Skip to main content
. 2014 Aug 27;1(2):96–100. doi: 10.1016/j.scog.2014.06.003

Table 3.

Hierarchical regression models of the relationship between neurocognitive domains, demographic variables, and IQ (N = 250).

Step 1
Step 2
F(df 3,241)

Adj. R2
F(df 4,240)
Adj. R2
Gender (β) Age (β) Educ. (β) IQ (β)
Composite score 23.02*** .21 61.72*** .50
.01 − .41*** .21*** .56***
Speed of Processing 13.54*** .13 25.77*** .29
− .11 − .34*** .10 .42***
Attention/Vigilance 9.32*** .09 10.98*** .14
.19* − .21** .18* .24***
Working Memory 17.15*** .17 37.59*** .38
.05 − .36*** .19* .48***
Verbal Learning 9.92*** .10 21.99*** .26
− .13 − .15 .23*** .42***
Visual Learning 12.37*** .12 37.28*** .37
.05 − .31*** .17* .53***
Reasoning/Probl. Solving 22.87*** .21 28.58*** .31
.23*** − .39*** .15 .34***
Social Cognition 6.68*** .07 5.86*** .07
− .26*** − .12 − .05 .12

Step 2: F and adjusted R2 represent the full model with gender, age, education, and IQ as independent variables.

*

p < .05, Bonferroni corrected.

**

p < .01, Bonferroni corrected.

***

p < .001, Bonferroni corrected.