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Abstract

The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein 

phosphorylation and calcium signaling cascades, where it provides an essential nodal point for 

coordination between these two fundamental modes of intracellular communication. In excitatory 

cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in 

cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells 

require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of 

calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to 

failure. How does a calcium activated enzyme function in the calcium-rich environment of the 

continuously contracting heart without pathological consequences? This review will discuss the 

wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms 

calcineurin uses to find and act on appropriate substrates in the appropriate location while 

potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses 

adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in 

calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in 

calcineurin activity may facilitate integration with other essential but conflicting processes, 

allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the 

detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
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1. Introduction

It has been forty years since Claude Klee began her seminal work deciphering the structure 

and regulation of the calcium-activated protein phosphatase calcineurin [1–3] and almost 

twenty years since Jeff Molkentin and Eric Olson demonstrated that sustained activation of 

calcineurin in cardiomyocytes is sufficient to promote hypertrophic remodeling, 

decompensated failure, and arrhythmogenic death [4]. Numerous studies have subsequently 

verified that inhibition of calcineurin is an effective method for blunting hypertrophic growth 

and protecting the heart from both initial oxidative damage and subsequent pathological 

remodeling in response to a variety of insults [5–10]. Hundreds, if not thousands of papers 

have been published citing a role for calcineurin in cardiovascular disease, yet there is much 

we still do not understand regarding control and specificity of this enzyme that must 

function in the calcium-rich environment of a continually contracting heart without initiating 

a pathological signaling cascade. Here, we will review regulation of calcineurin and 

mechanisms it uses to target specific substrates within the myocardium. Key features unique 

to calcineurin signaling in the heart will be addressed including: fundamental differences in 

calcineurin signaling in neonatal verses adult cardiomyocytes and the importance of 

maintaining heterogeneity in calcineurin activity across the myocardium, particularly as it 

relates to ion channel activity and arrhythmogenesis. Finally, we will discuss how a 

circadian pattern of calcineurin activity may allow a healthy heart to reap the benefits of 

calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin 

activity that can culminate in heart failure.

2. Calcineurin structure and regulation

Calcineurin is a heterodimer composed of a 60-kDa catalytic subunit (CnA) and a 19-kDa 

regulatory subunit (CnB). CnA contains an N-terminal catalytic domain, a CnB binding 

domain, a calmodulin binding domain, and a C-terminal autoinhibitory domain (AID). CnB 

has four EF-hand Ca2+-binding sites: two structural sites that bind Ca2+ with high affinity in 

the nM range, that are always occupied [11, 12], and two regulatory sites that bind in the µM 

range (Fig. 1A). Binding of Ca2+ to the regulatory sites initiates a series of conformational 

changes that allow binding of a calmodulin/Ca2+ complex and a change in the orientation of 

the AID to expose the active site [13, 14] (Fig. 1B). Truncation of CnA to remove the AID 

yields a constitutively active phosphatase (CnA*) that no longer responds to Ca2+/

calmodulin (Fig. 1C). It is this truncated form, under the control of the alpha myosin heavy 

chain (αMHC-CnA*) that has now been used by many investigators to study the effects of 

calcineurin activity in the myocardium [4].

During the cardiac cycle, cytosolic Ca2+ raises from 0.1 µM to 1 µM [15], reaching well 

within the range to activate calcineurin, which requires only 0.6 µMfor half maximal activity 

in the presence of 20 µMcalmodulin [16]. It is not completely understood how calcineurin 

avoids beat-to-beat activation. However, many factors are likely involved, including the rate 

of association with calmodulin and regional differences in availability of this accessory 

protein [17]. An important concept that has immerged is the role of signaling microdomains 

that are define by the local concentrations of Ca2+, calmodulin, and target substrate [18–20]. 

Free calmodulin in an adult cardiomyocyte is estimated in the range of 50 to 100 nM [21]. 
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This is low enough to impact calcineurin's threshold for activation by Ca2+. For instance, at 

30 nM calmodulin, half maximal activation of calcineurin requires 1.3 µMCa2+ [16]. 

Therefore, in a subcellular domain with limited free calmodulin, calcineurin might only be 

activated when there is an unusually high systolic Ca2+ transient, such as those following 

adrenergic input, whereas, calcineurin in a domain with free access to calmodulin would be 

able to respond to a lower Ca2+ input.

In mammals, three genes encode CnA (α, β, and γ). Only CnAα (PPP3CA) and CnAβ 
(PPP3CB) are expressed in the heart. Of the two genes encoding the CnB regulatory subunit, 

only CnBα/CnB1 (PPP3R1) is expressed in the heart (Fig. 1D). Transcript and protein levels 

for CnAβ, but not CnAα, increase in response to mechanical stress or hypertrophic agonists 

in a calcineurin-dependent fashion [10, 22, 23]. Mice lacking CnAα have a severely 

shortened life span, therefore, a rigorous analysis of their cardiovascular phenotype has not 

been undertaken [24–26]. The hearts of mice lacking CnAβ are smaller than wild type 

littermates and show reduced hypertrophy in response to pressure overload [27]. Taken 

together, these findings suggest that CnAβ is the dominant isoform in the heart and that it 

may participate in a feed-forward amplification loop.

2.1. Cardiac expressed isoforms

Although CnAα and CnAβ isoforms are structurally similar, there are some notable 

differences. Purified enzyme composed of CnAβ is less sensitive to inhibition by FK506 

[28]. CnAβ also contains a unique proline-rich N-terminal domain that increases its affinity 

for certain substrates [29]. Of particular note, the bHLH transcription factor ATOH8 was 

recently shown to interact specifically with CnAβ but not CnAα [30]. ATOH is involved in 

skeletal muscle and cardiac development [31, 32], however its role in heart disease has not 

yet been explored.

A unique splice variant of CnAβ was recently identified, CnAβ1, that lacks the AID [33]. 

Similar to the C-terminal truncated CnA* proteins, the CnAβ1 variant is constitutively 

active. Remarkably, however, a cardiomyocyte-specific αMHC-Cnβ1 transgene does not 

provoke hypertrophy but exerts beneficial effects following myocardial infarction by 

promoting vascularization [34, 35]. How this is accomplished is not yet understood, 

however, interesting data is emerging that suggests CnAβ1 may be important for proper 

localization and signaling of mTORC2 complexes [34, 36].

Cleavage of either CnAα or CnAβ by the Ca2+-activated protease, calpain, generates 

constitutively active forms of calcineurin that lack the AID (Fig. 1C) [37–39]. Calpain 

activation following ischemia reperfusion (I/R) damages the myocardium by cleaving an 

array of proteins involved in contraction and its regulation [40–42]. Elevated levels of 

calpain-cleaved calcineurin are found in the hearts of patients with congestive heart failure 

[43, 44]. Once cleaved by calpain, calcineurin would remain active until removed by 

proteolysis or suppressed by interaction with an inhibitory protein.

Because CnBα is the only calcineurin regulatory subunit expressed in the heart, several 

groups have used tissue-specific deletion of CnBα to examine the consequences of 

eliminating calcineurin activity in the myocardium [45, 46]. Cardiac metabolism and 
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function decline in hearts lacking CnBα. The mice began to die of arrhythmias around 

3months of age, consistent with calcineurin playing a role in supporting cardiac 

electrophysiology.

Finally, the Fe—Zn active site of calcineurin is susceptible to reversible, Ca2+-dependent 

oxidative inactivation [47, 48]. This property may help limit unrestrained calcineurin activity 

in the setting of oxidative stress, which often occurs in conjunction with Ca2+ overload.

2.2. Targeting of substrates to calcineurin

The catalytic cleft of calcineurin is relatively shallow and can accommodate a wide range of 

phospho-serine,-threonine and -tyrosine substrates [49, 50]. There is no conserved 

recognition motif surrounding the phosphorylated residue. Instead, targeting of most 

substrates relies on two docking motifs, PxIxIT and LxVP, found elsewhere in the target 

protein, that were initially identified in the well-characterized calcineurin substrate, Nuclear 

Factor of Activated T-cells (NFAT) [51, 52]. The PxIxIT domain binds to the catalytic 

domain of CnA, regardless of whether the enzyme is active or inactive, thereby increasing 

the effective local concentration of the substrate [53–55]. PxIxIT domains vary in their 

binding affinities, allowing for substrate selection based both on concentration and binding 

strength. The second docking motif, LxVP, binds to a hydrophobic pocket at the CnA/CnB 

interface, which is only accessible when calcineurin is active [14, 56]. An alternative model 

for LxVP binding has been proposed in which the LxVP docking site overlaps with the 

PxIxIT docking site [57]. Whether this mode of docking of substrates to CnA alone occurs 

when CnB is not present remains to be determined, but could impact interpretation of studies 

in which CnB has been deleted as a method of eliminating calcineurin activity.

2.3. Pharmacological inhibition of calcineurin

Calcineurin is the target of the major immunosuppressive drugs Cyclosporin A (CsA) and 

FK506 which form complexes with two different classes of immunophilins: cyclophilins and 

FK506 binding proteins respectively [58, 59]. The drug-immunophilin complexes bind in the 

same hydrophobic CnA/CnB grove used for docking of LxVP [56, 60–62], thereby blocking 

access of substrate proteins. The drug/immunophilin complexes do not actually block the 

catalytic domain, as the enzyme can still readily dephosphorylate p-nitrophenyl phosphate 

(pNPP), a non-proteinaceous, small molecule substrate often used in calcineurin assays [59]. 

Paradoxically, activity of calcineurin toward pNPP is stimulated as much as 4-fold by the 

presence of the drug complexes [59, 63, 64].

A number of small peptide inhibitors have been developed based on the PxIxIT, LxVP, and 

AID motifs (VIVIT) [65, 66]. A cell permeable derivative of PxIxIT (VIVIT) has been used 

successfully to inhibit pressure overload hypertrophy in vivo [67]. Because this targeted 

approach avoids the off-target side effects of CsA and FK506, it has been proposed as the 

basis for developing new therapeutic approaches aimed at cardiovascular disease [9]. For 

additional information Seiber and Baumgrass provide a comprehensive review of 

pharmacological calcineurin inhibitors [68].
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2.4. Calcineurin inhibition by endogenous proteins

2.4.1. CABIN-1/CAIN (calcineurin binding protein 1)—CABIN-1 interacts with 

calcineurin via a PxIxIT-like domain [69, 70] as well as acting directly as a co-repressor of 

the transcription factor MEF2 [71, 72]. Although cardiomyocyte-specific over expression of 

CABIN-1 inhibits hypertrophy in vivo [8], it is uncertain whether the endogenous protein 

acts in this capacity, as calcineurin activity and NFAT translocation are unaltered in 

transgenic mice in which the calcineurin and MEF2-interacting domains of CABIN-1 have 

been deleted [73]. CABIN-1 is a very large, multidomain protein (N200-kDa), and therefore, 

may primarily function as a scaffold for calcineurin, facilitating its interactionwith other 

proteins, rather than acting to inhibit calcineurin.

2.4.2. Carabin (TBC1 domain family member 10C, TBC1D10C)—Carabin is a bi-

functional protein inhibiting both calcineurin and the small GTPase RAS [74, 75]. Carabin 

mRNA and protein levels decline in models of pressure overload and in human heart failure 

[76]. Loss of Carabin in vivo exacerbates pressure-overload hypertrophy and failure, 

whereas, cardiomyocyte-specific overexpression is protective [76, 77].

2.4.3. Calcineurin homologous proteins (CHP1, 2 and 3)—CHPs are structurally 

related to CnB and carry out a variety of cellular functions apparently unrelated to 

calcineurin [78], however, when over expressed, they are capable of both negatively [79] and 

positively [80] influencing calcineurin activity. The role of these proteins in cardiac function 

has not been explored.

2.4.4. Regulators of calcineurin (RCAN1, 2 and 3)—RCANs, also known as 

ADAPT78,DSCR1,MCIP1, and calcipressin [81] are relatively small proteins that inhibit 

calcineurin [82–84]. In addition to PxIxIT and LxVP motifs, RCANs contain a C-terminal 

domain unique to the RCAN family that is sufficient for calcineurin binding and inhibition 

[85–87]. Remarkably, in purified, in vitro assays, recombinant RCAN1 is capable of 

competitively inhibiting calcineurin-mediated dephosphorylation of both peptide substrates 

and pNPP [85, 87]. The ability to inhibit pNPP dephosphorylation makes them unique 

among calcineurin inhibitors, including CsA and FK506. Expression of the Rcan1.4 isoform 

is under calcineurin/NFAT control and thus functions as a feedback inhibitor of calcineurin 

[88]. Expression of a cardiomyocyte-specific αMHC-Rcan1 transgene protects mice from a 

diversity of pathological stresses including pressure overload, damage from ischemia-

reperfusion (I/R) and pathological remodeling following a myocardial infarction [5, 6, 89]. 

The hearts of animals deficient for RCAN1 (Rcan1−/−) are more susceptible to damage from 

I/R [89, 90]. Surprisingly, the hearts of Rcan1−/− mice are smaller and have a blunted 

hypertrophic response to pressure overload [90, 91]. This may be the result of physiological 

compensation or reflect RCAN1's impact on other pathways [92–94]. It has been suggested 

that RCAN1 may act as a chaperone or targeting protein that facilitates calcineurin signaling 

in vivo, although, rigorous biochemical evidence for this is currently limited [95, 96].

In addition, there are a wide variety of microRNAs relevant to cardiac remodeling and heart 

failure that have been proposed to act upon or be regulated by calcineurin that are beyond 
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the scope of this review. Their importance to control and integration of calcineurin signaling 

in cardiac health and disease should not be overlooked [97].

3. Methods for measuring calcineurin activity

Standard biochemical assays of calcineurin activity in tissue extracts are carried out under 

conditions of excess Ca2+ and calmodulin [98]. They therefore do not reflect actual in vivo 
activity but simply provide a measure of the total potential calcineurin activity available if all 

the calcineurin in the cell were activated. As an in vivo alternative, many groups have used 

quantification of Rcan 1.4 transcript levels, as its expression is directly under the control of 

calcineurin/NFAT [88]. However, this approach also has limitations, as it only assesses 

calcineurin activity relative to NFAT-mediated transcription and therefore may not reflect the 

action of calcineurin on other substrates.

A widely used approach has been the use of luciferase or β-galactosidase reporters under the 

control of NFAT sites, delivered by transient transfection or adenoviral infection. Similarly, 

other groups have also used fluorescent proteins to monitor transcriptional activity of NFAT 

in the physiological context of living cells. The main advantages of the fluorescence-based 

assays over other traditional and classical luciferase assays are their application to individual 

living cells, as they do not require cell lysates for quantification. Based on the expression of 

GFP or RFP under the control of an NFAT-sensitive promoter, this assay displays a dose-

sensitivity to different levels of NFAT and calcineurin activation [99]. To monitor activity in 
vivo a number of groups have developed transgenic mice carrying an NFAT-luciferase or β-

galactosidase reporter [100, 101]. Even with these in vivo techniques it is important to 

remain aware of the potential impact of chromatin context as different reporters show 

different patterns of response dependent upon the location of the reporter within the genome.

A number of genetically-encoded, fluorescence resonance energy transfer (FRET) reporters 

have been developed recently that allow calcineurin activity to be assessed in live cells. The 

CaNAR reporter is based on the regulatory domain of NFAT tagged on opposing ends with a 

cyan and a yellow fluorescent protein. Dephosphorylation by calcineurin causes a 

conformational change that increases FRET transfer between the two ends [17]. This can be 

combined with a Ca2+ sensor to integrate Ca2+ dynamics with processing of a specific 

calcineurin substrate. Targeting this reporter to the cytosol, plasma membrane, mitochondria, 

or the ER, has been used to demonstrate that activation of the reporter in response to the 

same Ca2+ signal can be very different in different regions of a cell [17]. For instance, in a 

pancreatic β cell line, the cytoplasmic and plasma membrane reporter displayed a single, 

integrated response to an oscillatory Ca2+ input. In contrast, the ER and mitochondrial 

reporter oscillated directly in concert with the Ca2+ transient due to limited calmodulin 

availability proximal to the ER and rapid reversal of the reporter by cAMP activated protein 

kinase A (PKA) phosphorylation [17].

A new generation of FRET reporters, DuoCaN and UniCaN, has been tested in neonatal and 

adult cardiomyocytes and provides a direct readout of the calcineurin holoenzyme itself 

rather than its action on a particular substrate [102]. These reporters reveal important, 

fundamental differences in the pattern of calcineurin localization and activation at these two 
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stages of development. In neonatal cardiomyocytes the reporters were homogeneous 

throughout the cell and activated in response to a single Ca2+ pulse. Whereas, in isolated 

adult myocytes the reporters localized to T-tubules, primary sites Ca2+ release during 

contraction, consistent with the pattern described for endogenous calcineurin [103, 104]. 

Furthermore, in adult myocytes the reporters did not respond to either single Ca2+ transients 

or low frequency pacing, but required pacing frequencies sufficient to raise diastolic Ca2+ 

levels between beats. Thus, during early development of the heart, Ca2+ released during 

contraction may be sufficient to cause sustained activation of calcineurin, thereby promoting 

hypertrophic growth. Whereas, calcineurin in the adult heart remains unresponsive to 

normal, contraction coupled Ca2+ transients. This also means that mechanistic studies 

carried out in neonatal cardiomyocytes may not always be directly applicable to calcineurin 

signaling in the adult heart. It is important to note, however, that during failure, 

cardiomyocytes are thought to develop characteristics typical of immature cardiomyocytes. 

It is not known whether the pattern of calcineurin activation likewise reverts to a fetal 

pattern, or if this occurs in isolated adult cardiomyocytes that are maintained in culture over 

time.

4. Calcineurin substrates relevant to cardiovascular health

Calcineurin has both immediate and long-term effects on cardiac function and adaptation. 

Rapid responses include direct changes in the function, activity, and/or localization of target 

proteins, changes that in general can be reversed rapidly by rephosphorylation. In contrast, 

calcineurin-dependent changes in transcription have longer-lasting consequences. First, we 

will discuss transcription factors controlled by calcineurin that have particular relevance to 

cardiovascular health. Then, cytoplasmic substrates not related to transcription will be 

discussed in the context of the specific subcellular domains in which they reside and the 

proteins that help organize these domains.

4.1. Transcription factors controlled by calcineurin

4.1.1. NFAT—NFATs are the most fully characterized calcineurin substrates. They include: 

NFATc1 (a.k.a. NFAT2), NFATc2 (NFAT1), NFATc3 (NFAT4) and NFATc4 (NFAT3). The 

regulatory domains of NFATs are highly phosphorylated in resting cells and flanked by a 

PxIxIT and LxVP motif at either end [56, 105]. Dephosphorylation by calcineurin causes 

translocation to the nucleus to activate target genes. NFATs tend to function as heterodimers 

in cooperation with other transcription factors. Of particular note relative to cardiac growth 

and remodeling areMEF2 and GATA, which can also be directly activated by calcineurin-

mediated dephosphorylation. Cardiac-specific over expression of an activated NFATc4 is 

sufficient to drive hypertrophy [4], whereas, forced expression of a dominant-negative 

NFATc4 will blunt calcineurin-dependent hypertrophy [106], demonstrating that calcineurin-

mediated remodeling acts, at least in part, via NFAT-dependent transcriptional control. At 

the transcript level, NFATc2 is the most abundant NFAT isoform in the heart and indeed, 

pathological growth in response to pressure overload or angiotensin II (AngII) infusion is 

markedly blunted in Nfatc2−/− mice [107]. Physiological hypertrophy in response to 

voluntary exercise is unaltered in these mice, suggesting that either NFATc2 is not involved 

in this mode of hypertrophic growth or that the other NFATs are sufficient to compensate. 
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Pathological hypertrophy is also reduced in Nfatc3−/− mice but is unaltered in Nfatc4−/− 

mice [108]. Deficiency for Nfatc1 is embryonic lethal due to defects in cardiogenesis [109] 

and as yet, a cardiomyocyte-specific deletion has not been studied in the context of 

hypertrophy. Although both NFATc2 and NFATc3 appear to mediate pathological 

hypertrophy, they differ in their affinity for calcineurin as well as in the dynamics of their 

response. For instance, in HEK293 cells, NFATc2 translocates to the nucleus in response to 

Ca2+ released from plasma membrane channels and its subsequent exit from the nucleus is 

relatively slow. In contrast, translocation of NFATc3 to the nucleus requires an increase in 

both nuclear and cytoplasmic Ca2+, whereas, it exits from the nucleus rapidly [110]. Using 

NFAT-GFP fusion proteins in isolated adult atrial and ventricular cardiomyocytes, NFATc1 

and NFATc3 showed different responses to AngII or endothelin-1 that depended upon both 

cell type and NFAT isoform [111]. Isoform-specific NFAT activation has also been reported 

in skeletal muscle [112, 113]. Although it is clear that NFAT-dependent changes in 

transcription are an important aspect of calcineurin-mediated cardiac remodeling, the 

identity of the target genes that are most relevant is less clear.

Calcineurin can regulate transcription through a number of other transcription factors in 

addition to NFAT. Of particular note, relative to cardiac remodeling, are the cAMP response 

element binding protein (CREB)-regulated transcriptional coactivators (CRTCs), the 

forkhead box protein 01 (FOXO1) and the transcription factor EB (TFEB).

4.1.2. CRTC—Similar to NFATs, dephosphorylation of CRTCs by calcineurin promotes 

translocation to the nucleus where they act in conjunction with CREB to promote gene 

expression. Although the role of CRTCs is yet to be studied in the heart, in other tissues they 

act to integrate hormonal and metabolic signals [114–116] and promote mitochondrial 

biogenesis [117–119]. The ability of CRTCs to integrate Ca2+ and cAMP signals makes 

them ideal candidates for metabolic regulators, particularly in the setting of increased 

adrenergic stress.

4.1.3. FOXO1—FOXO1 is a key factor in metabolic remodeling of the heart in diabetic 

cardiomyopathy and post-ischemic heart failure [120–123]. In the ischemic brain, 

calcineurin has been shown to dephosphorylate FOXO1 forming a complex that translocates 

along with FOXO1 into the nucleus acting in conjunction with NFAT to drive expression of 

Fas-Ligand [124], which is also released by the ischemic heart [125]. In turn, there is 

evidence that FOXO1 activity can provide feedback inhibition of calcineurin [126–128], 

affording additional integration of these two pathways.

4.1.4. TFEB—TFEB is a basic-helix-loop-helix leucine-zipper transcription factor that is 

considered a master regulator of autophagic and lysosomal biogenesis [129, 130]. 

Dephosphorylation of TFEB by calcineurin causes activation and translocation to the 

nucleus to promote coordinate expression of target genes. This interaction may help 

integrate calcineurin-dependent hypertrophic growth with the degradative processes carried 

out by autophagy during structural and metabolic remodeling of the myocardium [131, 132]

It is important to note that calcineurin control of transcription factor activity is not 

necessarily always due to direct changes in phosphorylation of the transcription factor. For 
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instance, in response to hypertrophic agonists, there is a calcineurin-dependent increase in 

MEF2A and MEF2D protein levels due to an increase in the abundance of Polypyrimidine 

Tract Binding Protein (PTB) which then acts to increase translation of MEF2 proteins 

without altering transcript abundance [133]. It is not known whether PTB increases 

translation of other proteins with cardiovascular relevance.

4.2. Targeting calcineurin to cytoplasmic domains

Both direct immunohistochemistry and the localization of FRET reporters indicate that in 

adult cardiomyocytes the majority of calcineurin protein is found in the vicinity of the T-

tubules, which are deep invaginations of the sarcolemma allowing for the close association 

between voltage-activated L-type calcium channels (LTCC) in the sarcolemma and 

ryanodine receptors (RyR2) in the sarcoplasmic reticulum (SR). They form the fundamental 

dyad for Ca2+-induced Ca2+-release involved in excitation-contraction coupling. Many other 

membrane channels and receptors are also found in T-tubules, which directly overlie the Z-

line, or Z-disc of the sarcomere. Thus, calcineurin is in close proximity to many of the 

proteins involved in excitation-contraction coupling and mechanotransduction. This does not 

preclude the possibility of other pools of calcineurin, either free in the cytoplasm or tethered 

elsewhere.

Intracellular Ca2+ release from the SR is required for cardiac muscle contraction. Indeed, it 

is postulated that during heart failure impaired Ca2+ release results in decreased muscle 

contraction (systolic dysfunction) and defective Ca2+ removal hampers relaxation (diastolic 

dysfunction). There are numerous examples of animal models with diastolic dysfunction and 

hypertrophy associated with elevated calcineurin activity, [4, 134, 135]. Calcineurin 

specifically responds to sustained, low-amplitude Ca2+ but can ignore transient, high 

amplitude Ca2+ spikes [136], thus, the kind of sustained elevation in diastolic Ca2+ that 

occurs with diastolic dysfunction is ideally poised to support calcineurin activation and 

subsequent hypertrophic remodeling [137]. Diastolic Ca2+ levels depend upon the interplay 

between RyR release and reuptake by SERCA [138]. Normal Ca2+ handling is disrupted in 

patients with heart failure due to a chronic hyper adrenergic state that hyper activates then 

subsequently desensitizes beta-adrenergic receptors, which control RyR and SERCA 

function via PKA [139].

In the heart, calcineurin is often found in close association with PKA. A kinase anchor 

proteins (AKAPs) are scaffolding proteins that help to form multimolecular signaling 

complexes that contain PKA. Calcineurin binds to several AKAPs that play a prominent role 

in its subcellular targeting. In the heart these include: the beta isoform of AKAP6 (AKAP6β/

mAKAPβ), localized to the nuclear envelope; AKAP5 (AKAP79/AKAP150), AKAP12 

(Gravin), and AKAP7 (AKAP15/AKAP18), localized to the plasma membrane, T-tubules, 

and ER/SR; and AKAP1 (AKAP121/AKAP84), localized to ER/SR and outer membrane of 

mitochondria (OMM) [140].

4.2.1. AKAP6 (AKAP6β/mAKAPβ)—Located at the nuclear envelope, AKAP6 does not 

use a PxIxIT motif to tether calcineurin [141]. As such, the interaction neither competes 

with substrates for binding nor inhibits catalytic activity. In neonatal cardiomyocytes and 
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C2C12myoblasts, AKAP6 is essential for agonist induced NFAT translocation [142] and 

organization of a calcineurin/MEF2 regulatory complex [143]. AKAP6 also acts as a 

scaffold for HDAC4 and kinases that phosphorylate it, thereby releasing HDAC suppression 

of MEF2-dependent transcription [144]. AKAP6 has binding domains for both RYR2 [145] 

and the sodium calcium exchanger (NCX1) [146], a subset of which localize to the nuclear 

envelope. Mice with a cardiomyocyte-specific deletion of AKAP6 are resistant to pressure 

overload or agonist induced heart failure [144]. AKAP6 binds a wide array of other proteins 

and signaling molecules important in cardiac stress responses [147], therefore, AKAP6 

provides a platform near the nucleus for integrating calcineurin signaling with a diversity of 

cytoplasmic signals known to mediate transcriptional responses to cardiac stress.

The AKAP6/PKA/calcineurin complex also mediates control over nuclear cytoplasmic 

shuttling of myopodin (synaptipodin 2), an actin-bundling protein that relocates from the 

nucleus to the Z-disc of myocytes upon differentiation but returns to the nucleus in response 

to stress [148]. Phosphorylation by PKA promotes release from the Z-disc and 

dephosphorylation by calcineurin prevents nuclear translocation [149]. Myopodin's role in 

heart failure is unknown.

4.2.2. AKAP5 (AKAP79/AKAP150)—AKAP5mediates calcineurin association with 

several channels in the sarcolemma, including the LTCC. Quantitative analysis of a purified 

complex indicates that four calcineurin heterodimers bind per AKAP5 dimer [150]. 

Therefore, although the two PxIxIT motifs in the AKAP5 dimer would occupy two of the 

PxIxIT docking domains on calcineurin, two docking domains remain available for binding 

of calcineurin substrates, such as NFAT or nearby channel proteins. In adult cardiomyocytes 

there are two distinct pools of LTCCs, both of which are associated with AKAP5/calcineurin 

complexes [151]. The majority of LTCCs localize to T-tubules where the majority of 

calcineurin protein is also located. A small fraction of LTCCs are also found associated with 

AKAP5/calcineurin in caveolae, a specialized lipid raft domain defined by the presence of 

caveolin. Caveolae function both in endocytosis and as platforms for signalosomes [152, 

153]. Inhibition of LTCC activity specifically within these Cav-3 containing domains has 

minimal impact on total LTCC current (ICa,L) or myocyte contractility, but eliminates Ca2+ 

influx-induced nuclear translocation of NFATc3 [154]. Thus, input from LTCC localized to 

caveolae plays an important role in specifying LTCC/calcineurin/NFATc3 signaling. This is 

supported by studies demonstrating that cardiomyocytes isolated from mice lacking AKAP5 

or expressing a mutant form of AKAP5 deleted for the calcineurin PxIxIT binding motif 

(AKAP5-ΔPIX) are unable to sustain nuclear translocation of NFATc3 in response to 

adrenergic stimulation [155].

CIB1 (Ca2+-and integrin-binding protein-1) is a small EF-hand protein similar in structure to 

CnB that is also involved in mediating an interaction between calcineurin and LTCC [156, 

157]. CIB1 expression is elevated in the atria of patients with atrial fibrillation where it can 

be co-immunoprecipitated with CnB, LTCC, and NCX1 [158]. CIB1 levels increase in the 

setting of pathological hypertrophy, but not physiological hypertrophy [157]. Loss of CIB1 

blunts, whereas over expression increases, the hypertrophic response to pressure overload 

[157].
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In heart failure there is a loss of T-tubule structure [159, 160] and a decrease in the fraction 

of LTCC and NCX channels associated with T-tubule domains without a loss of total 

channel activity in individual myocytes [161–164]. This shift in LTCC pools during failure 

may increase the pool of LTCC available for flux through calcineurin/NFATc3 signaling in a 

feed-forward process. In turn, calcineurin increases LTCC activity in failing heart [165]. It is 

generally accepted that adrenergic stimuli increases ICa,L via PKA phosphorylation of the 

LTCC [166]. Yet, peak ICa,L is increased in αMHC-CnA* transgenic mice as well as in 

those subjected to pressure overload failure. Furthermore, this increase is can be reversed by 

calcineurin inhibition but not PKA inhibition [167, 168]. The finding that PKA activation of 

ICa,L is specific to T-tubules and is lost upon detubulation might explain this discrepancy 

[164, 169, 170]. One possibility is that modification of ICa,L by calcineurin occurs 

throughout the cell but is masked by the opposing action of PKA in T-tubules. Alternatively, 

calcineurin control of ICa,L may only occur outside of T-tubule domains.

AKAP5/calcineurin is also involved in the decline in fast transient outward K+ current (Ito) 

that is associated with heart failure and pathological hypertrophy [171]. The αMHC-CnA* 

transgenic mice have a significant reduction in Ito density that can be reversed by treatment 

with CsA [172]. In isolated adult cardiomyocytes and intact hearts calcineurin decreases Ito, 

in part through AKAP5-dependent activation of NFATc3 leading to transcriptional 

repression of the expression of several K+ channel subunits including Kv4.3, Kv4.2, and 

KChIP2 [155, 173, 174]. The mechanism of NFATc3-dependent repression is not fully 

understood and could be secondary to expression of an unidentified repressor. It is likely that 

calcineurin can also affect Ito independent of transcription. In neurons, AKAP5/calcineurin 

has been shown to form a complex with Kv channels where the opposing forces of 

phosphorylation by PKA and dephosphorylation by calcineurin regulate activity-dependent 

trafficking of Kv4.2 [175], with calcineurin promoting surface expression. This has not yet 

been demonstrated in cardiomyocytes, but changes in the ability to recycle channels 

appropriately could theoretically contribute to the calcineurin-dependent decline in Ito 

function. In cardiomyocytes the AKAP5/PKA/calcineurin complex has been shown to be 

required for internalization and recycling of β1-adrenergic receptors (β1-AR) [176]. 

Calcineurin's role in turnover of the many other ion channels found in lipid rafts and how 

this impacts cardiac function is an important avenue for future investigation.

4.2.3. AKAP12 (Gravin/AKAP250)—AKAP12 targets PKA, PKC and calcineurin to 

β2ARs localized primarily to caveolae in the plasma membrane. The complex mediates 

desensitization and recycling of the receptor by controling its phosphorylation [177]. 

Inhibition of calcineurin blocks resensitization following agonist removal [178]. In contrast, 

the interaction of AKAP5 with β2ARs is thought to mediate the switch from stimulatory Gs 

to inhibitory Gi mediated signaling [179]. Whereas AKAP5 is absolutely required for the 

recycling of B1ARs, which couple only via Gs, and is localized throughout the T-tubules and 

plasma membrane [176].

4.2.4. AKAP7 (AKAP15/AKAP18)—Differential spicing generates a variety of AKAP7 

isoforms [180]. Although AKAP7 does not bind calcineurin directly, it can compete with 

AKAP5/calcineurin for binding LTCC [181]. However, mice lacking AKAP7 respond 
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normally to adrenergic stimulation [182], suggesting that the AKAP5 complex plays the 

primary role in adrenergic responses of the LTCC.

AKAP7 interacts indirectly with calcineurin by providing a scaffold for the protein 

phosphatase inhibitor 1 (I-1), a calcineurin substrate that controls the activity of the protein 

phosphatase 1 (PP1) [183]. Phosphorylation of I-1 at Thr35 by PKA induces selective 

inhibition of PP1 [184]. AKAP7/PKA/I-1 complexes are found associated with the SR and 

phospholamban (PLN) where PKA-mediated phosphorylation of I-1 helps prolong 

adrenergic responses at the SR by preventing their reversal by PP1. Perturbations in PP1 

regulation by I-1 have been implicated in heart failure [185]. Calcineurin dephosphorylates 

I-1 at Thr35, releasing inhibition of PP1 [186], and providing a mechanism through which 

calcineurin impacts a wider range of cellular phosphatase actives in the heart. Because 

calcineurin has not been identified as a component of AKAP7 complexes, it may be that 

tethering I-1 to the SR via an AKAP7 scaffold helps to sequester this specific pool of I-1 so 

as to actually minimize reversal by calcineurin. Consistent with this model, PLN 

phosphorylation is significantly lower in cardiomyocytes deleted for CnB [46], suggesting 

that on the whole, calcineurin may act to promote PLN phosphorylation rather than 

decreasing it.

4.2.5. AKAP1 (AKAP121/AKAP84) and calcineurin's impact on mitochondrial 
dynamics—Mitochondrial dysfunction has emerged as a critical factor in the progression 

of heart failure [187–190]. Impaired mitochondrial biogenesis and loss of mitochondrial 

content is associated with the transition from compensated hypertrophy to failure in patients 

with heart disease [191]. Mitochondrial electron transport is impaired in αMHC-CnA* 
transgenic mice and superoxide production is increased both before and after I/R [192]. 

Mitochondrial changes reported in mice with a cardiomyocyte-specific deletion of CnB 

range from deficiencies in the ability to oxidize fatty acids [46] to aberrant mitochondrial 

architecture [45]. Taken together, these findings suggest that either sustained activation of 

calcineurin or insufficient calcineurin activity has a profound negative effect on cardiac 

mitochondrial function. Diverse mechanisms are likely involved, however, calcineurin's 

influence on mitochondrial dynamics is emerging as an important aspect.

Mitochondria are dynamic organelles that undergo a continuous process of fission and 

fusion that is essential for their repair and regeneration. Calcineurin promotes fission by 

dephosphorylating Dynamin Related Protein 1 (DRP1), which contains an LxVP 

calcineurin-docking motif [193], thereby activating it to initiate fission at the OMM [194, 

195]. PKA rephosphorylates DRP1, thus, promoting fusion. Intermyofibrillar mitochondria 

in the ventricular wall are often described as spanning from Z-band to Z-band, thereby 

placing sites of fission in alignment with the primary pool of calcineurin in adult 

cardiomyocytes. AKAP1 interacts with DRP1, PKA and calcineurin [196–198]. Although 

the nature of these interactions is not yet well defined. The extent to which intermyofibrillar 

mitochondria undergo fission and fusion is currently debated [199] and may be limited due 

to the spatial constraints imposed by close proximity to the sarcomere. However, genetic 

data indicate that fission and fusion are essential to cardiovascular health as mice with 

cardiomyocyte-specific disruption of mitofusions 1 and 2 (Mfn1/Mfn2) (to prevent fusion) 

or Drp1 (to prevent fission) progress to heart failure [200–203].
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4.2.5.1. Calcineurin-dependent mitochondrial fission is required for 
hypertrophy: Mitochondrial fission is required for hypertrophic growth of both neonatal 

[204, 205] and adult cardiomyocytes [206]. Expression of a dominant-negative DRP1 or 

treatment with mdivi-1, a DRP1 inhibitor, is sufficient to block induction of hypertrophic 

growth by norepinephrine. Conversely, depletion of the fusion protein MFN2 is sufficient to 

stimulate hypertrophic growth without agonist treatment [205]. On a certain level it is 

intuitive that fission must occur during maturation of neonatal cardiomyocytes to convert the 

continuous reticulum found in embryonic cells into an ordered intermyofibrillar array, 

however, treatment with mdivi-1 also blunts hypertrophic growth and preserves cardiac 

function in the adult heart in the setting of pressure overload induced heart failure [206]. 

Furthermore, mdivi-1 reduces infarct size and preserves cardiac function following ischemia 

reperfusion [207, 208]. The extent to which calcineurin-mediated mitochondrial fission 

contributes to other forms of ischemic and non-ischemic heart failure, and the potential for 

therapeutic targeting remains a promising avenue of research [209].

4.2.5.2. Additional mitochondrial targets: BAD, a pro-apoptotic Bcl2 protein, is 

dephosphorylated by calcineurin promoting its translocation to the OMM [210] where it 

initiates opening of the mitochondrial permeability transition pore (MPTP), release of 

cytochrome c and activation of a caspase-3 apoptotic cascade [211, 212]. This mechanism 

contributes to neuronal death in the hippocampus following ischemia [213], but its role in 

triggering death of cardiomyocytes is less well understood.

Cofilin is an actin-binding protein that translocates to mitochondria and induces cell death in 

response to oxidative stress [214, 215]. In cardiomyocytes, the cofilin phosphatase Slingshot 

1L promotes cofilin translocation to mitochondria and increases damage from ischemia 

reperfusion [216]. Calcineurin activates Slingshot making cofilin-mediated damage an 

indirect target of calcineurin [217, 218]. Hyperphosphorylated cytoplasmic cofilin 

aggregates have been found in the hearts of patients with idiopathic cardiomyopathy [219]. 

Therefore, whether calcineurin's impact on cofilin is protective or pathological may depend 

on context.

4.2.6. Calcineurin's impact on the AKAP/PKA interaction—A varied range of 

signaling molecules are assembled by each AKAP. All AKAPs bind PKA, whereas only a 

subset of AKAP complexes also contain calcineurin. The catalytic domains of PKA 

(PKAcat) are bound to AKAPs in an inactive form by their regulatory submits (either RI or 

RII). Binding of cAMP to the R subunits releases activated PKAcat from the complex. 

Phosphorylation of RII at Ser-96 can both increase affinity for AKAP [220] and decrease its 

affinity for PKAcat [221, 222]. The RI subunit is pseudo-phosphorylated at the 

corresponding residue and is therefore not regulated by changes in phosphorylation. RII 

Ser-96 is a calcineurin substrate and contains an LxVP targeting motif [56]. In fact, a 

phospho-peptide from the RII subunit is the standard peptide substrate used to assay 

calcineurin activity in vitro. Dissociation of PKAcat from RII upon activation exposes the 

phospho-Ser-96 site allowing access by calcineurin or other phosphatases. Thus, in AKAP 

complexes containing RII, calcineurin is posed to facilitate reassociation of PKAcat with RII 
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in the inactive form [223]. In heart extracts RII is primarily found in the phosphorylated 

form [224] and is decreased in human hearts with dilated cardiomyopathy [220].

4.3. Calcineurin and mechanotransduction

4.3.1. Mechanotransduction at the plasma membrane—Calcineurin activation in 

response mechanical stress lies downstream of Ca2+ entry through transient receptor 

potential canonical (TRPC) channels composed of homo or heterotetramers of either 

TRPC1/4/5 (stretch activated) or TRPC3/6/7 (activated by diacylglycerol downstream of G 

protein coupled receptors). Over expression of TRPC3/ 6/7 members promotes calcineurin/

NFAT activation and hypertrophy [225, 226], whereas inhibition of either subtype blunts 

hypertrophy and failure in response to sustained agonist or pressure overload [227]. 

Expression of TRPC6 increases in response to pressure overload under the control of 

calcineurin/NFAT, thereby creating another feedforward amplification loop driving 

pathological hypertrophy [228]. The anti-hypertrophic effect of natriuretic peptides acts in 

part by inhibiting TRPC6 channel activity [229]. TRPC1/3/6 activation of calcineurin/NFAT 

signaling also occurs during stretch activation of myofibroblasts [230].

Polycystin-1 (PC-1), another member of the TRPC family of Ca2+ transporters, can act as a 

mechanosensor outside of its role as a component of primary cilia. In cardiomyocytes, PC-1 

activates calcineurin/NFAT signaling in part by increasing LTCC stability [231]. Pressure 

overload hypertrophy and calcineurin activation are blunted in PC-1−/− mice.

Syndacan-4 is a transmembrane heparin sulfate proteoglycan that increases in the left 

ventricle following pressure overload [232, 233]. Syndacan-4 is required for activation of 

calcineurin/NFAT signaling in response to mechanical stress through TRPC6 in cardiac 

fibroblasts, promoting production of extracellular matrix and differentiation into activated 

myofibroblasts thereby increasing myocardial stiffness [233–235].

4.3.2. Mechanotransduction at the Z-disc—The Z-disc is emerging as a nodal point 

for cardiomyocyte signal transduction [236]. Calcineurin is tethered to the Z-disc via 
interactions with muscle LIM protein (MLP) [237] and calsarcin [104, 238]. Deficiency for 

MLP reduces activation of calcineurin following an adrenergic stimulus or biomechanical 

stress, whereas loss of calsarcin-1 increases mechanical stress activation of calcineurin, but 

has no effect on adrenergic activation of calcineurin.

PICOT (protein kinase C-interacting cousin of thioredoxin) interacts directly with MLP and 

can disrupt its interaction with calcineurin [239]. Over expression of PICOT inhibits 

calcineurin activation and blunts pressure overload-induced hypertrophy, whereas, mice 

heterozygous for a PICOT disruption have an exacerbated response to pressure overload 

[240].

LMCD1 (LIM and cysteine-rich domains 1) is another Z-disc protein that facilitates 

calcineurin activation. LMCD1 levels increase in pressure overload, following MI and in 

response to AngII infusion [241, 242]. Transgenic over-expression of LMCD1 increases 

calcineurin activation in response to pressure overload and accentuates pathological 

remodeling in vivo, whereas depletion of LMCD1 blunts NFAT activation in vitro [242].
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Active mechanisms for controlling calcineurin protein levels are also present at the Z-disc. 

The muscle-specific RING finger 1 (MuRF1) is an E3 ubiquitin ligase that targets CnA for 

degradation via the proteasome [243]. Murf1−/− mice exhibit enhanced fibrosis and 

hypertrophy in response to pressure overload that can be normalized by calcineurin 

inhibition. For an expanded discussion of mechanotransduction at the Z-disc and the 

integration of calcineurin at this signaling juncture, several excellent reviews are available 

[236, 244–247].

4.4. Targeting calcineurin to the Na+/H+ exchanger 1 (NHE1)

Calcineurin binds directly to NHE1 in the plasma membrane through a PxIxIT motif [248]. 

Over expression of NHE1 in neonatal cardiomyocytes increased calcineurin activity by 

increasing intracellular pH. Moreover, this interaction required clustering of NHE1 into lipid 

rafts, creating a microdomain with higher pH. Transgenic over expression of NHE1 is 

sufficient to induce nuclear translocation of NFAT and cardiac hypertrophy [249]. NHE1 is 

found exclusively with caveolae in adult myocardium [152], whereas only a small portion of 

NCX1 is found in caveolae [250, 251]. Calcineurin can inhibit NCX1 activity [252, 253], 

thus the colocalization of NHE1 with NCX1 in lipid rafts provides a microdomain platform 

for calcineurin coupling to coordinate regulation of these exchangers.

The calcineurin targets highlighted here are by no means exhaustive of all known calcineurin 

substrates and targeting molecules that may be relevant to cardiovascular biology, however, 

we have tried to cover the majority of those for which molecular studies have been carried 

out in the context of cardiomyocytes. Given the broad-spectrum nature of phosphatase 

substrate selection in general, it is quite likely that some of targets most relevant to 

cardiovascular health are yet to be identified.

5. Not all calcineurin activity is pathological

Research on calcineurin's function in the diverse contexts described above has focused 

primarily on disease progression and pathological outcomes, however, the abundance of 

calcineurin in heart tissue suggests that it carries out fundamental processes needed to 

maintain normal function and health. This is supported by the observation that cardiac 

metabolism and function are severely compromised in mice with a cardiomyocyte-specific 

deletion of the regulatory subunit PPP3r1 [45, 46]. Although a multitude of studies have 

demonstrated calcineurin's involvement in pathological hypertrophy, its role during 

physiological hypertrophy is not as clear. Cardiomyocyte-specific overexpression of an 

Rcan1 transgene to inhibit calcineurin blunts exercise-induced physiological hypertrophy 

[5], yet exercise failed to activate a genetically encoded NFAT-Luciferase transgene reporter 

[100]. It may be that NFAT is not the pertinent calcineurin substrate during physiological 

hypertrophy. This would be consistent with the observation that pathological but not 

physiological hypertrophy is blunted in Nfatc2−/− mice [107]. Even in the context of 

pathological hypertrophy, some calcineurin-dependent processes may be beneficial. For 

instance, cardiomyocyte-specific overexpression of a Rcan2 transgene inhibited hypertrophy 

in the setting of pressure overload but impaired relaxation and increased stiffness [254]. 

Pharmacological inhibition with CsA increased mortality in a model of severe pressure 
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overload [255]. Whether this was due to off target effects of the drug or inhibition of a 

beneficial calcineurin-dependent adaptation requires further study.

A recent study demonstrates that calcineurin is activated in models of both hypertrophic 

cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) [256]. The HCM phenotype 

was caused by a mutation in cardiac troponin C (cTnC) that increased both Ca2+ affinity and 

tension, whereas the DCM cTnC mutation decreased Ca2+ affinity and myofilament tension. 

Although both models displayed calcineurin-dependent hypertrophic growth, the former 

manifest as concentric hypertrophy and the later as eccentric hypertrophy, suggesting that 

increased and decreased tension set in motion a different array of calcineurin-dependent 

responses. This study is an elegant illustration that pathological activation of calcineurin can 

derive from varied inputs and have diverse outcomes. Similarly, we propose that, although 

there are certain to be some aspects of similarity, the behavior and targets of calcineurin 

signaling in a healthy heart may be distinct from those set in motion by pathological 

stresses.

6. Maintaining the transmural gradient

Healthy hearts display variation in the morphology of the action potential across the 

ventricular wall such that the action potential duration (APD) is shorter in the sub-epicardial 

cardiomyocytes (EPI) than in the sub-endocardial cardiomyocytes (ENDO). This allows 

ventricular repolarization to proceed in a synchronized wave from EPI to ENDO, supporting 

efficient pump function and preventing arrhythmias. These transmural differences are due to 

gradients in the functional distribution of several membrane currents including the transient 

outward K+ current (Ito), the LTCC (ICa,L), and the Na/K ATPase pump current (Ip) [257–

259]. Models based on these known differences predict that both diastolic and systolic Ca2+ 

is higher in ENDO than in EPI [260] and indeed, actual measures of calcineurin and NFAT 

indicate higher activity in ENDO compared to in EPI [174]. Mechanical stress is likewise 

greater in ENDO than in EPI [261] and therefore represents a potential underlying 

mechanism for establishing a gradient in calcineurin activity across the ventricular wall.

In NFATc3-null mice the transmural gradient in Ito is lost due to an increase in Kv4.2 protein 

and Ito in ENDO, thereby shortening APD in ENDO to match that of EPI [174]. Chronic 

infusion of the β adrenergic agonist isoproterenol also leads to a loss of the in Ito gradient by 

reducing Kv4.2 and Ito in EPI, thus increasing APD in EPI to match ENDO [262]. This 

change requires both β1-ARs and NFATc3. It therefore is likely mediated through AKAP5/

calcineurin repression of Ito described above. Interestingly, loss of NFATc3 does not alter 

transmural expression of the transcription factor Irx5 that has been linked to establishing the 

Ito gradient during development [263].

Calcineurin can also influence the gradient in ICa,L, which is likewise higher in ENDO than 

in EPI. In a model of compensated pressure overload hypertrophy, where the Ito gradient was 

not yet effected, there was a calcineurin-dependent increase in peak ICa,L across the 

ventricular wall that was greatest in ENDO [264]. Thus, in contrast to Ito, and its gradient, 

which are suppressed by calcineurin, the gradient in peak ICa,L is accentuated by calcineurin 

activity. One important difference in mechanism of control is that calcineurin interacts 
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directly with both the N and C termini of the LTCC [165, 167] whereas its control of Ito is 

indirect. Relative to the gradient in Ip, calcineurin activation increases expression of the 

Na/K ATPase in the heart [265, 266] and studies from brain demonstrate direct activation of 

the channel by calcineurin-mediated dephosphorylation [267]. Therefore, calcineurin 

activity may also control the transmural gradient in Ip, however, no studies have addressed 

this.

Also of note, miR-21 is among a limited number of microRNAs that display a transmural 

pattern of expression that peaks in the ENDO [268]. MiR-21 is also found upregulated in the 

hearts of young αMHC-CnA* mice before the onset of increased fibrosis, suggesting that 

MiR-21 expression is calcineurin-dependent [269]. Thus, calcineurin impacts transmural 

gradients through multiple mechanisms, some of which may remain to be identified.

Taken together, calcineurin activity is essential for establishing and maintaining an 

appropriate transmural gradient in ion channel activity and APD in a healthy heart. Whereas, 

sustained activation of calcineurin across the myocardium contributes to the collapse of the 

APD gradient increasing arrhythmogenic potential. It is relevant to note that αMHC-CnA* 
mice die of arrhythmias rather than overt pump failure.

7. Circadian activation of calcineurin in the heart

Timing of calcineurin activation may be as critical as location. The cardiovascular system 

displays significant circadian rhythms in many physiological processes and continual 

disruption of normal circadian rhythms predisposes humans to cardiovascular disease [270–

274]. In a healthy rodent heart there is a circadian pattern of calcineurin activity that peaks at 

the end of the animal's active period and is at its lowest at the end of its rest period [275]. As 

much as a 20-fold change can be seen in nuclear translocation of NFAT, binding of NFAT to 

chromatin, and expression of the calcineurin/NFAT controlled gene, Rcan1.4, over the 

course of twenty-four hours. Therefore, although both sustained activation of calcineurin [4] 

and its complete absence [45] have pathological consequences, a diurnal pattern of 

calcineurin activation is compatible with heart health. The peak in calcineurin activity 

immediately precedes a time of day when the heart is less susceptible to damage from I/R 

[275, 276]. These diurnal changes in susceptibility appear to be mediated by changes in 

RCAN1 levels, as Rcan1−/− mice no longer display this temporal window of protection [89].

Circadian activation of calcineurin is not unique to the heart and has also been documented 

in skeletal muscle [277], as evidenced by changes in Rcan1.4 transcript levels and activity of 

NFAT reporters. In a series of elegant experiments these investigators demonstrated that 

circadian activation of the calcineurin/NFAT pathway was independent of the transcriptional 

circadian clock mechanism, and was driven instead by muscle innervation and contractile 

activity. Related mechanisms are likely involved in circadian activation of calcineurin in the 

heart.

Sleep deprivation studies in rat indicate a prolongation in action potential duration (APD) 

attributable to a decrease in Ito [278]. These changes were significant after only one day 

demonstrating the immediate impact of proper circadian entrainment on fundamental 
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electrical properties of the heart. Whether the decline in Ito is directly attributable to 

disruption of a normal circadian pattern of signaling through AKAP5/ calcineurin/NFATc3 

remains to be determined. It is interesting to note that several of the genes displaying 

transmural expression across the ventricular wall [279] also display a circadian pattern of 

expression the heart.

Circadian changes in signaling pathways controlled by protein phosphorylation are very 

often overlooked but are not unique to calcineurin. Some are directly under circadian 

entrainment, such as changes in adrenergic activity, while others may respond directly to 

feeding patterns, such as insulin release. Corresponding changes in the activity of PKA and 

protein kinase B (AKT) provide important signals regulating cardiac function, metabolism, 

and remodeling [280]. The circadian oscillations in calcineurin activity and other kinase/

phosphorylation cascades may allow temporal separation of processes that are incompatible 

but essential.

8. Calcineurin in neonatal versus adult cardiomyocytes

Isolated neonatal cardiomyocytes have proven an invaluable tool for studying the role of 

calcineurin in the heart. However, not all findings from neonatal cells may be directly 

translated to the adult heart as there are fundamental structural, metabolic, and functional 

differences [281, 282]. Of particular note are differences in Ca2+ handling, release, and 

storage. All of which can have a direct impact on the character and duration of the Ca2+ 

signal perceived by calcineurin. In early embryonic cardiomyocytes Ca2+ is released 

primarily from the perinuclear SR through the cooperative action of inositol-3-phosphate 

receptors (IP3Rs) and RyRs to drive contraction [283]. At the time of birth, some junctional 

Ca2+ release units or “dyads” have formed that position RyRs in close apposition to Ca2+ 

channels in the sarcolemma, however, these are primarily located in the periphery of the cell, 

as T-tubules do not form until 10 days after birth, simultaneous with the appearance of the 

protein junctophilin-2 [284]. At this point in development the majority of RyRs are internal 

and not associated with a dyad. These “orphaned” RyRs are triggered consecutively via a 

“fire-diffuse-fire” mechanism to propagate the Ca2+ wave [285]. This results in a slower 

time to peak and decay of both the action potential and the Ca2+ transient compared to in 

adult myocytes. In addition, after birth, there is a dramatic increase in the capacity for 

buffering cytosolic Ca2+. This substantially slows the diffusion of Ca2+ relative to other ions, 

thus increasing the potential for establishing confined Ca2+ microdomains that may act to 

shield specific pools of calcineurin from activation. It is important to note that neonatal 

cardiomyocytes will spontaneously contract in culture whereas isolated adult 

cardiomyocytes do not, reflecting fundamental differences in Ca2+ handling. An excellent 

review provides details of the changes that occur during maturation from embryonic to adult 

cardiomyocytes [285] as well as discussing the consequences of T-tubule loss and increase 

in caveolae density in heart failure.

There are number of other noteable differences between neonatal, adult, and failing 

cardiomyocytes that impact calcineurin activity. These include changes in the expression of 

calcineurin isoforms [10, 22, 23] and redistribution within the cell from cytosolic to 

colocalization with T-tubules [102–104]. In addition, compared to adult, the neonatal heart 
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has lower enzymatic activities for a number of antioxidant pathways [286] and is more 

susceptible to ischemic injury [287]. Taken together, changes that occur during maturation to 

an adult cardiomyocyte increase the total potential capacity for calcineurin activity while 

establishing environments that restrain activation and protect against uncontrolled signaling. 

During failure, loss of the T-tubule system and a shift toward caveolae, may release these 

domain constraints on calcineurin, allowing a pathological feed-forward signaling cascade.

Recent advances allowing differentiation of cardiomyocytes from embryonic stem cells or 

induced pluripotent stem cells (iPSCs) have provided powerful new tools for studying heart 

disease. While these models have the advantage of providing the genomic environment of a 

specific patient, it is important to note that, relative to Ca2+ release and handling, they may 

be more akin to embryonic cardiomyocytes than to adult. Thus, study of calcineurin 

dependent processes in these cells may be difficult to extrapolate to the adult heart [285].

9. Conclusion

The impact of calcineurin signaling on cardiac health and disease is far more complex than 

simple activation of NFAT-dependent hypertrophic gene expression. Here, we have focused 

primarily on activity localized to cardiomyocytes (Fig. 2). However, calcineurin mediates 

process in all cell types and tissues of the cardiovascular system. Many of these may be 

equally important to maintaining a healthy heart. Key points to keep in mind are: (1) The 

nature of calcineurin signaling in neonatal cardiomyocytes is profoundly different than that 

found in adult cardiomyocytes. (2) The responses of calcineurin and its substrates depend 

upon the nature and composition of specific subcellular domains. (3) Not all calcineurin 

activity is pathological. (4) Calcineurin activity in a healthy heart is heterogeneous relative 

to location and timing. (5) Sustained activation of calcineurin leads to fundamental changes 

in a number of substrates that often act in a feed-forward fashion that accelerates cardiac 

decline.
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Abbreviations

AID auto inhibitory domain of calcineurin

AKAP A kinase anchor protein

AngII angiotensin II

APD action potential duration

β1-AR β1-adrenergic receptors

CABIN-1 calcineurin binding protein 1
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Carabin TBC1 domain family member 10C

CHP calcineurin homologous proteins

CIB1 Ca2+-and integrin-binding protein-1

CN calcineurin holoenzyme

CnA catalytic subunit of calcineurin

CnB regulatory subunit of calcineurin

CnA* constitutively active calcineurin

CRTC CREB-regulated transcriptional coactivators

CS1 calsarcin 1

CsA cyclosporin A

DRP1 dynamin related protein 1

ENDO endocardium

EPI epicardium

FOXO1 forkhead box protein 01

FRET fluorescence resonance energy transfer

I-1 protein phosphatase inhibitor 1

ICa,L LTCC current

Ip Na/K ATPase pump current

Ito fast transient outward K+ current

LMCD1 LIM and cysteine-rich domains 1

LTCC voltage-activated L-type calcium channel

MLP muscle LIM protein

MuRF1 muscle-specific RING finger 1

NCX1 sodium calcium exchanger 1

NFAT nuclear factor of activated T cells

NHE1 Na+/H+ exchanger 1

OMM outer membrane of mitochondria

PC-1 polycystin-1 PC-1

PICOT protein kinase C-interacting cousin of thioredoxin
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PKA protein kinase A

pNPP p-nitrophenyl phosphate

PP1 protein phosphatase 1

PLN phospholamban

RCAN regulator of calcineurin

Rcan1.4 exon four isoform of RCAN1

RyR2 ryanodine receptor 2

SR sarcoplasmic reticulum

TFEB transcription factor EB

TRPC transient receptor potential canonical channel.
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Fig. 1. 
Calcineurin structure, regulation and activation. A. Structure of the catalytic (CnA) and 

regulatory (CnB) subunits of calcineurin. CnA contains an N-terminal catalytic domain, a 

CnB binding domain, a calmodulin binding domain, and a C-terminal autoinhibitory domain 

(AID). CnB has four EF-hand Ca2+-binding sites: two structural sites that bind Ca2+ with 

high affinity in the ηM range, that are always occupied, and two regulatory sites that bind in 

the µM range. B. Model of calcineurin activation. Binding of Ca2+ to the regulatory sites 

initiates a series of conformational changes that allow binding of a calmodulin/Ca2+ 

complex and a change in the orientation of the AID to expose the active site. C. 
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Constitutively active calcineurin. Truncation of CnA to remove the AID yields a 

constitutively active phosphatase (CnA*) that no longer responds to Ca2+/calmodulin. D. 

Calcineurin proteins and genes. In mammals, three genes encode CnA (α, β, and γ). Only 

CnAα (PPP3CA) and CnAβ (PPP3CB) are expressed in the heart. Of the two genes 

encoding the CnB regulatory subunit, only CnBα (PPP3R1) is expressed in the heart.

Parra and Rothermel Page 40

J Mol Cell Cardiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Targeting of calcineurin to specific domains and substrates in adult cardiomyocytes. Key 

points to note include the close association of calcineurin (CN) and many of its interacting 

partners with the T-tubule system. Dyads formed by RyR/LTCC at SR/T-tubule junctions 

(A), Z-band localized mechano-sensing complexes of the sarcomere (F), and prominent sites 

of mitochondrial fission (H) each contain specific tethering points for CN and sit in close 

proximity to the T-tubule system. These major pools of CN do not appear to couple to NFAT 

activation during Ca2+-induced Ca2+ release associated with contraction. In contrast, CN 

more readily couples to NFAT in response to Ca2+ release events in caveolae-associated 

microdomains (B, C, D). CN associated directly with the nucleus also directly couples to 

transcriptional regulation (G). Some mechanisms of CN targeting are yet to be defined, such 

as the pool that acts on I-1 (E). See text for further details and the abbreviations list for full 

definitions of symbols.
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