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Measuring improvement in fracture risk 
prediction for a new risk factor: a simulation
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Abstract 

Objective:  Improvements in clinical risk prediction models for osteoporosis-related fracture can be evaluated using 
area under the receiver operating characteristic (AUROC) curve and calibration, as well as reclassification statistics 
such as the net reclassification improvement (NRI) and integrated discrimination improvement (IDI) statistics. Our 
objective was to compare the performance of these measures for assessing improvements to an existing fracture risk 
prediction model. We simulated the effect of a new, randomly-generated risk factor on prediction of major osteoporo-
tic fracture (MOF) for the internationally-validated FRAX® model in a cohort from the Manitoba Bone Mineral Density 
(BMD) Registry.

Results:  The study cohort was comprised of 31,999 women 50+ years of age; 9.9% sustained at least one MOF 
in a mean follow-up of 8.4 years. The original prediction model had good discriminative performance, with 
AUROC = 0.706 and calibration (ratio of observed to predicted risk) of 0.990. The addition of the simulated risk factor 
resulted in improvements in NRI and IDI for most investigated conditions, while AUROC decreased and changes in 
calibration were negative. Reclassification measures may give different information than discrimination and calibra-
tion about the performance of new clinical risk factors.
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Introduction
Methods to predict the risk of an outcome are receiv-
ing considerable attention in the clinical literature. The 
incremental improvement in risk prediction when a new 
risk factor is added to an existing model is of particular 
interest because new measures of risk are continually 
being defined and collected in an attempt to refine pre-
diction models [1]. This is an important topic for osteo-
porosis-related fracture risk prediction, where a number 
of models have been proposed [2] and numerous studies 
have examined the incremental improvement in predic-
tion when biomarkers or other clinical characteristics of 
patients are introduced to existing models [3, 4].

Improvements in predictive model performance 
have traditionally been assessed using area under the 
receiver operating characteristic (AUROC) curve, which 

measures model discrimination, and calibration, which 
measures prediction error. Using these measures, a new 
risk factor is considered to be a beneficial model addi-
tion if the AUROC and calibration statistics for the new 
model, which includes the predictors in the original 
model plus the new risk factor, are better than the cor-
responding statistics for the original model. However, 
AUROC and calibration statistics are summary measures 
that may not provide a complete picture of the change in 
predicted risk for all individuals [5], particularly those in 
the lowest and highest risk categories.

Clinicians have given increased attention to reclassifi-
cation tables and statistics such as the net reclassification 
index (NRI), which summarize the change in risk prob-
ability or the frequency (percentage) of individuals who 
will move from one risk category to another based on the 
addition of a new risk factor to the original prediction 
model. Reclassification statistics are increasingly used 
to describe the performance of risk prediction models 
[4, 6, 7]. However, few studies, particularly in the area of 

Open Access

BMC Research Notes

*Correspondence:  lisa.lix@umanitoba.ca 
1 Department of Community Health Sciences, Rady Faculty of Health 
Sciences, University of Manitoba, Winnipeg, MB, Canada
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8685-3212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-018-3178-z&domain=pdf


Page 2 of 5Lix et al. BMC Res Notes  (2018) 11:62 

fracture risk prediction, have compared the performance 
of different measures [8].

Our purpose was to compare conventional AUROC 
and calibration statistics with newer reclassification sta-
tistics for fracture risk prediction. We did this within the 
context of the internationally-validated Fracture Risk 
Assessment Tool (FRAX®), which predicts risk of a major 
osteoporotic fracture (MOF) [9]. Our hypothesis was that 
conventional measures and newer reclassification sta-
tistics would not lead to the same conclusions about the 
incremental improvement in model performance when a 
new risk factor was added to the FRAX® model.

Main text
Methods
Study design and cohort development
The study was conducted by combining analyses of a 
real dataset with simulation. The real data were from 
the province of Manitoba, Canada for the period from 
1987 to 2011 and came from the Manitoba Bone Mineral 
Density (BMD) Program and administrative health data-
bases, including hospital separation records, physician 
billing claims, prescription drug records, and population 
registry.

The Manitoba BMD Program database is a regionally-
based clinical database that captures dual energy X-ray 
absorptiometry (DXA) results for the entire provincial 
population since the program’s inception in 1996 [10]. 
Hospital abstracts are completed at the point of dis-
charge from acute care facilities and contain diagnoses 
coded using the World Health Organization’s Interna-
tional Classification of Diseases (ICD). Physician claims 
are submitted to the provincial ministry of health by phy-
sicians paid on a fee-for-service basis; they capture virtu-
ally all outpatient services and contain a single ICD code. 
Prescription drug records are from the Drug Program 
Information Network, a centralized, electronic, point-of-
sale database connecting all retail pharmacies. The pop-
ulation registry captures information on all provincial 
residents eligible to receive publicly-insured health ser-
vices, including dates of health insurance coverage and 
demographics.

The study cohort included women aged 50+ years who 
had a BMD test between 1996 and 2011. If an individual 
had more than one BMD test during this period, only the 
first one was used. The BMD test date was the index date 
for creating predictors for the FRAX® model: age, body 
mass index, prior fracture, parental hip fracture, chronic 
obstructive pulmonary disease, rheumatoid arthritis, 
alcohol or substance use, recent glucocorticoid use, and 
femoral neck T-score. These measures were defined 
from the Manitoba BMD Program database and codes in 
administrative health databases [11–15].

MOF encompasses fractures of the spine, hip, forearm, 
and humerus. Fractures that occurred after the index 
BMD test and up to March 31, 2011, death, or migration 
out of province, were identified from hospital and physi-
cian billing claims databases. Health service records were 
assessed for fracture information not associated with 
trauma using established methods [12].

The study cohort was described on socio-demographic 
and clinical characteristics using means, standard devia-
tions, and percentages. The 10-year MOF risk was esti-
mated for each cohort member using the FRAX® Canada 
calculator (FRAX® Desktop Multi-Patient Entry, ver-
sion 3.7) [16]. FRAX® uses a continuous hazard function 
based on Poisson regression to produce risk estimates.

Computer simulation
In the computer simulation, new risk predictions were 
generated based on the addition of one multiplicative 
risk factor to the original FRAX® estimates. This risk fac-
tor was simulated from a Bernoulli distribution and was 
independent of other predictors; Kooter et al. [17] dem-
onstrate formulae to estimate the impact of simulated 
risk factors on predicted risk. Relative risk (RR), which 
quantifies the independent association between this sim-
ulated variable and the outcome, varied from 1.25 to 3.50 
in increments of 0.25. Prevalence varied from 10 to 100% 
in increments of 10%. The intervention threshold, which 
was used to construct the reclassification tables, ranged 
from 5 to 50% in increments of 5%.

Statistical analysis
For each combination of simulation parameters, AUROC 
and calibration statistics were computed for the original 
FRAX® model and the new model. AUROC was calcu-
lated based upon the original and simulated risk predic-
tions; the difference was computed. Calibration was the 
ratio of the observed cumulative fracture incidence at 
10 years to the average predicted risk probability [1].

The NRI measures the frequency of appropriate reclas-
sification compared to inappropriate reclassification with 
the new model compared to the original model. The pre-
dicted probabilities based on the two models are assigned 
to ordinal risk categories and cross-tabulated [5]. We 
defined upward movement as a change into a higher risk 
category based on the new model and downward move-
ment as a change in the opposite direction. As per con-
vention, for individuals with a fracture event, a value of 
1 was assigned for upward movement, a score of −  1 
was assigned for downward movement, and zero was 
assigned for no change. The opposite scoring was used 
for cohort members who do not experience a fracture 
event. The NRI is the sum of individual scores, divided 
by the number of cohort members. The IDI is based on 
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the change in calculated risk; specifically, it quantifies the 
increment in the predicted probabilities for the cohort 
members experiencing an event and the decrement for 
the cohort members who do not experience an event [5, 
18]. Conventional and reclassification statistics for the 
original and new models were descriptively analysed. 
Statistical analyses were conducted using SPSS for Win-
dows, Version 22.0.

Results
Study cohort characteristics
The study cohort (Table  1) was comprised of 31,999 
women 50+ years of age. A total of 9.9% sustained a 
MOF; 17.2% were censored at death. There were differ-
ences between cohort members with and without a MOF 
on most variables in the original FRAX® model. The 
10-year estimated MOF risk from the original model was 
10.5% [standard deviation (SD) = 6.8%] for cohort mem-
bers without a MOF and 16.3% (SD =  9.6%) for cohort 
members with a MOF.

Risk prediction model characteristics and computer 
simulation
The estimated AUROC of the original model was 0.706 
[95% confidence interval (95% CI) 0.697–0.716] and cali-
bration was 0.990. Using this model, 6.8% of cohort mem-
bers were predicted to have low fracture risk (i.e., < 10%), 
13.9% as moderate fracture risk (i.e., 10–20%), and 27.3% 
as high fracture risk (i.e., > 20%).

The results obtained after introducing the new simu-
lated risk factor into the original model are reported in 
Table 2. The first set of results was obtained when the RR 

varied and other parameters were held constant. Across 
the investigated RR values, the NRI demonstrated a 
U-shaped pattern; it was low for small values of the RR, 
increased for moderate values of RR, and then decreased 
for higher RR values. In fact, for RR  >  3.0, the NRI 
attained a small negative value. In contrast, the IDI dem-
onstrated small incremental increases as RR increased. 
The change in AUROC between the original and new 
model was negative; it decreased to a low of 0.642; in 
general, values less than 0.70 indicate poor discrimi-
nant performance [19]. Calibration also decreased as RR 
increased.

The second set of results was obtained when the preva-
lence of the new simulated risk factor was varied and 
other simulation parameters were held constant. The NRI 
increased from 0.015 to 0.120 as prevalence increased 
from 10 to 100%, while the IDI showed a more modest 
increase, from 0.006 to 0.058. The change in the AUROC 
was negative for all except the largest prevalence val-
ues and the change in calibration was negative for all 
conditions.

The final set of results, which was obtained by varying 
the intervention threshold for treatment, resulted in NRI 
values that ranged from − 0.041 to 0.063. Given that the 
IDI is based on continuous values of the risk probabili-
ties, it did not change with variations in the intervention 
threshold, nor did the AUROC and calibration statistics.

Discussion and conclusions
Several multivariable Fracture Risk Assessment Tools 
have been proposed [2], and there is continual explora-
tion of new clinical risk factors that may improve frac-
ture risk prediction in these tools [3]. There are multiple 
measures of improvement in predictive performance for 
a new risk factor. These measures will not always produce 
consistent results, confirming our hypothesis.

Our results show that a risk factor with a moderate 
to strong independent association with the outcome 
simultaneously resulted in decreases in model discrimi-
nation and calibration (demonstrating that a new risk 
factor does not always incrementally improve risk predic-
tion) and positive changes in the NRI and IDI indicating 
improvements in risk classification. However, the NRI 
and IDI did not always produce consistent results. For 
example, as the NRI decreased the IDI increased when 
the RR of the new risk factor increased. However, when 
prevalence of the new risk factor increased, both the NRI 
and IDI increased. These findings are consistent with 
previous simulations [20].

This study, along with previous research about fracture 
risk prediction [21], underscores the importance of exam-
ining multiple performance measures in the development 
and refinement of fracture risk prediction models [7, 22]. 

Table 1  Characteristics of the study cohort, overall and by 
fracture outcome

All reported statistics are mean ± standard deviation unless otherwise noted; 
COPD, chronic obstructive pulmonary disease; MOF, major osteoporotic fracture; 
BMD, bone mineral density; all differences between sub-groups were statistically 
significant (p < 0.0001)

Overall
(N = 31,999)

No MOF
(N = 28,817)

MOF
(N = 3182)

Age (years) 65.6 ± 9.7 65.1 ± 9.6 70.2 ± 9.7

Body mass index (kg/m2) 26.7 ± 5.2 26.8 ± 5.2 25.7 ± 4.9

Prior fracture, n (%) 3977 (12.4) 3228 (11.2) 749 (23.5)

Parental hip fracture, n (%) 520 (1.6) 492 (1.7) 28 (0.9)

COPD, n (%) 3084 (9.6) 2648 (9.2) 436 (13.7)

Recent glucocorticoid use, 
n (%)

1502 (4.7) 1267 (4.4) 235 (7.4)

Rheumatoid arthritis, n (%) 1277 (4.0) 1065 (3.7) 212 (6.7)

Alcohol or substance abuse, 
n (%)

614 (1.9) 517 (1.8) 97 (3.0)

Femoral neck T-score − 1.5 ± 1.0 − 1.4 ± 1.0 − 2.1 ± 0.9

FRAX® MOF risk 11.1 ± 7.4 10.5 ± 6.8 16.3 ± 9.6

Follow up (years) 8.4 ± 2.8 8.4 ± 2.8 8.9 ± 2.8
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Reclassification tables and statistics such as the NRI and 
IDI provide clinicians and researchers with supplemen-
tary statistical indicators about the potential uncertainty 
in risk estimates and the net effect of a new risk factor 
on predictive performance. The NRI and IDI can provide 
insights about scenarios for which appropriate reclassi-
fication occurs relative to inappropriate reclassification 
with the introduction of a new risk factor.

The benefits of adding a new risk factor to a predic-
tion model such as FRAX® will depend on a number of 
considerations, including cost, availability, and clinical 
relevance. Clinicians working in the area of fracture risk 
prediction, as in other risk prediction areas, must keep 
abreast of developments in risk modeling and continually 
look to new opportunities to add to their toolbox of rel-
evant statistical methods.

Limitations
The limitations of this study relate to the simulation 
and choice of statistical procedures. We manipulated 
a single risk factor in the simulation even though mul-
tiple risk factors might have been manipulated. How-
ever, researchers interested in improving risk prediction 
often focus on new risk factors one at a time [17]. We 

considered a dichotomous risk factor; ordinal or contin-
uously-distributed risk factors could also be investigated. 
However, calculation of the potential impact on risk is 
more complicated for the latter scenario and will depend 
on a number of features of the measure, including shape 
of the population distribution [17]. The new risk factor 
was independently associated with the outcome; in real-
world settings risk factors are often correlated and this 
will affect their impact on risk estimation. We gave equal 
weighting to false positive and negative values, which 
may not always be realistic and may not reflect clinical 
practice, in which greater weight may be assigned to one 
type of error.

We examined only a single fracture risk prediction 
model, although there have been a number of different 
models proposed [2]; the choice of models will affect 
AUROC and calibration statistics. Finally, there are other 
reclassification statistics that have been proposed and 
may produce different results than the NRI and IDI [23].

Abbreviations
AUROC: area under the receiver operating characteristic; BMD: bone mineral 
density; COPD: chronic obstructive pulmonary disease; FRAX®: Fracture Risk 
Assessment Tool; ICD: International Classification of Diseases; MOF: major 

Table 2  Reclassification and  conventional statistics for  measuring change in  FRAX® model performance with  the addi-
tion of a new simulated risk factor

RR, relative risk; NRI, net reclassification index; IDI, integrated discrimination improvement
a  The following simulation parameters were held constant: prevalence = 33% and intervention threshold = 20%
b  The following simulation parameters were held constant: RR = 2.0 and intervention threshold = 20%
c  The following simulation parameters were held constant: RR = 2.0 and prevalence = 33%

Statistic RRa

1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5

NRI 0.018 0.028 0.037 0.042 0.034 0.026 0.017 0.007 − 0.003 − 0.015

IDI 0.005 0.009 0.014 0.019 0.023 0.028 0.033 0.037 0.042 0.046

ΔAUROC − 0.004 − 0.011 − 0.019 − 0.027 − 0.035 − 0.042 − 0.049 − 0.055 − 0.060 − 0.064

ΔCalibration − 0.076 − 0.141 − 0.198 − 0.248 − 0.291 − 0.330 − 0.365 − 0.396 − 0.424 − 0.450

Statistic Prevalence (%)b

10 20 30 40 50 60 70 80 90 100

NRI 0.015 0.025 0.037 0.048 0.063 0.073 0.085 0.098 0.107 0.120

IDI 0.006 0.010 0.017 0.022 0.029 0.036 0.042 0.048 0.053 0.058

ΔAUROC − 0.010 − 0.020 − 0.025 − 0.029 − 0.029 − 0.026 − 0.021 − 0.015 − 0.009 0.000

ΔCalibration − 0.090 − 0.165 − 0.228 − 0.283 − 0.330 − 0.371 − 0.408 − 0.440 − 0.469 − 0.495

Statistic Intervention threshold (%)c

5 10 15 20 25 30 35 40 45 50

NRI − 0.041 − 0.074 − 0.004 0.042 0.050 0.060 0.063 0.057 0.050 0.042

IDI 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

ΔAUROC − 0.291 − 0.291 − 0.291 − 0.291 − 0.291 − 0.291 − 0.291 − 0.291 − 0.291 − 0.291

ΔCalibration − 0.248 − 0.248 − 0.248 − 0.248 − 0.248 − 0.248 − 0.248 − 0.248 − 0.248 − 0.248
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osteoporotic fracture; NRI: net classification index; IDI: integrated discrimina-
tion improvement; RR: relative risk.
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