/max ratio

250 # nuclei in 10 µm radius: mean
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TABLE V

Selected Nuclear Texture Features for Low versus High mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 Val: Contrast variance - std. dev.

0.80 ± 0.047

2000 Hue: Contrast variance - mean

1000 Sat: Contrast variance - std. dev.

500 Val: Contrast variance - std. dev.

250 Val: Contrast entropy - disorder

2

4000 Sat: Contrast variance - std. dev.

0.81 ± 0.044

2000 Sat: Contrast variance - mean

1000 Hue: Contrast variance - mean

500 Hue: Info, measure 1 - std. dev.

250 Hue: Info, measure 1 - std. dev.

3

4000 Hue: Contrast variance - std. dev.

0.84 ± 0.040

2000 Hue: Contrast variance - std. dev.

1000 Val: Contrast variance - std. dev.

500 Val: Contrast entropy - disorder

250 Val: Contrast average - std. dev.
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TABLE VI

Selected Nuclear Texture Features for Low versus Intermediate mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 Hue: Contrast variance - disorder

0.69 ± 0.024

2000 Sat: Contrast variance - mean

1000 Val: Contrast average - std. dev.

500 Sat: Contrast variance - std. dev.

250 Sat: Info, measure 1 - std. dev.

2

4000 Val: Contrast variance - std. dev.

0.69 ± 0.027

2000 Val: Contrast variance - std. dev.

1000 Sat: Contrast inv. moment - std. dev.

500 Sat: Info, measure 1 - std. dev.

250 Sat: Contrast variance - std. dev.

3

4000 Val: Contrast entropy - disorder

0.70 ± 0.024

2000 Sat: Contrast average - std. dev.

1000 Hue: Intensity average - disorder

500 Val: Info, measure 1 - std. dev.

250 Sat: Contrast inv. moment - std. dev.
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TABLE VII

Selected Nuclear Texture Features for Intermediate versus High mBR Grade Classification

Rank τ Feature Description Cum. Acc.

1

4000 Hue: Contrast variance - std. dev.

0.68 ± 0.082

2000 Hue: Contrast variance - mean

1000 Sat: Contrast variance - std. dev.

500 Val: Contrast variance - std. dev.

250 Val: Contrast variance - std. dev.

2

4000 Hue: Contrast variance - mean

0.75 ± 0.044

2000 Val: Contrast entropy - disorder

1000 Hue: Contrast variance - mean

500 Sat: Contrast variance - std. dev.

250 Sat: Contrast variance - std. dev.

3

4000 Sat: Contrast variance - mean

0.74 ± 0.040

2000 Hue: Contrast variance - std. dev.

1000 Hue: Contrast variance - std. dev.

500 Val: Contrast entropy - disorder

250 Hue: Info, measure 1 - std. dev.

4

4000 Sat: Contrast variance - std. dev.

0.74 ± 0.030

2000 Sat: Contrast variance - mean

1000 Val: Contrast variance - std. dev.

500 Sat: Contrast inv. moment - std. dev.

250 Sat: Contrast inv. moment - std. dev.

5

4000 Hue: Contrast variance - disorder

0.75 ± 0.035

2000 Sat: Contrast variance - std. dev.

1000 Sat: Contrast variance - mean

500 Val: Entropy - std. dev.

250 Val: Contrast entropy - disorder
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TABLE VIII

AUC Values for the Comparison of Low-, Intermediate-, and High-Grade Cancers Using Both Multi-FOV and 

Multiresolution Classifiers

Experiment Feature Set Multi-FOV Multi-Res.

Low vs. high
f̄NA 0.93 ± 0.012 0.86 ± 0.035

f̄NT 0.86 ± 0.036 0.84 ± 0.036

Low vs. intermed.
f̄NA 0.72 ± 0.037 0.67 ± 0.049

f̄NT 0.68 ± 0.028 0.67 ± 0.074

Interned, vs. high
f̄NA 0.71 ± 0.051 0.65 ± 0.054

f̄NT 0.74 ± 0.036 0.66 ± 0.075
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