Skip to main content
. 2017 Nov 28;46(2):942–955. doi: 10.1093/nar/gkx1186

Table 1. Summary of molecular dynamics simulation results for the different DNA helical duplexes considered.

Label Sequence Initial E-motif Force Field Time (ns) E-motif Status
GCC4 C-(GCC)4-G No BSC0, BSC1 1000 e-motif formation at 600 ns in BSC0
CCG4 G-(CCG)4-C No BSC0, BSC1 1000 No e-motif transition
DC-1 (CCCGGC)2 No BSC0, BSC1, OL15 1000 e-motif formation at 300 ns in BSC0
DC-2 (CGGCCC)2 No BSC0, BSC1, OL15 1000 No e-motif transition
SC-3 (CCCCGG)2, slipped No BSC0 1000 No e-motif transition
GCC5emotif (GCC)5 Yes BSC0, BSC1, OL15 1000 Stable
CCG5emotif (CCG)5 Yes BSC0, BSC1, OL15 1000 Mismatches become intra-helical for BSC1 & OL15; e-motif in BSC0 loses H-bonds
GCC4extended C-(GCC)4-G Yes, extended e-motif BSC0, BSC1, OL15 2000 Stable extended e-motif for all three force fields
CCG4extended C-(GCC)4-G Yes, extended e-motif BSC0, BSC1, OL15 2000 Unstable e-motif for BSC1 and OL15; RMSD around e-motif increases for BSC0
DC-1-MUT 5′(CCCGCCCCGGGC)3′ 3′(CGGCGCCGCCCC)5′ Yes BSC0, BSC1, OL15 1200 e-motif lost at 250 ns in BSC0, at 170 ns in BSC1, at 35 ns in OL15
DC-2emotif (CGGCCC)2 Yes BSC0, BSC1, OL15 1200 e-motif lost at 350 ns in BSC0, at 60 ns in BSC1, at 32 ns in OL15