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Abstract It is widely believed that persistent neural activity underlies short-term memory. Yet,

as we show, the degradation of information stored directly in such networks behaves differently

from human short-term memory performance. We build a more general framework where memory

is viewed as a problem of passing information through noisy channels whose degradation

characteristics resemble those of persistent activity networks. If the brain first encoded the

information appropriately before passing the information into such networks, the information can

be stored substantially more faithfully. Within this framework, we derive a fundamental lower-

bound on recall precision, which declines with storage duration and number of stored items. We

show that human performance, though inconsistent with models involving direct (uncoded) storage

in persistent activity networks, can be well-fit by the theoretical bound. This finding is consistent

with the view that if the brain stores information in patterns of persistent activity, it might use

codes that minimize the effects of noise, motivating the search for such codes in the brain.

DOI: https://doi.org/10.7554/eLife.22225.001

Introduction
Short-term memory, which refers to the brain’s temporary buffer of readily usable information, is

considered to be a critical component of general intelligence (Conway et al., 2003). Despite consid-

erable interest in understanding the neural mechanisms that limit short-term memory, the issue

remains relatively unsettled. Human working memory is a complex phenomenon, involving not just

short-term memory but executive selection and processing, operating on multiple timescales and

across multiple brain areas (Jonides et al., 2008). In this study, we restrict ourselves to obtaining

limits on short-term memory performance purely due to noise in persistent activity networks, if ana-

log information is stored directly into these networks, or if it is first well-encoded to make the stored

states robust to ongoing noise.

Short-term memory experiments quantify the precision of memory recall. Typically in such experi-

ments, subjects are briefly presented with sensory inputs, which are then removed. After a delay the

subjects are asked to estimate from memory some feature of the input. Consistent with everyday

experience, memory capacity is severely limited, restricted to just a handful of items (Miller, 1956),

and recall performance is worse when there are more items to be remembered. Persistence can

also be limited, though forgetting over time is a less severe constraint than capacity: several experi-

ments show that recall performance declines with delay (Luck and Vogel, 1997; Jonides et al.,

2008; Barrouillet et al., 2009; Barrouillet et al., 2011; Barrouillet et al., 2012; Pertzov et al.,
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2013; Wilken and Ma, 2004; Bays et al., 2011; Pertzov et al., 2017; Anderson et al., 2011), at

least when many items are stored in memory.

Efforts in experimental and theoretical psychology to understand the nature of these memory

constraints (Atkinson and Shiffrin, 1968) have led to quantification of human memory performance,

and to phenomenological models that can fit limitations in capacity (Zhang and Luck, 2008;

Bays and Husain, 2008; van den Berg et al., 2012) or in persistence (Wilken and Ma, 2004;

Barrouillet et al., 2012). They have also led to controversy: about whether memory consists of dis-

crete ‘slots’ for a limited maximum number of items (Miller, 1956; Cowan, 2001; Zhang and Luck,

2008) or is more continuously allocable across a larger, variable number of items (van den Berg

et al., 2012; Bays and Husain, 2008); about whether forgetting in short-term memory can be attrib-

uted in part to some inherent temporal decay of an activity or memory variable over time

(Barrouillet et al., 2012; Campoy, 2012; Ricker and Cowan, 2014; Zhang and Luck, 2009) or is, as

more widely supported, primarily due to interference across stored items (Lewandowsky et al.,

2009).

These controversies have been difficult to resolve in part because different experimental para-

digms lend support to different models, while in some cases the resolution of memory performance

data is not high enough to adjuciate between models. In addition, psychological models of memory

performance make little contact with its neural underpinnings; thus, it is difficult to mediate between

them on the basis of mechanism or electrophysiological studies.

On the mechanistic side, persistent neural activity has been widely hypothesized to form the sub-

strate for short-term memory. The hypothesis is based on a corpus of electrophysiological work

establishing a link between short-term memory and persistent neural activity (Funahashi, 2006;

Smith and Jonides, 1998; Wimmer et al., 2014). Neural network models of analog persistent activ-

ity predict a degradation of information over time (Compte et al., 2000; Brody et al., 2003;

Boucheny et al., 2005; Burak and Fiete, 2009; Fung et al., 2010; Mongillo et al., 2008;

Burak and Fiete, 2012; Wei et al., 2012), because of noise in synaptic and neural activation. If indi-

vidual analog features are assumed to be directly stored as variables in such persistent activity net-

works, the time course of degradation of persistent activity should directly predict the time course

of degradation in short-term memory performance. However, these models do not typically consider

the direct storage of multiple variables (but see (Wei et al., 2012) ), and in general their predictions

have not been directly compared against human psychophysics experiments in which the memory

load and delay period are varied.

In the present work, we make the following contributions: (1) Generate psychophysics predictions

for information degradation as a function of delay period and number of stored items, if information

is stored directly, without recoding, in persistent activity neural networks of a fixed total size; (2)

Generate psychophysics predictions (though the use of joint source-channel coding theory) for a

model that assumes information is restructured by encoding and decoding stages before and after

storage in persistent activity neural networks; (3) Compare these models to new analog measure-

ments (Pertzov et al., 2017) of human memory performance on an analog task as the demands on

both maintenance duration and capacity are varied.

We show that the direct storage predictions are at odds with human memory performance. We

propose that noisy storage systems, such as persistent activity networks, may be viewed as noisy

channels through which information is passed, to be accessed at another time. We use the theory of

channel coding and joint source-channel coding to derive the information-theoretic upper-bound

on the achievable accuracy of short-term memory as a function of time and number of items to be

remembered, assuming a core of graded persistent activity networks. According to the channel cod-

ing view, the brain might strategically restructure information before storing it, to use the available

neurons in a way that minimizes the impact of noise upon the ability to retrieve that information

later. We apply our framework, which requires the assumption of additional encoding and decoding

stages in the memory process, to psychophysical data obtained using the technique of delayed esti-

mation (Ma et al., 2014), which provides a sensitive measure of short-term memory recall using a

continuous, analog response space, rather than discrete (Yes/No) binary recall responses.

We show that empirical results are in substantially better agreement with the functional form of

the theoretical bound than with predictions from a model of direct storage of information in persis-

tent activity networks.
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Our treatment of the memory problem is distinct from other recent approaches rooted in infor-

mation theory (Brady et al., 2009; Sims et al., 2012), which consider only source coding – they

assume that internal representations have a limited number of states, then compute the minimal dis-

tortion achievable in representing an analog variable with these limited states, after redundancy

reduction and other compression. All representations are noise-free. By contrast, our central focus is

precisely on noise and its effects on memory degradation over time, because the stored states

are assumed to diffuse or random-walk across the set of possible stored states. The emphasis on

representation with noise involves channel coding as the central element of our analysis.

Our present work is also complementary to efforts to understand short-term memory as rooted in

variables other than persistent activity, for instance the possibility that short-term synaptic plasticity,

through facilitation (Mongillo et al., 2008; Barak and Tsodyks, 2014; Mi et al., 2017), might

‘silently’ (Stokes, 2015) store short-term memory, which is reactivated and accessed through inter-

mittent neural activity (Lundqvist et al., 2016).

Results

Analog measurement of human short-term memory
We consider data from subjects performing a delayed estimation task (Figure 1—source data 1).

We briefly summarize the paradigm and the main findings; a more detailed description can be found

in Pertzov et al. (2017) Subjects view a display with several (K) differently colored and oriented

bars that are subsequently removed for the storage (delay) period. Following the storage period,

subjects were cued by one of the colored bars in the display, now randomly oriented, and asked to

rotate it to its remembered orientation. Bar orientations in the display were drawn randomly from

the uniform distribution over all angles (thus the range of orientations lies in the circular interval

½0;p�) and the report of the subject was recorded as an analog value, to allow for more detailed and

quantitative comparisons with theory (van den Berg et al., 2012). Importantly, both the number of

items (K) and the storage duration (T) were varied.

When only a single item had to be remembered, the length of the storage interval had no statisti-

cally significant influence on the distribution of responses over the intervals considered (Figure 1B,

with different delays marked by different shades and line styles; errors <10 degrees, effect of delay:

Fð3; 36Þ ¼ 1:3; p ¼ 0:3; errors between 30� 50 degrees: Fð3; 36Þ ¼ 0:2; p ¼ 0:9). By contrast, response

accuracy degraded significantly with delay duration when there were 6 items in the stimulus

(Figure 1C; true orientation subtracted from all responses to provide a common center at 0

degrees). The number of very precise responses decreased (errors <10 degrees, effect of delay:

Fð3; 36Þ ¼ 6:15; p ¼ 0:002), with a corresponding increase in the number of trials with large errors

(e.g. errors between 30� 50 degrees, effect of delay: Fð3; 36Þ ¼ 5:4; p ¼ 0:004).

Overall, the squared error in recalling an item’s orientation (Figure 1D), averaged over subjects,

increased with delay duration (Fð3; 27Þ ¼ 49; p<0:001) and also with item number

(Fð3; 27Þ ¼ 48; p<0:001). The data show a clear interaction between storage interval duration and set

size (Fð9; 81Þ ¼ 17; p<0:001), apparent as steeper degradation slopes for larger set-sizes. In summary,

for a small number of items (e.g. K ¼ 1; 2), increasing the storage duration does not strongly affect

performance, but for any fixed delay, increasing item number has a more profound effect.

Finally, at all tested delays and item numbers, the squared errors are much smaller than the

squared range of the circular variable, and any sub-linearities in the curves cannot be attributed to

the inevitable saturation of a growing variance on a circular domain (Figure 1—figure supplement

1).

Information degradation in persistent activity networks
In this and all following sections, we start from the hypothesis that persistent neural activity underlies

short-term information storage in the brain. The hypothesis is founded on evidence of a relationship

between the stored variable and specific patterns of elevated (or depressed) neural activity

(Taube, 1998; Aksay et al., 2001) that persist into the memory storage period and terminate when

the task concludes, and on findings that fluctuations in delay-period neural activity can be predictive

of variations in memory performance (Funahashi, 2006; Smith and Jonides, 1998; Blair and Sharp,
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Figure 1. Human performance on an analog delayed orientation matching task with variable item number and storage duration. (A) Setup of a delayed

orientation estimation task to probe human short-term memory. A variable number of bars with different colors and uniformly randomly drawn

orientations are presented for 500 msec. Following a variable delay, the subjects are asked to adjust the orientation of a cue bar, by using a dial, to

match the remembered orientation of the bar of the same color from the presentation. (B) Distribution of responses for one item, plotted so the target

orientation is centered at zero. Different shades and line styles represent different delays. Note that responses did not vary significantly with storage

duration. (C) Distribution of responses for six items varies with storage duration. (D) Mean squared error of recall on the task of Figure 1A (averaged

across subjects and trials, and normalized by ð180�Þ2, the square of the range of the stored variable), as item number and delay duration are

systematically varied. Error bars denote SEM across participants.

DOI: https://doi.org/10.7554/eLife.22225.002

The following source data and figure supplement are available for figure 1:

Source data 1. Experiment data used in the manuscript.

DOI: https://doi.org/10.7554/eLife.22225.004

Figure supplement 1. Similar variance statistics for bounded versus unbounded domains over range relevant for performance data.

DOI: https://doi.org/10.7554/eLife.22225.003
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1995; Miller et al., 1996; Romo et al., 1999; Supèr et al., 2001; Harrison and Tong, 2009;

Wimmer et al., 2014).

Neural network models like the ring attractor generate an activity bump that is a steady state of

the network and thus persists when the input is removed, Figure 2A. All rotations of the canonical

activity bump form a one-dimensional continuum of steady states, Figure 2B. Relatively straightfor-

ward extensions of the ring network can generate 2D or higher-dimensional manifolds of persistent

states. However, any noise in network activity, for instance in form of stochastic spiking (Softky and

Koch, 1993; Shadlen and Newsome, 1994), leads to lateral random drift along the manifold in the

form of a diffusive (Ornstein-Uhlenbeck) random walk (Compte et al., 2000; Brody et al., 2003;
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Figure 2. Analog persistent activity networks and information decay over time. (A) In a ring network, each neuron

excites its immediate neighbors and inhibits all the rest (weight profiles not shown). A single bump of activity

(green) is a steady state of such a network of such a network, as are all its translations around the ring. (B) A ‘state-

space’ view of activity in the ring network: each axis represents the activity of one neuron in the network; if there

are N neurons in the network, this state-space plot is N-dimensional. Any point inside the state space represents

some possible instantaneous configuration of activity in the N neurons. The grey curve represents the set of steady

states, which traces a 1-dimensional manifold because the stable states are just translations of a canonical activity

bump along a single dimension. (C) Top: Grey: a schematic non-noisy activity bump; black vertical lines: schematic

spikes emitted by neurons after the state is initialized according to the grey curve. Black curve: A best-fit activity

profile for the emitted spikes is shifted relative to the original grey bump simply because of the stochastic spikes.

Bottom: the state space view of (B), with the addition of the state corresponding to the non-noisy initial activity

bump (grey filled circle), the noisy spiking state (black cross), and the projection of the noisy spiking state to the

best-fit or closest non-noisy activity profile (black filled circle). (D) Over longer periods of time, activity fluctuations

seen in (C) drive a diffusive drift (random walk) along the manifold of stable states, with a squared error that grows

linearly with time.

DOI: https://doi.org/10.7554/eLife.22225.005

Koyluoglu et al. eLife 2017;6:e22225. DOI: https://doi.org/10.7554/eLife.22225 5 of 29

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.22225.005
https://doi.org/10.7554/eLife.22225


Boucheny et al., 2005; Wu et al., 2008; Burak and Fiete, 2009; Fung et al., 2010; Burak and

Fiete, 2012), Figure 2C–D.

A defining feature of such random walks is that the squared deviation of the stored state relative

to its initial value will grow linearly with elapsed time over short times, Figure 2D, with a proportion-

ality constant 2D (where D is the diffusivity) that depends on quantities like the size of the network

and the peak firing rate of neurons (Burak and Fiete, 2012).

Memory modeled as direct storage in persistent activity networks
Suppose that the variables in a short-term memory task were directly transferred to persistent activ-

ity neural networks with a manifold of fixed points that matched the topology of the represented

variable. Thus, K circular variables would be stored, entry-by-entry, in K 1-dimensional (1D) ring net-

works (Ben-Yishai et al., 1995). (Alternatively, the K variables could be stored in a single network

with a K-dimensional manifold of stable states, as described in the Appendix; the performance in

neural costs and in fit to the data of this version of direct storage is worse than with storage in K 1D

networks, thus we focus on banks of 1D networks.)

When N neural resources (e.g. composed of N sets of M neurons each, for a total of NM neurons)

are split into K networks, each network is left with N=K resources (NM=K neurons in our example)

for storage of a 1D variable. We know from (Burak and Fiete, 2012) that the diffusivity of the state

in each of these 1D persistent activity networks will scale as the inverse of the number of neurons

and of the peak firing rate per neuron. In other words, the diffusion coefficient is given by
�DðK;NÞ ¼ DK=N, where D is a diffusivity parameter independent of K;N (but D / 1=M). So long as

the squared error remains small compared to the squared range of the variable, it will grow linearly

in time at a rate given by 2�DðK;NÞ (indeed, in the psychophysical data, the squared error remains

small compared to the squared range of the angular variable; see Figure 1—figure supplement 1).

Therefore the mean squared error (MSE) is given by:

DMSEðF;K;TÞ ¼F
2
2DK

N
T: (1)

The only free parameter in the expression for MSE as a function of time and item number is the

ratio N=2D. Because the inverse diffusivity parameter 1=D scales with the number of neurons (M in

our example) when N;K are held fixed, the product N=ð2DÞ is proportional to the total number of

neurons (N=ð2DÞ/NM). This ratio therefore functions as a combined neural resource parameter.

Direct storage is a poor model of memory performance
To fit the theory of direct storage to psychophysics data, we find a single best-fit value (with

weighted least-squares) of the free parameter N=2D across all item numbers and storage durations.

For each item number curve, the fits are additionally anchored to the shortest storage period point

(T ¼ 100 ms), which serves as a proxy for baseline performance at zero delay. Such baseline errors

close to zero delay – which may be due to limitations in sensory perception, attentional constraints,

constraints on the rate of information encoding (loading) into memory, or other factors – are not the

subject of the present study, which seeks to describe how performance will deteriorate over time

relative to the zero-delay baseline, as a function of storage duration and item number.

As can be seen in Figure 3A, the direct storage theory provides a poor match to human memory

performance (p values that the data occur by sampling from the model, excluding the 100 ms time-

point: 0:07; 0:38;<10�4 for 1 item; 0:39;<10�4; 0:2 for 2 items; 0:09; 0:29; 0:08 for 4 items, and

<10�3;<10�4;<10�4 for 6). These p-values strongly suggest rejection of the model.

Does the direct storage model fail mostly because its dependence on time and item number are

linear, while the data exhibits some nonlinear effects at the largest delays? On the contrary, direct

storage fails to fit the data even at short delays when the performance curves are essentially linear

(see the systematic underestimation of squared error by the model over � 2 second delays in the 4-

and 6-item curves). If anything, the slight sub-linearity in the 6-item curve at longer delays tends to

bring it closer to the other curves and thus to the model, thus its effect is to slightly reduce the dis-

crepancy between the data and fits from direct storage theory.

One view of the results, obtained by selecting model parameters to best match the 6-item curve,

is that direct storage theory predicts an insufficiently strong improvement in performance with
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Figure 3. Comparison of direct and coded storage models using persistent activity networks with human memory performance. (A) Lines: predictions

from the direct storage model for human memory. The theory specifies all curves with a single free parameter, after shifting each curve to the measured

value of performance at the shortest delay interval of 100 ms. Fits performed by weighted least squares (weights are inverse SEM). (B) Similar to (A), but

parameters fit by ordinary least-squares to only the 6-item curve; note the discrepancy in the 1- and 2-item fits. (C–E) Information (f) is directly

transmitted (or stored) in a noisy channel, and at the end an estimate of f̂ of f is recovered. (C) A scenario involving space-to-earth communication. (D)

The scenario for direct storage in noisy memory banks (the nosy channels); the encoder and decoder are simply the identity transformation in the case

of direct storage and hence do nothing. (E) The K pieces of information in the K-dimensional vector f are each represented in one of K continuous

attractor neural networks of size N=K neurons each. Each attractor representation accumulates squared error linearly over time and inversely with N=K.

(F–H) Same as (C–E), but here information is first encoded (f ! XðfÞ) with appropriate structure and redundancy to combat the channel noise. A good

encoder-decoder pair can return an estimate f̂ that has lower error than the direct strategy, even with similar resource use, mitigating the effects of

channel noise for high-fidelity information preservation. (H) The K-dimensional f is encoded as the (N-dimensional) codeword x, each entry of which is

stored in one of N persistent activity networks. Squared error in the channel grows linearly with time as before; however, the resources used to build K

channels of quality ðN=KÞ1=2D from before are redirected into building N channels of poorer quality 1=2D (assuming N>K). The decoder estimates f

from N-dimensional output y. (I) Same as (A), but the model lines are the lower-bound on mean-squared error obtained from an information-theoretic

model of memory with good coding. (Model fit by weighted least-squares; the theory specifies all curves with two free parameters, after shifting each

curve to the measured value of performance at the shortest delay interval of 100 ms).

DOI: https://doi.org/10.7554/eLife.22225.006

The following figure supplements are available for figure 3:

Figure supplement 1. Cross-validated comparison of the direct and well-coded storage models after leaving out T ¼ 1s datapoints.

DOI: https://doi.org/10.7554/eLife.22225.007

Figure supplement 2. Cross-validated comparison of the direct and well-coded storage models after leaving out T ¼ 2s datapoints.

DOI: https://doi.org/10.7554/eLife.22225.008

Figure supplement 3. Comparison of models after removal of the shortest (100 ms) delay time-point under the argument that it represents a different

memory process (iconic memory).

DOI: https://doi.org/10.7554/eLife.22225.009

Figure supplement 4. Redefining item numbers as K ¼ ½1 >4 >8 >12� (instead of K ¼ ½1 >2 >4 >6�) to take into account the memorization of item color

in addition to orientation.

DOI: https://doi.org/10.7554/eLife.22225.010
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decreasing item number, Figure 3B (p-values for direct-storage model when fit to the 6-item

responses: <10�3; 10�3;<10�4 for 1 item; <10�2;<10�4;<10�4 for 2 items; 0:76;<10�2; 2� 10
�3 for 4

items; 0:22; 0:39; 0:38 for 6, excluding the 100 ms delay time-point; the p-values for the 1- and 2-item

curves strongly suggest rejection of the model).

Information-theoretic bound on memory performance with well-coded
storage
Even if information storage in persistent activity networks is a central component of short-term mem-

ory, describing the storage step is not a sufficient account of memory. This fact is widely appreciated

in memory psychophysics, where it has been observed that variations in attention, motivation, and

other factors also affect memory performance (Atkinson and Shiffrin, 1968; Matsukura et al.,

2007). Here we propose that, even discounting these complex factors, direct storage of a set of con-

tinuous variables into persistent activity networks with the same total dimension of stable states lacks

generality as a model of memory because it does not consider how pre-encoding of information

could affect its subsequent degradation, Figure 3C–E. This omission could help account for the mis-

match between predictions from direct storage and human behavior, Figure 3A–B.

Storing information in noisy persistent activity networks means that after a delay there will be

some information loss, as described above. Mathematically, information storage in a noisy medium

is equivalent to passing the information through a noisy information channel. To allow for high-fidel-

ity communication through a noisy channel, it is necessary to first appropriately encode the signal,

Figure 3F. Encoding for error control involves the addition of appropriate forms of redundancy tai-

lored to the channel noise. As shown by Shannon (Shannon, 1948), very different levels of accuracy

can be achieved with different forms of encoding for the same amount of coding redundancy and

channel noise. Thus, predictions for memory performance after good encoding may differ substan-

tially from the predictions from direct storage even though the underlying storage networks (chan-

nels) are identical.

Thus, a more general theory of information storage for short-term memory in the brain would

consider the effects of arbitrary encoder-decoder pairs that sandwich the noisy storage stage,

Figure 3G. In such a three-stage model, information to be stored is first passed to an encoder,

which performs all necessary encoding. Encoding strategies may include source coding or compres-

sion of the data as well as, critically, channel coding — the addition of redundancy tailored to the

noise in the channel so that, subject to constraints on how much redundancy can be added, the

downstream effects of channel noise are minimized (Shannon, 1948). The coded information is

stored in persistent activity networks, Figure 3H. Finally, the information is accessed by a decoder

or readout, Figure 3G. Here, we derive a bound on the best performance that can be achieved by

any coding or decoding strategy, if the storage step involves graded persistent activity.

The encoder transforms the K-dimensional input variable into an N dimensional codeword, to be

stored in a bank of storage networks with an N-dimensional manifold of persistent activity states (in

the form of N networks with a 1-dimensional manifold each, or 1 network with an N-dimensional

manifold, or something in between). To equalize resource use for the persistent activity networks in

both direct storage and coded storage models of memory, the N stored states have a diffusivity D
each, in contrast to the diffusivity of DK=N each for K states (compare Figure 3D–E and and G–H).

The storage step is equivalent to passage of information through additive Gaussian information

channels, with variance proportional to the storage duration T and to the diffusivity. The decoder

error-corrects the output of the storage stage and inverts the code to provide an estimate of the

stored variable. (For more details, see Materials and methods and Appendix.)

We can use information theory to derive the minimum achievable recall error over all possible

encoder-decoder structures, for the given statistics of the variable to be remembered and the noise

in the storage information channels. In particular, we use joint source-channel coding theory to first

consider at what rate information can be conveyed through a noisy channel for a given level of noise

and coding redundancy, then obtain the minimal achievable distortion (recall error) for that informa-

tion rate (see Materials and Appendix). We obtain the following lower-bound on the recall error:

DMSEðF;K;TÞ ¼ F
2

2pe
1þ 1

2DT

� ��N=K

(2)
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This result is the theoretical lower bound on MSE achievable by any system that passes informa-

tion through a noisy channel with the specified statistics: a Gaussian additive channel noise of zero

mean and variance 2DT per channel use, a codeword of dimension N, and a variable to be transmit-

ted (stored) of dimension K, with entries that lie in the range ½0;F�. The bound becomes tight

asymptotically (for large N), but for small N it remains a strict lower-bound. Although the potential

for decoding errors is reduced at smaller N, the qualitative dependence of performance on item

number and delay should remain the same (Appendix and (Polyanskiy et al., 2010) ). The bound is

derived by dividing the total resources (defined here, as in the direct storage case, as the ratio

N=2D) evenly across all stored items (details in Appendix), similar to a ‘continuous resource’ concep-

tion of memory. The same theoretical treatment will admit different resource allocations, for

instance, one could split the resources into a fixed number of pieces and allocate those to a (sub)set

of the presented items, more similar to the ‘discrete slots’ model.

A heuristic derivation of the result above can be obtained by first noting that the capacity of a

Gaussian channel with a given signal-to-noise ratio (SNR) is IGauss ¼ 1

2
logð1þ SNRÞ. The summed

capacity of N channels, spread across the K items of the stored variable, produces Iper item ¼ N
K
IGauss.

The variance of a scalar within the unit interval represented by I bits of information is bounded

below by e�2I . Inserting Iper item into the variance expression and SNR ¼ 1=2DT into IGauss, yields Equa-

tion 2 , up to scaling prefactors. The Appendix provides more rigorous arguments that the bound

we derive is indeed the best that can theoretically be achieved.

Equation 2 exhibits some characteristic features, including, first, a joint dependence on the num-

ber of stored items and the storage duration. According to this expression, the time-course of mem-

ory decay depends on the number of items. This effect arises because items compete for the same

limited memory resources and when an item is allocated fewer resources it is more susceptible to

the effects of noise over time. Second, the scaling with item number is qualitatively different than

the scaling with storage duration: Increasing the number of stored items degrades performance

much more steeply than increasing the storage interval, because item number is in the exponent.

For a single memorized feature or item, the decline in accuracy with storage interval duration is pre-

dicted to be weak. On the other hand, increasing the number of memorized items while keeping the

storage duration fixed should lead to a rapid deterioration in memory accuracy.

We next consider whether the performance of an optimal encoder (given this lower bound) can

be distinguished from the direct storage model based on human performance data. The two predic-

tions differ in their dependence upon the number of independent storage channels or networks, N,

which we do not know how to control in human behavior. Equally important, since Equation 2 pro-

vides a theoretical limit on performance, it is of interest to learn whether human behavior approxi-

mates the limit, and where it might deviate from it.

Comparison of theoretical bound with human performance
In comparing the psychophysical data to the theoretical bound on short-term memory performance,

there are two unknown parameters, 1=2D (the inverse diffusivity in each persistent activity network)

and N (the number of such networks), both of which scale linearly with the neural resource of neuron

number. The product of these parameters corresponds to total neural resource exactly as in the

direct storage case. We fit Equation 2 to human performance data, assuming as in the direct stor-

age model that the total neural resource is fixed across all item numbers and delay durations, and

setting the 100 ms delay values of the theoretical curves to their empirical values.

The resulting best fit between theory and human behavior is excellent (Figure 4E; p values that

the data means may occur by sampling from the model, excluding the T ¼ 100 ms time-points:

0:99; 0:07; 0:75 for 1 item; 0:46; 0:07; 0:60 for 2 items; 0:54; 0:24; 0:43 for 4 items; 0:89; 0:38; 0:32 for 6; all

values are larger than 0.05, most much more so. These p values indicate a significantly better fit to

data than obtained with the direct storage model).

If we penalize the well-coded storage model for its extra parameter compared to direct storage

(1=2D and N, versus the single parameter D=N for the direct storage model) through the Bayesian

Information Criterion (BIC), a likelihood-based hypothesis comparison test (that more stringently

penalizes model parameters than the AIC or Aikike Information Criterion), the evidence remains very

strongly in favor of the well-coded memory storage model compared to direct storage

(DBIC » 99 � 10, where 10 is the cutoff for ‘very strong’ support) (Kass and Raftery, 1995). In fact,
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Figure 4. Multiplicity of reasonable parametric solutions for the well-coded storage model, with N ¼ 5��10

networks providing the best fits to human performance. (A) The weighted least-squares error (colorbar indicating

size of error on right) of the well-coded model fit to psychophysics data as a function of the two fit parameters, D
and N. The deep blue valley running near the diagonal of the parameter space constitutes a set of reasonable fits

Figure 4 continued on next page
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according to the BIC, the discrepancy in the quality of fit to the data between the models is so great

that the increased parameter cost of the well-coded memory model barely perturbs the evidence in

its favor. Some more statistical controls by jackknife cross-validation of the two models (Figure 3—

figure supplement 1, Figure 3—figure supplement 2), exclusion of the T ¼ 100 ms point on the

grounds that it might represent iconic memory recall rather than short-term memory (Figure 3—fig-

ure supplement 3), and redefinition of the number of items in memory to take into account the col-

ors and orientations of the objects are given in the Appendix (Figure 3—figure supplement 4); the

results are qualitatively unchanged, and also do not result in large quantitative deviations in the

extracted parameters (discussed below).

The two-dimensional parameter space for fitting the theory to the data contains a one-dimen-

sional manifold of reasonable solutions, Figure 4A (dark blue valley), most of which provide better

fits to the data than the direct storage model. Some of these different fits to the data are shown in

Figure 4B. At large values of N, the manifold is roughly a hyperbola in logN and logð1=2DÞ, suggest-
ing that the logarithms of the two neural resource parameters can roughly trade off with each other;

indeed, the total resource use in the one-dimensional solution valley is roughly constant at large N,

Figure 4C (gray curves). However, at smaller N, the resource use drops with increasing N. The fits

are not equally good along the valley of reasonable solutions, and the best fit lies near N ¼ 5 inde-

pendent networks or channels (for jackknife cross-validation fits, see Figure 3—figure supplement

1, Figure 3—figure supplement 2, the best fits for the coded model can be closer to N ¼ 10; thus,

the figure obtained for the number of memory networks should be taken as an order-of-magnitude

estimate rather than an exact value). Resource use in the valley declines with increasing N to its

asymptotic constant value (thus larger N would yield bigger representational efficiencies); however,

by N ¼ 5, resource use is already close to its final asymptotic value, thus the gains of increasing the

number of separate memory networks beyond N ¼ 5� 10 diminish. The theory also provides good

fits to individual subject performance for all ten subjects, using parameter values within a factor of

10 (and usually much less than a factor of 10) of each other (see Appendix).

Comparison of neural resource use in direct and well-coded storage
models of memory
Finally, we compare the neural resources required for storage in the direct storage model (best-fit)

compared to the well-coded storage model. We quantify the neural resources required for well-

coded storage as the product of the number of networks N with the inverse diffusive coefficient

1=2D. This is proportional to the number of neurons required to implement storage. To replicate

human behavior, coded storage requires resources totaling N=2D » 32 (in units of seconds) for N ¼ 5,

and N=2D » 22 (s) for N ¼ 10, corresponding to the parameter settings for the fits in Figures 4C and

5B (center), respectively. By contrast, uncoded storage requires a 40-fold increase in N or a 40-fold

decrease in the diffusive growth rate in squared error, 2D, per network (or a corresponding increase

in the product, N=2D), because N=2D » 1215 (s) under direct storage, to produce the best-fit result of

Figure 3A. Thus, well-coded storage requires substantially fewer resources in the persistent activity

networks for similar performance (assuming best fits of each produce similar performance). Equiva-

lently, a memory system with good encoding can achieve substantially better performance with the

same total storage resources, than if information were directly stored in persistent activity networks.

Figure 4 continued

to the data. (B) Three fits to the data using parameters along the valley, sampled at N ¼ 5; 10; and 100. These

three parameter sets are indicated by white circles in (A). (C) Blue curve: the weighted least-squares error in the fit

between data and theory along the bottom of the valley seen in (A). Gray curve: the total resource use for the

corresponding points along the valley.

DOI: https://doi.org/10.7554/eLife.22225.011

The following figure supplements are available for figure 4:

Figure supplement 1. Performance of individual subjects and fits to well-coded storage model.

DOI: https://doi.org/10.7554/eLife.22225.012

Figure supplement 2. Fits of individual subject performance to direct storage model with hypothesis comparison

score between direct and well-coded storage models.

DOI: https://doi.org/10.7554/eLife.22225.013
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This result on the disparity in resource use between uncoded and coded information storage is an

illustration of the power of strong error-correcting codes. Confronted with the prospect of imperfect

information channels, finitely many resources, and the need to store or transmit information faith-

fully, one may take two different paths.

The first option is to split the total resources into K storage bins, into which the K variables are

stored; when there are more variables, there are more bins and each variable receives a smaller bin.

The other is to store N quantities in N bins regardless of K, by splitting each of the K variables into

N pieces and assigning a piece from each of the different variables to one bin; when there are more

variables, each variable gets a smaller piece of the bin. In the former approach, which is similar to

the direct storage scenario, increasing N would lead to improvements in the fidelity of each of the K

channels, Figure 4D. In the latter approach, which is the strong coding strategy, increasing N would

increase the number of channels while keeping their fidelity fixed, Figure 4B. The latter ultimately

yields a more efficient use of the same total resources in terms of the final quality of performance,

especially for larger values of N, at least without considering the cost of the encoding and decoding

steps.

If we hold the total resource N=2D / NM fixed, the lowest achievable MSE (Equation 2 ) in the

well-coded memory model is reached for maximally large N and thus maximally large D. However,

human memory performance appears to be best-fit by N ~ 10. It is not clear, if our model does cap-

ture the basic architecture of the human memory system, why the memory system might operate in

a regime of relatively small N. First, note that for increasing N, the total resource cost by N ¼ 10 is

already down to within 10% of the minimum resource cost reached at much larger N. Second, note

that the theory is derived under the ‘diffusive’ memory storage assumption: that within a storage

network, information loss is diffusive. Thus, the assumption implicitly made while varying the param-

eter N in Figure 4C is that as the number of networks (N) is increased, the diffusivity D / 1=M per

network will simply increase in proportion to keep NM fixed. However, the dynamics of persistent

activity networks do not remain purely diffusive once the resource per network drops below a certain

level: a new kind of non-diffusive error can start to become important (Schwab DJ & Fiete I (in prep-

aration)). In this regime, the effective diffusivity in the network can grow much faster than the inverse

network size. The non-diffusive errors produce large, non-local errors (which may be consistent with

‘pure guessing’ or ‘sudden death’ errors sometimes reported in memory psychophysics [Zhang and

Luck, 2009]). It is possible that the memory networks operate in a regime where each channel (mem-

ory network) is allocated enough resources to mostly avoid non-diffusive errors, and this limits the

number of networks.

Discussion

Key contributions
We have provided a fundamental lower-bound on the error of recall in short-term memory as a func-

tion of item number and storage duration, if information is stored in graded persistent activity net-

works (our noisy channels). This bound on performance with an underlying graded persistent activity

mechanism provides a reference point for comparison with human performance regardless of

whether the brain employs strong encoding and decoding processes in its memory systems. The

comparison can yield insights into the strategies the brain does employ.

Next, we used empirical data from analog measurements of memory error as a function of both

temporal delay and the number of stored items. Using results from the theory of diffusion on contin-

uous attractor manifolds in neural networks, we derived an expression for memory performance if

the memorized variables were stored directly in graded persistent activity networks. The resulting

predictions did not match human performance. The mismatch invites further investigation into

whether and how direct-storage models can be modified to account for real memory performance.

Finally, we found that the bound from theory provided an (unexpectedly) good match to human

performance, Figure 4. We are not privy to the actual values of the parameters N; 1=2D in the brain

and it is possible the brain uses a value of, to take an arbitrary example, » 5� N to achieve a perfor-

mance reached with N in Equation 2 , which would be (quantitatively) ‘suboptimal’. Nevertheless,

the possibility that the brain might perform qualitatively according to the functional form of the the-

oretical bound is highly nontrivial: As we have seen, the addition of appropriate encoding and

Koyluoglu et al. eLife 2017;6:e22225. DOI: https://doi.org/10.7554/eLife.22225 12 of 29

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.22225


decoding systems can reduce the degradation in accuracy from scaling polynomially (~ 1=N) in the

number of neurons, as in direct storage, to scaling exponentially ( ~ e�aN for some a>0). This is a star-

tling possibility that requires more rigorous examination in future work.

Are neural representations consistent with exponentially strong codes?
Typical population codes for analog variables, as presently understood, exhibit linear gains in perfor-

mance with N; such codes involve neurons with single-bump or ramp-like tuning curves that are off-

set or scaled copies of one another. For related reasons, persistent activity networks with such

tuning curves also exhibit linear gains in memory performance with N (Burak and Fiete, 2012).

These ‘classical population codes’ are ubiquitous in the sensory and motor peripheries as well as

some cognitive areas. So far, the only example of an analog neural code known in principle to be

capable of exponential scaling with N is the periodic, multi-scale code for location in grid cells of the

mammalian entorhinal cortex (Hafting et al., 2005; Sreenivasan and Fiete, 2011; Mathis et al.,

2012) : with this code, animals can represent an exponentially large set of distinct locations at a

fixed local spatial resolution using linearly many neurons (Fiete et al., 2008; Sreenivasan and Fiete,

2011).

A literal analogy with grid cells would imply that all such codes should look periodic as a function

of the represented variable, with a range of periods. A more general view is that the exponential

capacity of the grid cell code results from two related features: First, no one group of grid cells with

a common spatial tuning period carries full information about the coded variable (the spatial location

of the animal) – location cannot be uniquely specified by the spatially periodic group response even

in the absence of any noise. Second, the partial location information in different groups is indepen-

dent because of the distinct spatial periods across groups (Sreenivasan and Fiete, 2011). In this

more general view, strong codes need not be periodic, but there should be multiple populations

that encode different, independent ‘parts’ of the same variable, which would be manifest as differ-

ent sub-populations with diverse tuning profiles, and mixed selectivity to multiple variables.

It remains to be seen whether neural representations for short-term visual memory are consistent

with strong codes. Intriguingly, neural responses for short-term memory are diverse and do not

exhibit tuning that is as simple or uniform as typical for classical population codes (Miller et al.,

1996; Fuster and Alexander, 1971; Romo et al., 1999; Wang, 2001; Funahashi, 2006; Fuster and

Jervey, 1981; Rigotti et al., 2013). An interesting prediction of the well-coded model, amenable to

experimental testing, is that the representation within a memory channel must be in an optimized

format, and that this format is not necessarily the same format that information was initially pre-

sented in. The brain would have to perform a transformation from stimulus-space into a well-coded

form, and one might expect to observe this transition of the representation at encoding. (See, e.g.,

recent works (Murray et al., 2017; Spaak et al., 2017), which show the existence of complex and

heterogeneous dynamic transformations in primate prefrontal cortex during working memory tasks.)

The less orthogonal the original stimulus space is to noise during storage and the more optimized

the code for storage to resist degradation, the more different the mnemonic code will be from the

sample-evoked signal. Studies that attempt to decode a stimulus from delay-period neural or BOLD

activity on the basis of tuning curves obtained from the stimulus-evoked period are well-suited to

test this question (Zarahn et al., 1999; Courtney et al., 1997; Pessoa et al., 2002; Jha and McCar-

thy, 2000; Miller et al., 1996; Baeg et al., 2003; Meyers et al., 2008; Stokes et al., 2013) : If it is

possible to use early stimulus-evoked responses to accurately decode the stimulus over the delay-

period (Zarahn et al., 1999; Courtney et al., 1997; Pessoa et al., 2002; Jha and McCarthy, 2000;

Miller et al., 1996), it would suggest that information is not re-coded for noise resistance. On the

other hand, a representation that is reshaped during the delay period relative to the stimulus-evoked

response (Baeg et al., 2003; Meyers et al., 2008; Stokes et al., 2013) might support the possibility

of re-coding for storage.

On the other hand, the encoding and decoding steps for strong codes add considerable com-

plexity to the storage task, and it is unclear whether these steps can be performed efficiently so that

the efficiencies of these codes are not nullified by their costs. In light of our current results, it will be

interesting to further probe with neurophysiological tools whether storage for short-term visual

memory is consistent with strong neural codes. With psychophysics, it will be important to compare

human performance and the information-theoretic bound in greater detail. On the theoretical side,

studying the decoding complexity of exponential neural codes is a topic of ongoing work
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(Fiete et al., 2014; Chaudhuri and Fiete, 2015), where we find that non-sparse codes made up of a

product of many constraints on small subsets of the codewords might be amenable to strong error

correction through simple neural dynamics.

Relationship to existing work and questions for the future
Compared to other information-theoretic considerations of memory (Brady et al., 2009; Sims et al.,

2012), the distinguishing feature of our approach is our focus on neuron- or circuit-level noise and

the fundamental limits such noise will impose on persistence.

Our theoretical framework permits the incorporation of many additional elements: Variable allo-

cation of resources during stimulus presentation based on task complexity, perceived importance,

attention, and information loading rate, may all be incorporated into the present framework. This

can be achieved by modeling 1=2D and N as dependent functions (e.g. as done in [van den Berg

et al., 2012; Sims et al., 2012; Elmore et al., 2011]) rather than independent parameters, and by

exploiting the flexibility allowed by our model in uneven resource allocation across items in the dis-

play (Materials and methods).

The memory psychophysics literature contains evidence of more complex memory effects, includ-

ing a type of response called ‘sudden death’ or pure guessing (Zhang and Luck, 2009;

Anderson et al., 2011). These responses are characterized by not being localized around the true

value of the cued variable, and contribute a uniform or pedestal component to the response distri-

bution. Other studies show that these apparent pedestals may not be a separate phenomenon and

can, at least in some cases, be modeled by a simple growth in the variance over a bounded (circular)

variable of a unimodal response distribution that remains centered at the cue location (van den

Berg et al., 2012; Bays, 2014; Ma et al., 2014). In our framework, good encoding ensures that for

noise below a threshold, the decoder can recover an improved estimate of the stored variable; how-

ever, strong codes exhibit sharp threshold behavior as the noise in the channel is varied smoothly.

Once the noise per channel grows beyond the threshold, so-called catastrophic or threshold errors

will occur, and the errors will become non-local: this phenomenon will look like sudden death in the

memory report. In this sense, an optimal coding and decoding framework operating on top of con-

tinuously diffusing states in memory networks is consistent with the existence of sudden death or

pure guessing-like responses, even without a distinct underlying mechanistic process in the memory

networks themselves. We note, however, that the fits to the data shown here were all in the below-

threshold regime.

Another complex effect in memory psychophysics is misbinding, in which one or more of the mul-

tiple features (color, orientation, size, etc.) of an item are mistakenly associated with those from

another item. This work should be viewed as a model of single-feature memory. Very recently, there

have been attempts to model misbinding (Matthey et al., 2015). It may be possible to extend the

present model in the direction of (Matthey et al., 2015) by imagining the memory networks to be

multi-dimensional attractors encoding multiple features of an item.

It will be important to understand whether in the direct coding model, modifications with plausi-

ble biological interpretations can lead to significantly better agreement with the data. From a purely

curve-fitting perspective, the model requires stronger-than-linear improvement in recall accuracy

with declining item number, and one might thus convert the combined resource parameter N=D in

Equation 1 into a function that varies inversely with K. This step would result in a better fit, but

would correspond in the direct storage model to an increased allocation of total memory resources

when the task involves fewer items, an implausible modification. Alternatively, if multiple items are

stored within a single persistent activity network, collision effects can limit performance for larger

item numbers (Wei et al., 2012), but a quantitative result on performance as a function of delay

time and item number remain to be worked out. Further examination of the types of data we have

considered here, with respect to predictions that would result from a memory model dependent on

direct storage of variables into persistent activity network(s), should help further the goal of linking

short-term memory performance with neural network models of persistent activity.

Finally, note that our results stem from considering a specific hypothesis about the neural sub-

strates of short-term memory (that memory is stored in a continuum of persistent activity states) and

from the assumption that forgetting in short-term memory is undesirable but neural resources

required to maintain information have a cost. It will also be interesting to consider the possibility of

information storage in discrete rather than graded persistent activity states, with appropriate
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discretization of analog information before storage. Such storage networks will yield different

bounds on memory performance than derived here (Koulakov et al., 2002; Goldman et al., 2003;

Fiete et al., 2014), which should include the existence of small analog errors arising from discretiza-

tion at the encoding stage, with little degradation over time because of the resistance of discrete

states to noise. Also of great interest is to obtain predictions about degradation of short-term mem-

ory in activity-silent mechanisms such as synaptic facilitation (Barak and Tsodyks, 2014; Mi et al.,

2017; Stokes, 2015; Lundqvist et al., 2016). A distinct alternate perspective on the limited persis-

tence of short-term memory is that forgetting is a design feature that continually clears the memory

buffer for future use and that limited memory allows for optimal search and computation that favors

generalization instead of overfitting (Cowan, 2001). In this view, neural noise and resource con-

straints are not bottlenecks and there may be little imperative to optimize neural codes for greater

persistence and capacity. To this end, it will be interesting to consider predictions from a theory in

which limited memory is a feature, against the predictions we have presented here from the per-

spective that the neural system must work to avoid forgetting.

Materials and methods

Human psychophysics experiments
Ten neurologically normal subjects (age range 19-35 yr) participated in the experiment after giving

informed consent. All subjects reported normal or corrected-to-normal visual acuity. Stimuli were

presented at a viewing distance of 60 cm on a 21” CRT monitor. Each trial began with the presenta-

tion of a central fixation cross (white, 0:8 � diameter) for 500 milliseconds, followed by a memory

array consisted of 1, 2, 4, or 6 oriented bars (2 � of visual angle) presented on a grey background on

an imaginary circle (radius 4:4 �) around fixation with equal inter-item distances (centre to centre).

The colors of the bars in each trial were randomly selected out of eight easily-distinguishable colors.

The stimulus display was followed by a blank delay of 0:1; 1; 2 or 3 seconds and at the end of each

sequence, recall for one of the items was tested by displaying a ‘probe’ bar of the same color with a

random orientation. Subjects were instructed to rotate the probe using a response dial (Logitech

Intl. SA) to match the remembered orientation of the item of the same color in the sequence -

henceforth termed the target. Each of the participants performed between 11 and 15 blocks of 80 tri-

als. Each block consisted of 20 trials for each of the 4 possible item numbers, consisting of 5 trials for

each delay duration.

Overview of theoretical framework and key steps
Channel coding and channel rate
Consider transmitting information about K scalar variables in the form of codewords of power 1 (i.e.,
PK

k¼1
PðkÞ ¼ 1, where PðkÞ is the average power allocated to encode item k, with the average taken

over N different channel uses, so that the average power actually used is 1

N

PN
i¼1

ðXðkÞ
i Þ2 � PðkÞ. The

number of channel uses, N, is equivalent in our memory framework to the number of parallel mem-

ory channels, each of which introduces a Gaussian white noise of variance 2DT. The rate of growth

of variance of the variable stored in persistent activity networks, 2D, is derived in Burak and Fiete

(2012); here, when we refer to this diffusivity, it is in dimensionless units where the variable is nor-

malized by its range.

The information throughput (i.e., the information rate per channel use, also known as channel

rate) for such channels is bounded by (see Appendix for details):

RSðTÞ �
X

k2S
RðkÞ � 1

2
log 1þ

P

k2S
PðkÞ

2DT

0

B

@

1

C

A
(3)

where S refers to any subset of the the K items, f1; � � � ;Kg. Equation 3 defines an entire region

of information rates that are achievable: the total encoding power or the total channel rate, or both,

may be allocated to a single item, or distributed across multiple items. Thus, the expression of Equa-

tion 3 is compatible with interpretations of memory as either a continuous or a discrete resource

(van den Berg et al., 2012; Zhang and Luck, 2008). (E.g., setting PðkÞ ¼ 0 for any k� 5, would
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correspond to a 4-slot conceptualization of short-term memory. Distributing PðkÞ ¼ 1=K for any vari-

able number K of statistically similar items, would more closely describe a continuous resource

model.) For both conceptualizations, this framework would allow us to consider, if the experiment

setup warranted, different allocations of power PðkÞ and information rates across the encoded items.

For the delayed orientation matching task considered here, all presented items have equal com-

plexity and a priori importance, so the relevant case is PðkÞ ¼ 1=K for all k ¼ 1; � � � ;K, together with
equal-rate allocation, Rð1Þ ¼ � � � ¼ RðKÞ, resulting in the following bound on per-item or per-feature

information throughput in the noisy channel (see Appendix for more detail):

RðkÞðTÞ � 1

2K
log 1þ 1

2DT

� �

: (4)

Next we consider how this bound on information rate in turn constrains the reconstruction error

of the source variable (i.e., the K-variable vector to be memorized, ~f).

Source coding and rate-distortion theory
At a source coder that compresses a source variable, rate-distortion theory relates the source rate to

the distortion in reconstructing the source, at least for specific source distributions and specific error

(distortion) metrics. For instance, if the source variables are each drawn uniformly from the interval

½0;F�, then the mean-squared error in reconstructing the source, DMSE, is related to the source rate

R through the rate-distortion function (see Appendix):

1

2
log

F
2

2peDMSE

� �

� R� 1

2
log

F
2

12DMSE

� �

: (5)

Joint source-channel coding
If the source rate is set to equal the maximal channel rate of Equation 4, then use the expression of

Equation 5 from rate-distortion theory, we obtain the predicted bound on distortion in the source

variable after source coding and channel transmission. This predicted distortion bound is given in

Equation 2. In general problems of information transmission through an noisy channel, it is not nec-

essarily jointly optimal to separately derive the optimal channel rate and the optimal distortion for a

given source rate, and then to set the source rate to equal the maximal channel rate; the total distor-

tion of the source passed through the channel need not be lower-bounded by the resulting expres-

sion. However, in our case of interest the two-step procedure described above, deriving first the

channel capacity then inserting the capacity into the rate-distortion equation, yields a tight bound

on distortion for the memory framework.

This concludes the basic derivation, in outline form, of the main theoretical result of the manu-

script. The Supplementary Information supplies more steps and detail.

Fitting of theory to data
In all fits of theory to data (for direct and well-coded storage), we assume that recall error at the

shortest storage interval of 100 ms reflects baseline errors unrelated to the temporal loss of recall

accuracy from noisy storage that is the focus of the present work. Under the assumption that this

early (‘initial’) error is independent of the additional errors accrued over the storage period, it is

appropriate to treat the baseline (T ¼ 100 ms) MSE as an additive contribution to the rest of the

MSE (the variance of the sum of independent random variables is the sum of their variances). For

this reason, we are justified in treating the T ¼ 100 ms errors as given by the data and setting these

points as the initial offsets of the theory curves, which go on to explain the temporal (item-depen-

dent) degradation of information placed in noisy storage.

The curves are fit by minimizing the summed weighted squared error of the theoretical prediction

in fitting the subject-averaged performance data over all item numbers and storage durations. The

theoretical predictions are given by Equation 1 for direct storage and Equation 2 for well-coded

storage. The weights in the weighted least-squares are the inverse SEMs for each (item, storage

duration) pair. The parameters of the fit are N=2D (direct storage model) or N and 2D (well-coded

model). The parameter value selected is common across all item numbers and storage durations.
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The p values given in the main paper quantify how likely the data means are to have been based on

samples from a Gaussian distribution centered on the theoretical prediction.

Model comparison with the bayesian information criterion
The Bayesian Information Criterion (BIC) is a likelihood-based method for model comparison, with a

penalty term that takes into account the number of parameters used in the candidate models. BIC is

a Bayesian model comparison method, as discussed in Kass and Raftery (1995)

Given data x that are (assumed to be) drawn from a distribution in the exponential family and a

model Mð~�Þ with associated parameters ~� (~� is a vector of k parameters), the BIC is given by:

BIC¼�2L̂þ k lnð2pnÞ (6)

where n is the number of observations, and L̂ is the likelihood of the model (with parameters ~�

selected by maximum likelihood). The smaller the BIC, the better the model. The more positive the

difference

DBIC¼ BICðM2Þ�BICðM1Þ (7)

between a pair of models M1ð~�1Þ and M2ð~�2Þ (with associated parameters ~�1;~�2, respectively, possibly

of different dimensions k1 6¼ k2), the stronger the evidence for M1.

To obtain the BIC for the direct and coded models, the model distributions are taken to be Gaus-

sians whose means (for each item and delay) are given by the theoretical results of Equations 1 and

2, respectively, and whose variance is given by the empirically measured data variance across trials

and subjects, computed separately per item and delay. We used the parameters N ¼ 10; 1=2D ¼ 2:28

for the well-coded storage model, and ð2D=NÞ ¼ 3:24� 10
�7 for the direct storage model, to obtain

DBIC ¼ 172:67. The empirical response variance is computed over each trial for each subjects, for a

total of n ¼ 660 observations for each ðT;KÞ or (delay interval, item number) pair. The number of

parameters is k ¼ 1 for direct storage and k ¼ 2 for well-coded storage. Setting the parameter num-

bers to k ¼ 1þ 4 and k ¼ 2þ 4 to take into account the 4 values of response errors at the shortest

delay at T ¼ 100 ms does not change the DBIC score because the score is dominated by the likeli-

hood term, so that these changes in the parameter penalty term have negligible effect.
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Joint source-channel coding and memory: justification and
main results

Noisy information channels as a component of short-term memory
systems
Noisy information channels have traditionally been used to model communication systems: in

satellite or cell-phone communications, the transmitted information is degraded during

passage from one point to another (Shannon, 1959; Wang, 2001; Cover and Thomas, 1991).

Such transmission and degradation over space is referred to as a channel use. However, noisy

channels are apt descriptors of any system in which information is put in to be accessed at a

different place or a different time, with loss occurring in-between (Shannon, 1959;

Wang, 2001; Cover and Thomas, 1991). Thus, hard drives are channels, with the main

channel noise being the probability of random bit flips (from high-energy cosmic rays).

Similarly, neural short-term memory systems store information and are subject to unavoidable

loss because of the stochasticity of neural spiking and synaptic activation. In this sense, noise-

induced loss in persistent activity networks is like passing the stored information through a

noisy channel.

Channel coding
In channel coding, a message is first encoded to add redundancy, then transmitted through

the noisy channel, and finally decoded at the decoder. Here, we establish the terminology and

basic results from Shannon’s noisy channel coding theory (Shannon, 1959; Cover and

Thomas, 1991), which are used in the main paper.

First, consider a task that involves storing or communicating a simple message, q, where q

is a uniformly distributed index taking one of Q values: q 2 f1; � � � ;Qg. The message q is

encoded according to a deterministic vector function (an encoding function), to generate the

N-dimensional vector xðqÞ ¼ ðx1ðqÞ; x2ðqÞ; � � � ; xNðqÞÞ, Figure 1. This is the channel-coding step.

The codeword xðqÞ, is redundant, is sent through the noisy channel, which produces an output

y according to some conditional distribution pðyjxÞ (y is an N-dimensional vector; the channel

is specified by the distribution pðyjxÞ). In a memoryless channel (no feedback from the

decoder at the end of the channel back to the encoder at the mouth of the channel), the

channel obeys

pðyjxÞ ¼
Y

N

n¼1

pðynjxnÞ; (8)

where all distributions pðynjxnÞ represent an identical distribution that defines the channel

(Cover and Thomas, 1991). In this setup, transmission of the scalar source variable q involves

N independent channel uses.

The decoder constructs a mapping y ! f1; � � � ;Qg, to make an estimate q̂ of the received

message from the channel outputs y. If q̂ 6¼ q, the decoder has made an error. The error

probability is the probability that q is decoded incorrectly, averaged over all q. This scenario,

in which q, which is a single number (and represents one of the messages to be

communicated) and the decoder receives a single number (observation) from each channel

use, is referred to as point-to-point communication (Cover and Thomas, 1991).

If the decoder can correctly decode q, the channel communication rate (also known as the

rate per channel use), which quantifies how many information bits (about q) are transmitted

per entry of the coded message x, is given by R ¼ log2ðQÞ=N. Shannon showed in his noisy

channel coding theorem (Shannon, 1959; Cover and Thomas, 1991) that for any channel, in
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the limit N ! ¥, it is possible in principle to communicate error-free through the channel at

any rate up to the channel capacity C, defined by:

C¼max
pðxÞ

1

N
Iðx;yÞ: (9)

For specific channels, it is possible to explicitly compute the channel capacity in terms of

interesting parameters of the channel model and encoder; below, we will state such results for

our channels of interest, for subsequent use in our theoretical analysis.

Point-to-point Gaussian channel with a power constraint
For a scalar quantity transmitted over an additive Gaussian white noise channel of variance

2DT, with an average power constraint P for representing the codewords (i.e.,
1

N

PN
i¼1

jjxijj2 � P), the channel capacity , or maximum rate at which information can be

transmitted without error, is given by (Cover and Thomas, 1991) :

C¼ 1

2
log 1þ P

2DT

� �

: (10)

Gaussian multiple-access channel
Next, suppose the message is itself multi-dimensional (of dimension K), so that the message is

q ¼ ðq1; � � � ; qKÞ. (In a memory task, these K variables may correspond to different features of

one item, or one feature each of multiple items, or some distribution of features and items. All

features of all items are simply considered as elements of the message, appropriately

ordered.)

The general framework for such a scenario is the multiple-access channel (MAC). In a MAC,

separate encoders each encode one message element qk (k ¼ 1; � � � ;K), as an N-dimensional

codeword xkðqkÞ. The full message q is thus represented by a set of K different N-dimensional

codewords, XðqÞ ¼ ðx1ðq1Þ; � � � ;xKðqKÞÞ. The power of each encoder is limited to PðkÞ with a

constraint on the summed power (we assume
PK

k¼1
PðkÞ � 1:Þ The encoded outputs are

transmitted through a channel with a single receiver at the end.

As before, we consider the channel to be Gaussian. In this Gaussian MAC model, the

channel output y is a single N-dimensional vector, like the output in the point-to-point

communication case (Cover and Thomas, 1991). The MAC channel is defined by the

distribution pðyjXÞ ¼ pðyjx1; � � � ;xKÞ. For a Gaussian MAC, pðyjXÞ is a Gaussian distribution

with mean equal to
PK

k¼1
xk and variance equal to the noise variance. The decoder is tasked

with reconstructing all K elements of q from the N-dimensional y.

The probability of error is defined as the average probability of error across all K entries of

the message. The fundamental limit on information transmission over the MAC is not a single

number, but a region in a K-dimensional space: It is possible to allocate power and thus rates

differentially to different entries of the message q, and information capacity varies based on

allocation. Through Shannon’s channel coding theorem, the region of achievable information

rates for the Gaussian MAC with noise variance 2DT is given by:

RS � 1

2
log 1þ

P

k2S
PðkÞ

2DT

0

B

@

1

C

A
; (11)

where S refers to any subset of f1; � � � ;Kg, and we represent the summed rate for a given S
as RS ¼

P

k2S R
ðkÞ. In memory tasks, we assume the total power constraint is constant,

regardless of the number of items, and K corresponds to the number of items. Thus, power

allocation per item will generally vary (decrease) with item number.

To summarize, we have a fundamental limit on information transmission rates in a Gaussian

multiple-access channel as described above.
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Capacity of a Gaussian MAC with equal per-item rate equals point-to-
point channel capacity
The summed information rate through a Gaussian MAC channel is maximized when the per-

item rate is equal across items. Moreover, at this equal-rate per-item point, the Gaussian MAC

model corresponds directly to a point-to-point Gaussian (AWGN) channel coding model,

where the channel input has an average power constraint P, which is set to P ¼
P

k P
ðkÞ, where

PðkÞ is the power constraint on the channel input of the k-th encoder of the original Gaussian

MAC model. In this equivalent AWGN model, a single encoder is responsible for transmitting

all of the K message elements, by dividing the point-to-point channel capacity equally among

the message elements. The maximum information rate in a point-to-point AWGN channel is

ð1=2Þ logð1þ SNRÞ, and therefore the information rate per item, if the rate is divided evenly

over all K items, is RðkÞ ¼ ð1=2KÞ logð1þ SNRÞ. This capacity can be achieved by setting the

inputs for the AWGN point-to-point channel to be the N-dimensional vector x, with

x ¼
P

K

k¼1

xkðqkÞ, where xkðqkÞ are the set of K vectors of length N generated from the encoders

of the Gaussian MAC. The ith component xi of x is xi ¼
P

K

k¼1

xki ðqkÞ, where xki ðqkÞ is the ith

element of the vector xk which encodes the message element qk, and therefore xi contains

information about all components of the message (joint representation of message elements).

Comparing the expression for the Gaussian MAC information rate with the capacity result

from the corresponding point-to-point Gaussian channel, RðkÞ ¼ ð1=2KÞ logð1þ SNRÞ, it is clear
that the summed rate of the equal-rate per-item Gaussian MAC can achieve the same

(optimal) information rate per item as the point-to-point AWGN channel.

Figure 4B of our main manuscript may be viewed as depicting the AWGN point-to-point

channel, with a scalar input xi to each of the N memory networks (AWGN channels). It is

interesting to note that both the AWGN channel and Gaussian MAC models suggest that the

brain might encode distinct items independently but then store them jointly.

Point-to-point communication through a Gaussian channel with a peak
amplitude constraint
Suppose the codewords are amplitude-limited, rather than collectively power-limited, so that

each element jjxijj � A for some amplitude A. If we are considering each entry of the

codeword as being stored in a persistent activity network, then the maximal range of each

codeword entry is constrained, rather than just the average power across entries. In this sense,

amplitude-constrained channels may be more apt descriptors than power-constrained

channels.

For comparison with the capacity of a Gaussian channel with a power constraint P, we set

without loss of generality A ¼
ffiffiffi

P
p

. Then, for a scalar quantity transmitted with this amplitude

constraint over an additive Gaussian white noise channel of variance 2DT , the channel

capacity is similar to that of the power-constrained Gaussian channel, but with the cost of a

modest multiplicative pre-factor c that is smaller than, but close to size 1 (Softky and Koch,

1993; Raginsky, 2008):

C¼ c

2
log 1þ P

2DT

� �

: (12)

If the SNR (¼ P
2DT

) is such that
ffiffiffiffiffiffiffiffiffiffi

SNR
p

<1:05, then c 2 ½0:8; 1� (Raginsky, 2008). Therefore,
channel capacity of the amplitude-constrained Gaussian channel can be 80% or more of the

channel capacity of the corresponding power-constrained Gaussian channel. In any case, the

power-constrained Gaussian channel capacity expression is a good upper bound on the

capacity of the amplitude-constrained version of that channel.
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Joint source-channel coding
In memory experiments, it is not possible to directly measure information throughput in the

internal storage networks. Rather, a related quantity that can be measured, and is thus the

quantity of interest, is the accuracy of recall. In this section, we describe how the general

bound on information throughput in the storage networks – derived in the previous section –

can be used to strictly upper-bound the accuracy of recall in a specific class of memory tasks.

Consider a task that involves storing or communicating a variable f. This variable is known

as the information source. The information source may be analog or discrete, and uniform or

not. To remove redundancies in the source distribution or to possibly even further compress

the inputs (at the loss of information), the source may be passed through a source-coding

step. (For instance, the real interval ½�1; 1� can be compressed through binary quantization

into one bit by assigning the subinterval ½�1; 0� to the point 0, and ½0; 1� to 1, at the expense of

precision.) The output of the source coder is known as the message , which was the assumed

input to the noisy channel in the sections discussed above. The message is a uniformly

distributed index q, taking one of Q values, q 2 f1; � � � ;Qg. The source rate is the number of

bits allocated per source symbol, or log2ðQÞ.
For discrete, memoryless point-to-point Gaussian channels, Shannon’s separation theorem

(Shannon, 1959; Cover and Thomas, 1991) holds, which means that to obtain minimal

distortion of a source variable that must be communicated through a noisy channel, it is

optimal to separately compute the channel information rate, then set the source rate to equal

the channel rate. Rate-distortion theory from source coding will then specify the lower bound

on distortion with this scheme. Because the separation theorem holds for the point-to-point

AWGN channel considered above, and because the point-to-point AWGN rate equals the

maximal summed MAC rate, we can apply the separation theorem to our memory framework

and then use rate-distortion theory to compute the lower bound on distortion.

To minimize distortion according to the separation theorem, we therefore set the source

rate log2ðQÞ to equal the maximum number of bits that may be transmitted error-free over the

channel. With this choice, all messages are transmitted without error in the channel. Then, we

apply rate-distortion theory to determine the minimum distortion achievable for the allocated

source rate. For a given source rate allocation, the distortion depends on several factors: the

statistics of the source (e.g. whether it is uniform, Gaussian, etc.), the source coding scheme,

and on the distortion measure (e.g. mean absolute error (an L-1 norm), mean squared error (an

L-2 norm), or another metric that quantifies the difference between the true source and its

estimate). Closed-form expressions for minimum achievable distortion do not exist for

arbitrary sources and distortion metrics, but crucially, there are some useful bounds on specific

distortion measures including the mean squared error, which is our focus.

Mean squared error (MSE) distortion
For arbitrary source distributions, the relationship between source rate (R bits per source

symbol) and minimum MSE distortion (DMSEðRÞ) at that rate, is given by:

h fð Þ� 1

2
log 2peDMSEðRÞð Þ � R� 1

2
log

s2

f

DMSEðRÞ

 !

where h fð Þ is the differential entropy of the source, s2

f is the variance of the source, and log

is in base-2. The inequality on the right is saturated (becomes an equality) for a Gaussian

source (Cover and Thomas, 1991). The inequality on the left is the Shannon Lower Bound

(Sims et al., 2012) on MSE distortion for arbitrary memoryless sources, and it, too, is

saturated for a Gaussian source (Cover and Thomas, 1991).

Specializing the above expression to a uniform source over the interval ½0;F�, we have

hðfÞ ¼ logðFÞ, and s2

f ¼ F
2=12. Thus, we obtain

1

2
log

F
2

2peDMSE

� �

� R� 1

2
log

F
2

12DMSE

� �

: (13)

Inverting the inequalities above to obtain bounds on the MSE distortion, we have
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F
2

2pe
2
�2R �DMSEðRÞ �

F
2

12
2
�2R: (14)

Note that the upper and lower bounds are identical in form – proportional to F
2
2
�2R – up

to a constant prefactor that lies between ½1=2pe; 1=12�. Thus, the lower bound on distortion is

given by

DMSEðR;FÞ ¼ aMSEF
2

2pe
2
�2R; (15)

where aMSE is an unknown constant of size about 1, somewhere in the range ½1; 2pe=12�.
Now, we set the information rate R for the source (bits per source symbol) in the equation

above, to match the the maximum rate for error-free transmission in the noisy storage

information channel. The maximum number of bits that can be stored error-free is N times the

channel capacity given in Equation 4 , because Equation 4 represents the information

capacity for each channel use, and each of the N storage networks represents one channel

use. Thus, we have R ¼ NRðkÞðTÞ, where RðkÞðTÞ is given in Equation 4 , and the minimum MSE

distortion is:

DMSEðF;K;TÞ ¼ aMSEF
2

2pe
1þ P

2DT

� ��N=K

: (16)

Because we are interested in the lower-bound on error, we set aMSE to the lower bound of

its range, aMSE ¼ 1, so that we obtain the expression given in the main paper (Equation 2 ):

DMSEðF;K;TÞ ¼ F
2

2pe
1þ P

2DT

� ��N=K

: (17)

Indeed, any other choice of aMSE within its range ½1; 2pe=12� does not qualitatively affect our

subsequent results in the main paper.

To summarize, we derived the bound given in Equation 16 by separately combining two

different bounds - the lower-bound on achievable distortion at a source for a given source rate

and the upper-bound on information throughput in a noisy information channel. This

combination of the two separate bounds, where each bound did not take into account the

statistics of the other process (the source bound was computed independently of the channel

and the channel independently of the source), is in general sub-optimal. It is tight (optimal) in

this case only because the uniform source and Gaussian channel obey the conditions of

Shannon’s separation theorem, also known as the joint source-channel coding theorem

(Cover and Thomas, 1991; Wang, 2001; MacKay, 2002; Shannon, 1959; Viterbi and

Omura, 1979).

Bound on recall accuracy for amplitude-constrained channels
As noted in Section 2 of the Appendix, the power-constrained channel capacity is an upper

bound for the amplitude-constrained channel capacity (amplitude A ¼
ffiffiffi

P
p

). It follows that the

lower-bound on distortion for power-constrained channels, Equation 16 , is a lower-bound on

the amplitude-constrained channel. Further, because the channel capacity of an amplitude-

constrained Gaussian channel is of the same form as the capacity of a power-constrained

Gaussian channel, with a prefactor c that is close to 1, we easily see that the specific

expression for MSE distortion is modified to be:

DMSEðF;K;TÞ ¼ aMSEF
2

2pe
1þ P

2DT

� ��cN=K

: (18)

Because N is a free parameter of the theory, we may simply renormalize cN to equal N.

Thus, the theoretical prediction obtained for a power-constrained channel is the same in

functional form as that for an amplitude-constrained channel.

In comparing the theoretical prediction against the predictions of direct storage in

persistent activity networks, however, we should take into account the factor c, noting that to
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produce an effective value of N requires N=c many networks, which is greater than N because

c<1.

Non-asymptotic considerations
Many of the numerical fits in the paper involve values of N that are not large: N is of order 10.

When transmitting information with smaller N, the error-free information rate is lower

(Polyanskiy et al., 2010), or conversely, if transmitting at rates close to capacity with smaller

numbers of channel uses (N) there can be decoding errors. In deriving our bound on distortion

from joint-source channel coding theory, we inserted the asymptotic value of information rate

(the capacity) into the rate-distortion function and assumed that information transmission at

that rate would be error-free. If errors occur, the resulting distortion will be higher. It is

important to note that, even far from the asymptotic limit in N, the derived lower-bound on

distortion in Equation 16 remains a strict lower-bound; non-asymptotic effects can raise the

overall error, not lower it.

Nevertheless, it is of interest to consider how distortion may be modified for values of N

that are not asymptotically large. One would write the total non-asymptotic MSE distortion

(D ~ asymp
MSE ) as the sum of terms:

D
~asymp
MSE ¼DMSEð1� peÞþDepe: (19)

Here, DMSE is the error-free distortion bound derived above, pe is the probability of error in

the non-asymptotic regime, and De is the distortion in case of error. If an error resulted in total

loss of information about the transmitted (coded) variable, De would scale as F2, independent

of N or other parameters in the problem. The only dependence on N would then enter

through the probability of error, pe. The probability of error vanishes exponentially with N

(Polyanskiy et al., 2010), and can be small even for relatively small values of N. The second

term is in practice a small contributor to the MSE. Alternatively, one can ask how small N can

be and at how far below the asymptotic capacity to enable information transmission at or

below a given error rate. Analytical and numerical results in Polyanskiy et al. (2010) show that

at SNR values lower than the estimated SNR in the memory system model

(SNR ¼ P=2DT ¼ 1=2DT » 2:2 dB at T ¼ 3 sec and SNR» 4 dB at T ¼ 2 sec; while Figure 6 in

(Polyanskiy et al., 2010) has SNR ¼ 0 dB and pe ¼ 10
�3), it is possible to remain within a factor

of 1=3 of the asymptotic information capacity with N<10. Thus, the non-asymptotic

expectation is that the information transmission rate should be scaled down from the

asymptotically achievable information rate (the capacity) by some factor c (in this case, c ~ 3).

Thus, through Equation 15 , we see that the bound on distortion will remain the same as in

Equation 2 of the main manuscript, with the replacement of N=K in the exponent by N=cK. In

other words, the previous values of the fit parameter N in the fits would actually correspond to

cN. Thus, it actually takes c times more resources (where c scales slowly with 1=N) to achieve a

given level of performance non-asymptotically as asymptotically.

To summarize, the bound on distortion given in Equation 16 is still a strict lower-bound on

distortion in the regime where N is not asymptotically large; moreover, the functional form of

the bound can remain largely the same in the non-asymptotic regime because the error

probability is small for modest N. In addition, it is possible to achieve a given low error

probability at a fixed SNR by simply decreasing the information rate, which increases

distortion in a way that is effectively the same as increasing the value of the free parameter N.

Direct (uncoded) storage in persistent activity networks
Modeling short-term memory as direct storage of variables in persistent activity networks,

produces results that are inconsistent with the data, as shown in the main paper. To obtain

predictions for persistence and capacity through direct storage in persistent activity networks,

first consider storing a single circular orientation variable, for a single bar in the delayed

orientation matching task, as a bump in one ring network (Ben-Yishai et al., 1995;

Amit, 1992; Zhang, 1996). The ring network would have neurons from all the N storage

networks in our short-term memory system pooled together, thus the network is N times

larger. The mean squared error of a variable stored in a continuous attractor neural network
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with stochastic neural spiking grows linearly with the storage interval T over short intervals

(with ‘short’ defined as all intervals before the root-mean squared error has grown to be an

appreciable fraction of the range of the variable, 2p). Let f=F be the coded variable, with

f 2 ½0;F�. If the rate of growth of error in the individual storage networks of the main paper is

2D (recall that �D ¼ D=P, where D is coefficient of diffusion (Burak and Fiete, 2012); thus, the

quantity �D describes the rate at which the stored variable drifts away from its initial value,

normalized by the squared range of the variable, per unit power of the representation;

alternatively, we may think of the total representional power as being normalized to 1 in all

cases), then the rate of growth of squared error in the single ring network is ~ 2D=N

(Burak and Fiete, 2012). The factor of N enters because if all other quantities are held fixed,

the diffusion coefficient in continuous attractor memory networks is inversely proportional to

network size. Thus, the squared error in the variable at short times T is given by

hðfðTÞ � fð0ÞÞ2i=F2 ¼ 2DT=N. In other words, we have

DMSEðF;K ¼ 1;TÞ ¼F
2
2DT

N
(20)

Next, consider storing K scalar variables, with each component ranging in ½0;F�, and
represented in one of K different small networks, constructed from the single storage network

above. Thus, its size is 1=K of the above. Relative to Equation 20 above, we therefore have

DMSEðF;K;TÞ ¼F
2
2DKT

N
(21)

In other words, for memory systems involving direct storage in persistent activity networks

without special encoding, we expect the squared error to grow linearly with K and T. The

prediction of uncoded storage in persistent activity networks can be compared directly with

the prediction from encoded storage (Equation 2), because they involve the same parameters

and the same resource use in the memory networks. While adding a proper encoding stage

can reduce storage errors exponentially in N, uncoded storage results in decreases with N that

are merely polynomial (more specifically, scaling as N�1).

Finally, one may consider directly storing the K-dimensional variable in a single persistent

activity network that is a K-dimensional ring network (a K-torus). In this situation, the neurons

have to be arranged so the number of neurons per linear dimension of the network scales as

N1=K . Thus, the rate of growth of squared error along each dimension of the network scales as

2D=ðN1=KÞ, and we have

DMSEðF;K;TÞ ¼F
2
2DT

N1=K
(22)

This scaling with T remains linear, while the improvement in squared error with N is weaker

than the scaling in Equation 21 , which in turn is weaker than the scaling in Equation 2 , and

consequently produces worse fits to the data than does Equation 21 . Therefore, we have

chosen to contrast the better of two scenarios of direct (uncoded) storage, Equation 21 ,

against the predictions of the theory of short-term memory proposed in this work.

Comparison of direct storage against coded storage in power- or
amplitude-constrained channels
In the main text, we compared not only how the predictions of coded versus direct storage

compare with each other as a function of T and K, but also compared total resource use to

achieve a given performance with the two different models of storage. In the latter

comparison, we derive the total neural resource, N=2D, required in the two schemes. We

report that direct storage requires a ~ 40-fold larger N=2D than coded storage, basing our

results on the expression for coded storage in power-constrained channels. As noted in

Section 3 of the Appendix, the effective N for an amplitude-constrained channel, which might

be a more apt constraint for persistent activity networks with bounded ranges, is actually N=c,

where c is a prefactor close to but smaller than 1, that represents the fractional loss in channel
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capacity incurred by enforcing an amplitude rather than power constraint. As described in

(Raginsky, 2008) (see also related work in (Softky and Koch, 1993) ), the cost of replacing a

power constraint by an amplitude constraint is modest, with c 2 ½0:8; 1� for an appropriate

regime of channel SNR (this is the regime of SNR for our fits to the data). Thus, even with an

amplitude constraint for the coded memory scenario, direct storage would require a ~ 30-fold

larger N=2D.

Performance of individual subjects and comparison with
theory
Here, we supply the data from individual subjects, as well as fits of the theory of Equation 2

and the direct storage model 1 to their performance.

The individual subject responses and the fits of the well-coded storage model are shown in

Figure 4—figure supplement 1. We first plot the quality-of-fit or energy surface of the fits of

the well-coded model to the individual subject data (top two rows in Figure 4—figure

supplement 1), as the two parameters of the model are varied. These individual-subject

solution spaces look qualitatively similar to the across-subject aggregates reported in the main

manuscript. All subjects exhibit a 1D manifold of ‘good’ parameter settings, along which the

model provides a reasonable match to the data. The quality of fit along the 1D manifold

(valley) is shown in the next two rows of Figure 4—figure supplement 1; based on the local

minima of these curves, we infer the optimal settings of N and 1=2D for each subject. The

differences between individuals emerges in that the best N values range between 2 and 20,

and that for most subjects, the best values range between 4 and 11. Subjects with deviations

in the optimal N from this narrower range have essentially flat valleys between N ¼ 2 and N ¼
20 (Figure 4—figure supplement 1), and thus the choice of N is not strongly constrained.

The minimum fit errors are necessarily larger than the minimum fit errors for the across-

subject averaged data, because of the higher variability of individual subject data (fewer trials

per subject than total trials across subjects). Nevertheless, the normalized squared errors of

the fits can be quite low, and the theory provides good fits to the psychophysics data for the

individual subjects.

We also fit the individual subject data to the direct storage models, to be able to compare

the predictions from the two models, Figure 4—figure supplement 2. We then compute the

Bayesian Information Criterion score for both the direct storage model and the well-coded

storage model, and report the DBIC score for hypothesis comparison, Figure 4—figure

supplement 2. Positive (negative) DBIC scores indicate support for the well-coded (direct)

storage model, and an absolute value of 10 or greater indicates very strong support. Note

that the DBIC scores for the individual subjects are much smaller in magnitude than the

aggregate scores for all pooled data in the main manuscript, because the data set for

individual subjects is smaller and has less statistical strength. Nevertheless, there is very strong

support (jDBICj>10) for the well-coded model in 4 out of 10 subjects, close to strong support

for direct storage in 2 out of 10 subjects (jDBICj » 10), positive support for direct storage in 2

subjects, and essentially insignificant support (jDBICj » 2) in 2 remaining subjects.
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