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Abstract

Cue-induced reinstatement of alcohol-seeking is a hallmark behavioral pathology of addiction. 

Evidence suggests that reinstatement (e.g., relapse), may be regulated by cell signaling systems 

that underlie neuroplasticity. A variety of plasticity events require activation of calcium 

calmodulin-dependent protein kinase II (CaMKII) in components of the reward pathway, such as 

the nucleus accumbens and amygdala. We sought to determine if cue-induced reinstatement of 

alcohol-seeking behavior is associated with changes in the activation state (e.g., phosphorylation) 

of CaMKII-T286. Male C57BL/6J mice (n = 14) were trained to lever press on a fixed-ratio-4 

schedule of sweetened alcohol (2% sucrose + 9% EtOH) reinforcement. After 14-d of extinction 

(no cues or reinforcers), mice underwent a response-contingent reinstatement (n = 7) vs. an 

additional day of extinction (n = 7). Brains were removed immediately after the test and processed 

for evaluation of pCaMKII-T286 immunoreactivity (IR). Number of pCaMKII-T286 positive 

cells/mm2 was quantified from coronal brain sections using Bioquant Image Analysis software. 

Mice emitted significantly more responses on the alcohol vs. the inactive lever throughout the 

baseline phase with average alcohol intake of 1.1 ± 0.03 g/kg/1-h. During extinction, responses on 

the alcohol lever decreased to inactive lever levels by day 7. Significant cue-induced reinstatement 

of alcohol-seeking was observed during a single test with no effects on the inactive lever. 

Reinstatement was associated with increased pCaMKII-T286 IR specifically in amygdala (LA and 
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BLA), nucleus accumbens (AcbSh), lateral septum, mediodorsal thalamus, and piriform cortex as 

compared to extinction control. Brain regions showing no change included the dorsal striatum, 

medial septum, cingulate cortex, habenula, paraventricular thalamus, and ventral hypothalamus. 

These results show response contingent cue-induced reinstatement of alcohol-seeking behavior is 

associated with selective increases in pCaMKII-T286 in specific reward- and memory-related 

brain regions of male C57BL/6J mice. Primary molecular mechanisms of associative learning and 

memory may regulate relapse in alcohol addiction.
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1. Introduction

Relapse to alcohol-seeking during abstinence is a hallmark behavioral pathology of 

addiction and a major clinical problem. Associative learning and memory processes (e.g., 

forms of neuroplasticity) play a principal role in relapse. Clinical studies conducted with 

abstinent alcoholics indicate that exposure to environmental cues previously associated with 

alcohol promote craving and relapse (Carter and Tiffany, 1999; Kaplan et al., 1985) and 

activate brain regions that regulate learning, memory, and reward, such as the amygdala 

(Schneider et al., 2001; Wiers et al., 2015; Wiers et al., 2014). Thus, elucidating adaptations 

in mechanisms of plasticity has the potential to move the field forward in understanding how 

drug-paired cues control behavior, and may identify novel therapeutic targets for the medical 

management of addiction (Berke and Hyman, 2000; Grueter et al., 2012; Kalivas and 

Volkow, 2011; Kauer and Malenka, 2007; Kelley, 2004; Kourrich et al., 2015; Mulholland 

and Chandler, 2007; Niehaus et al., 2009). Cell signaling systems that subserve synaptic 

plasticity are primary candidate mechanisms because they transduce pleiotropic drug effects, 

such as changes in membrane receptor activity, into enduring modifications in neural 

function (Hyman, 2005). Thus, a key challenge for the field is to determine if cell signaling 

systems that regulate normal learning, memory, and plasticity also underlie maladaptive 

associative learning and memory processes such as cue-induced alcohol-seeking behavior.

Calcium calmodulin-dependent protein kinase II (CaMKII) is a family of Ca2+-activated 

Ser/Thr protein kinases that mediates many intracellular responses in the brain, including 

regulation of membrane current, neurotransmitter synthesis and release, and is widely 

considered to be a primary mechanism of neuroplasticity (Colbran and Brown, 2004; 

Hudmon and Schulman, 2002; Lisman et al., 2002). Of the four known isoforms of CaMKII 

(α, β, γ, and δ), CaMKIIα and CaMKIIβ are the most prevalent in the brain, where they 

form mixed α/ β holoenzymes. The CaMKII holoenzyme is activated via phosphorylation 

when neuronal depolarization leads to Ca2+ entry into the cell through multiple sources 

including ionotropic glutamate receptors (AMPA and NMDA) and L-type voltage-gated 

calcium channels. Calmodulin then binds calcium to form a Ca2+/calmodulin complex that 

leads to CaMKII phosphorylation at a threonine 286 site (pCaMKII-T286). Following 
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activation, pCaMKII-286 can translocate to the membrane and/or postsynaptic density where 

it facilitates glutamate receptor (i.e., NMDA, AMPA) activity (Sessoms-Sikes et al., 2005). 

Activation of glutamate receptors is critical for learning, memory, and addictive processes.

An important feature of CaMKII signal transduction that may subserve its role in synaptic 

and behavioral plasticity is that once activated, the kinase enters a relatively autonomous 

state. That is, autophosphorylation of CaMKII-T286 renders the kinase resistant to 

phosphatases and allows kinase activity to continue for long periods of time after the Ca2+ 

signal diminishes (Soderling et al., 2001). This prolonged and independent function of 

CaMKII led to the widely held hypothesis that CaMKIIα may represent a molecular 

“switch,” or “memory molecule,” that encodes long-term memory and other enduring 

changes in behavior and synaptic plasticity (Hudmon and Schulman, 2002; Lisman et al., 

2002; Soderling et al., 2001). These findings support the hypothesis that CaMKII activity 

may underlie long-term enduring pathological behaviors associated with alcoholism, such as 

learning that occurs when alcohol becomes a positive reinforcer, and during cue-induced 

relapse-like behavior, which is a form of associative memory.

Consistent with this notion, we have shown that moderate home-cage alcohol drinking or 

low-dose operant alcohol self-administration increases total CaMKIIα protein expression in 

amygdala and nucleus accumbens, and CaMKII phosphorylation (pCaMKII-T286) in 

C57BL/6J mouse amygdala (Salling et al., 2016). Higher levels of alcohol exposure induced 

by binge-like alcohol drinking also increase CaMKII protein expression in the nucleus 

accumbens (Lee et al., 2016). At the mechanistic level, pharmacological inhibition of 

CaMKII activity in the amygdala reduces operant alcohol self-administration in C57BL/6J 

mice (Salling et al., 2016) and alcohol-preferring P-rats (Cannady et al., 2016), indicating 

that the reinforcing effects of alcohol require CaMKII activation in the amygdala. Moreover, 

we have also shown that CaMKII activity in the amygdala is required for AMPA receptor 

activation-induced escalation of operant alcohol self-administration by P-rats (Cannady et 

al., 2016). Mice carrying a global point mutation that blocks CaMKIIα-T286 

autophosphorylation (Giese et al., 1998) show blunted acquisition of voluntary home cage 

alcohol drinking (Easton et al., 2013). By contrast, inhibition of CaMKII in the prefrontal 

cortex increased the positive reinforcing effects of alcohol (Faccidomo et al., 2016), 

suggesting that CaMKII regulation of alcohol self-administration is brain region, or neural 

circuit, dependent. Overall, these findings indicate that CaMKII activity plays a vital role in 

the positive reinforcing effects of alcohol in mice and rats, demonstrating interspecies 

generality of this mechanistic effect.

It is not known if CaMKII activation is associated with cue-induced reinstatement of 

alcohol-seeking behavior, which is a preclinical model of relapse that relies on associative 

learning and memory. Here we sought to establish the feasibility of this approach in mice 

using a procedure adapted from our rat studies (Schroeder et al., 2008) to show: 1) 

extinction of alcohol reinforced responding; 2) response-contingent cue-induced 

reinstatement of alcohol-seeking; and 3) potential changes in pCaMKII-T286 

immunoreactivity (IR) in corticolimbic brain regions known to regulate relapse-like 

behavior, such as the amygdala and nucleus accumbens.
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2. Materials and methods

2.1. Animals

Male C57BL/6J mice (n = 16) arrived at 10 weeks of age from Jackson Laboratory (Bar 

Harbor, ME). Mice were group-housed in clear, polycarbonate cages lined with corncob 

bedding. Cages were covered by stainless steel wire lids through which Purina rodent chow 

and water was available ad libitum. The vivarium was maintained on a 12 h:12 h reverse 

light/dark cycle (lights off at 0800) with temperature at 21 ± 1 °C. Mean ± SEM body 

weight ranged from (25.8 ± 0.5 g) on training day 1 to (29.4 ± 0.9 g) on the last 

experimental day, indicating normal growth and development. All procedures were approved 

by the Institutional Animal Care and Use Committee of the University of North Carolina at 

Chapel Hill, and animals were cared for in accordance with the Guide for the Care and Use 

of Laboratory Animals (National Research Council (U.S.). Committee for the Update of the 

Guide for the Care and Use of Laboratory Animals. et al., 2011).

2.2. Self-administration apparatus

Alcohol self-administration, extinction and reinstatement sessions were conducted in 

Plexiglas operant chambers designed for mice (Med Associates, Georgia, VT) measuring 

15.9 × 14 × 12.7 cm with stainless steel grid floors. Each chamber was housed in a sound-

attenuating cubicle equipped with a house fan that provided ventilation and helped mask 

external noise. Chambers were equipped with two ultra-sensitive stainless-steel response 

levers with a stimulus light located above each lever. An alcohol solution was delivered via a 

syringe mounted to a programmable pump (PHM-100, Med Associates), which delivered 

0.014 ml per activation into a stainless-steel cup. The operant conditioning chambers were 

interfaced (Med Associates, Med-PC Software) to a Windows compatible desktop computer, 

which was programmed to record all lever presses, and control liquid deliveries and stimulus 

lights.

2.3. Alcohol self-administration, extinction, and reinstatement procedure

A summary of the behavioral procedures is shown in the time line in Fig. 1A.

2.3.1. Self-administration—Following one week of acclimation to housing conditions, 

mice were deprived of fluid for 20 h prior to initial training in the operant chamber (Fig. 1B, 

left). The first three days of training were 16-h sessions with sucrose (5% w/v) 

reinforcement initially on a fixed-ratio 1 (FR1) schedule of reinforcement that progressed to 

an FR4 schedule. All subsequent self-administration sessions were 1-h in duration and 

followed a FR4 schedule of reinforcement. Mice were then trained, during 28 daily 1-h 

sessions, to self-administer a sweetened alcohol solution (9% EtOH (v/v) + 2% sucrose 

(w/v)) by using a sucrose fading procedure as previously described (Faccidomo et al., 2009; 

Salling et al., 2008; Salling et al., 2016). Subsequently the sweetened alcohol solution is 

referred to as “alcohol.” Self-administration procedures were continued for 28 sessions (7 

days per week). During all operant self-administration sessions, responses on the alcohol-

paired lever resulted in the presentation of a compound stimulus consisting of a visual cue 

light and the auditory stimulus of pump activation from a fixed spatial location. Responses 
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on the inactive lever produced no programmed consequences. Fluid cups were inspected at 

the end of each session to verify intake.

2.3.2. Extinction—Following the 28-day baseline, self-administration behavior was 

extinguished by removing all programmed consequences of lever press responding (i.e., 

absence of cue-light, pump sound, and sweetened alcohol delivery) (Fig. 1B, middle). 

Extinction training continued during 14 daily (2 weeks) 1-h sessions.

2.3.3. Cue-induced reinstatement—Reinstatement testing was conducted during a 

single session, one day following the last extinction session. For reinstatement testing and 

subsequent immunohistochemistry, mice were divided into two subgroups. First, an 

extinction control group (n = 7) continued extinction training for an additional session. A 

second group (n = 7) was given a response contingent cue-induced reinstatement test in 

which lever press responses were followed by presentation of the cue light and auditory cue 

(as during self-administration training on a FR4 schedule) in the absence of alcohol/sucrose 
reinforcement to examine cue-induced alcohol-seeking behavior, as previously reported by 

our group (Schroeder et al., 2008) (Fig. 1B, right). For the reinstatement group only, fluid 

cups were also primed with 0.14 ml of the alcohol/sucrose solution (equivalent to one 

reinforcer) prior to session onset to provide orogustatory stimuli in addition to the cue-light 

and pump sound.

2.3.4. Behavioral data analysis—The principal behavioral parameters of operant 

ethanol self-administration were number of active and inactive lever presses, and volume of 

ethanol consumed (mls). Alcohol intake (g/kg) was determined using each animal’s daily 

body weight and the volume of ethanol delivered per total number of reinforcers (0.14 ml of 

9% v/v ethanol). Self-administration and extinction data were analyzed separately by two-

way repeated measures analysis of variance (RM ANOVA) with factors for lever (active vs. 

inactive) and day (GraphPad Software Inc., La Jolla, CA USA). Multiple comparisons were 

conducted with Sidak’s test.

Total response data were analyzed from the reinstatement test via unpaired t-test comparison 

of two groups (extinction vs. reinstatement).

2.4. Immunohistochemistry

2.4.1. Tissue collection and fixation—Immediately after the reinstatement test, 

extinction and reinstatement groups (n = 7 each were deeply anesthetized with pentobarbital 

(150 mg/kg) and intracardially perfused with ice-cold phosphate buffered saline (PBS; 0.1 

M) followed by 4% paraformaldehyde. Brains were removed and post-fixed in 

paraformaldehyde for 48 h, and stored in PBS at 4 °C. Coronal brain sections (40 μM) were 

prepared using a vibratome (Leica VT1000S, Leica Microsystems, Buffalo Grove, IL) and 

were stored at −20 °C in cryoprotectant until immunohistochemistry processing.

2.4.2. Immunodetection—Analysis of pCaMKII-T286 immunoreactivity (IR) was 

performed as previously described (Agoglia et al., 2015; Cannady et al., 2016; Faccidomo et 

al., 2015; Schroeder et al., 2008; Spanos et al., 2012) using a 2 day protocol. On day 1, free-

floating coronal sections were washed with 0.1 M PBS before being gently bathed in 1% 
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H2O2 to inhibit endogenous peroxidase activity. Antigen retrieval was performed by 

immersing tissue in Citra buffer (1×; Biogenics, Napa, CA) for 30 min at 70 °C. Sections 

were blocked with 5% normal goat serum (Vector Labs, Burlingame, CA) in PBS with 0.1% 

Triton X (PBSTx) for 1 h and incubated with a rabbit polyclonal antibody to pCamKII-T286 

(Abcam, ab32678 at 1:1500 dilution) overnight at 4 °C. On day 2, sections were washed in 

PBS-TX and then incubated with a goat anti-rabbit secondary antibody for 1 h at room 

temperature. Finally, antibody bound pCaMKII-T286 was visualized using a DAKO-DAB 

chromogen (Agilent Technologies, Carpinteria, CA), sections were counterstained with 

Toluidine Blue and were mounted on slides for analysis.

2.4.3. Antibody validation—This pCaMKII-T286 antibody (Abcam, ab32678) was 

validated by the vendor to be specific for the ~50 kDa alpha CaM Kinase II subunit and the 

~60 kDa beta CaM Kinase II subunit phosphorylated at Thr286 in Western blots. 

Immunolabeling was blocked by the phosphopeptide used as the antigen but not by the 

corresponding dephosphopeptide. We also validated the antibody using Western blots in 

untreated C57BL/6J mouse frontal cortex and nucleus accumbens tissue and verified 

labeling of two bands at ~50 and ~60 kDa. No other bands were detected (data not shown). 

Thus, this antibody labels activation (phosphorylation) of the CaMKII α/β holoenzyme at 

the T286.

2.4.4. Visualization and analysis—Quantification of pCaMKII-T286 IR was conducted 

at 10× magnification using a light microscope (Olympus CX41, Olympus, Tokyo) connected 

to a computer with Bioquant Image Anaysis software (Bioquant Life Science Software v.

8.40.20; Bioquant Corp, Nashville, TN). A digital camera (Regita OEM fast, QImaging, 

Burnaby, BC) attached to the microscope was used to acquire all images. The microscope, 

camera, and software were background corrected and normalized to preset light levels to 

ensure fidelity of data acquisition. The number of pCaMKIIα-T286 immunopositive cells 

from extinction and reinstatement test conditions was obtained from a circumscribed field 

encompassing the brain region or sub-nucleus of interest, divided by the area, and analyzed 

as cells/mm2. Data represent the average of bilateral measurements from 2 or 3 coronal 

sections through each brain region. Tissue was coded throughout the experiment so the 

experimenter was blind to the treatment conditions during analysis. Immunohistochemistry 

data were analyzed by unpaired t-test after verifying lack of statistical outliers (Grubb’s test, 

GraphPad Software). Differences in degrees of freedom among brain regions reflects data 

exclusion due to tissue loss (n = 1 from each EXT and REINST conditions, all brain 

regions), irregular staining (n = 1–2 from both EXT and REINST; lateral septum and 

mediodorsal thalamus) and improper anatomical coordinates (n = 1 from each EXT and 

REINS; piriform cortex). A list of all brain regions analyzed and cell count data are shown 

in Table 1. Data from brain regions that showed significant changes are reproduced 

graphically accompanied by photomicrographs.

2.4.5. Brain regions—Based on prior results (Schroeder et al., 2008), analysis of 

pCaMKII-T286 was initially focused on subnuclei of the nucleus accumbens (AcbC and 

AcbSh; Bregma 1.0 ± 0.25 mm) and amygdala (LA, BLA, and CeA; Bregma 1.6 ± 0.5 mm). 

However, prominent pCaMKII-T286 IR was observed in structures adjacent to the nucleus 
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accumbens (dorsal striatum, frontal and anterior piriform cortices, and lateral and medial 

septum) and amygdala (habenula, midline thalamus, and hypothalamus) and was also 

analyzed. The arcuate nucleus, medial habenula, and hippocampus were not analyzed due to 

excessively dark background and/or irregular staining.

3. Results

3.1. Alcohol self-administration

Alcohol self-administration increased as a function of time and stabilized during the 28-day 

exposure period. Two-way RM ANOVA showed that C57BL/6J mice exhibited significantly 

more responses on the alcohol lever as compared to the inactive lever [F(1,26) = 38.6, p < 

0.0001] throughout the baseline phase (Fig. 2A, left). There was also a significant effect of 

Time [F(27,702) = 6.6, p < 0.0001] and a significant Lever x Time interaction [F(27,702) = 

3.3, p < 0.0001] indicating that the reinforcing effects of alcohol increased, or escalated, 

over time (Fig. 2A, left). Sidak’s multiple comparison tests showed that responses on the 

active lever were significantly greater than on the inactive lever in all cases except on days 1 

and 3 (Fig. 2A, left, p < 0.05). Sidak’s multiple comparisons within the active lever 

condition also showed that there were no significant differences in response totals after day 

17 (p > 0.05) indicating that self-administration behavior was stable during the last 10 days 

of baseline. As a result, dosage of self-administered alcohol per 1-h session (MEAN ± SEM) 

increased from (0.4 ± 0.07 g/kg) on day 1 to (1.02 ± 0.08 g/kg) on day 17 and remained 

stable during the last 10 days of baseline (range: 0.98 ± 0.08–1.25 ± 0.18 g/kg; mean: 1.09 

± 0.10 g/kg).

3.2. Extinction

During the 14 days of extinction, mice emitted significantly more responses on the lever that 

previously produced alcohol reinforcement [F(1,26) = 6.28, p < 0.05] (Fig. 2A, right). 

Although there was a main effect of time [F(13,388) = 23.3, p < 0.0001] indicating that 

responding on both the active (alcohol) and inactive levers decreased as a function of time, 

the magnitude of change was greater for responses on the alcohol lever as indicated by the 

significant statistical interaction between lever (active vs. inactive) and time [F(13,388) = 

10.1, p < 0.0001]. Sidak’s multiple comparisons showed that responses on the alcohol-

associated lever decreased as a function of time and were greater than inactive lever 

responding only on the first 6 days of (Fig. 2A, right). Overall, these data show extinction of 

alcohol reinforced responding (i.e., equivalent responding on levers that previously produced 

alcohol or no consequences) when all consequences of lever pressing were removed for 14 

days. In addition, subsequent group differences on reinstatement tests were not a function of 

differential between-group rates of extinction.

3.3. Cue-induced reinstatement

3.3.1. Sub-group assignment—Prior to the reinstatement test, mice were divided into 

two subgroups for subsequent extinction or reinstatement testing. Behaviorally matched sub-

groups were derived by averaging active lever presses over the last 5 self-administration 

sessions (MEAN ± SEM Reinstatement:144 ± 19.6 vs. Extinction: 138 ± 43.7) and the last 5 

extinction sessions (MEAN ± SEM Reinstatement: 40.3 ± 5.9 vs Extinction 37.4 ± 4.6) 
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followed by t-test comparisons to ensure lack of group differences. Two mice were excluded 

from analyses due to low response totals during self-administration, which resulted in final 

group sizes of n = 7 for the extinction and reinstatement conditions. Grubb’s test was used to 

verify lack of statistical outliers following sub-group formation.

3.3.2. Reinstatement test—Mice underwent a single reinstatement test in which 

responses on the previously active (alcohol-associated) lever produced either: no 

consequence (Ext group) or presentation of discrete response-contingent cues (Reinst group) 

that were previously paired with reinforcer delivery during self-administration baseline (i.e., 

stimulus light above the lever and pump sound). Mice in the reinstatement group emitted 

significantly more responses on the active lever, which produced cues (light and pump 

sound), as compared to the group that continued extinction, t(12) = 2.4, p = 0.03 (Fig. 2B). 

These behavioral data demonstrate cue-induced reinstatement of alcohol-seeking behavior 

on the previously active lever that was associated with alcohol and cue presentation. Cue-

induced reinstatement of approximately 50% of baseline alcohol reinforced responding is 

generally consistent with prior studies in alcohol preferring P-rats (Cannady et al., 2013; 

Schroeder et al., 2008) and C57BL/6J mice (Tsiang and Janak, 2006; Loos et al., 2013 

#777).

3.4. Effect of cue-induced reinstatement on pCaMKII-T286 IR

Response-contingent cue-induced reinstatement of alcohol-seeking behavior was associated 

with increased pCaMKII-T286 IR in specific corticolimbic nuclei: nucleus accumbens 

(AcbSh), cortex (anterior PIR), lateral septum, amygdala (LA and BLA), and mediodorsal 

thalamus. No changes were observed in other nuclei that showed prominent pCaMKII-T286 

IR including central amygdala, dorsal striatum (medial and lateral), paraventricular 

thalamus, lateral habenula, and hypothalamus (dorsomedial and ventromedial) (Table 1).

3.4.1. Nucleus accumbens (core and shell)—Cue-induced reinstatement of alcohol-

seeking behavior produced sub-regional effects on CaMKII-T286 phosphorylation in the 

nucleus accumbens. There was no change in MEAN ± SEM pCaMKII-T286 cells/mm2 in 

the nucleus accumbens core, t(10) = 0.73, p = 0.48. However, pCaMKII-T286 IR in the 

nucleus accumbens shell (AcbSh) was increased approximately 1.85 fold, t(10) = 3.5, p = 

0.005 (Fig. 3A). The cytological pattern of pCaMKII-T286 IR in the nucleus accumbens 

following extinction and reinstatement are shown in Fig. 3B.

3.4.2. Striatum (dorsomedial and dorsolateral)—No changes in were observed in 

MEAN ± SEM pCaMKII-T286 cells/mm2 in the dorsomedial striatum, t(10) = 0.17, p = 

0.86, or dorsolateral striatum, t(10) = 0.77, p = 0.46, following cue-induced reinstatement 

(Table 1).

3.4.3. Septum (medial and lateral) and septohippocampal nucleus—Analysis of 

septal nuclei following cue-induced reinstatement identified a 1.46 fold increase in 

pCaMKII-T286 IR specifically in the lateral septum, t(7) = 2.13, p < 0.05 (Fig. 4A). 

Representative photomicrographs illustrating the cytological pattern of pCaMKII-T286 IR in 

septal nuclei following extinction and reinstatement are shown in Fig. 4B. No changes in 
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pCaMKII-T286 IR were observed in the medial septum, t(10) = 0.39, p = 0.70), or 

septohippocampal nucleus, t(10) = 0.45, p = 0.66 (Table 1).

3.4.4. Piriform and cingulate cortex—Analysis of the anterior piriform cortex, lateral 

to the nucleus accumbens, showed that reinstatement was associated with a significant 

increase in pCaMKII-T286 IR [t(8) = 1.99, p < 0.05] (Fig. 4C). Representative 

photomicrographs illustrating the cytological pattern of pCaMKII-T286 IR in the anterior 

piriform are shown in Fig. 4D.

No changes were observed in in pCaMKII-T286 IR in the cingulate cortex subregions CG1, 

t(10) = 0.26, p = 0.80, or CG2, t(10) = 0.65, p = 0.53 (Table 1).

3.4.5. Amygdala (lateral, basolateral, and central)—Cue-induced reinstatement of 

alcohol-seeking behavior was associated with a significant increase in CaMKII-T286 

phosphorylation (i.e., activation) specifically in the lateral nuclei of the amygdala (Fig. 5A). 

Analysis showed that pCaMKII-T286 IR was increased approximately 2-fold in both the 

lateral amygdala (LA) [t(11) = 2.5, p = 0.03] and basolateral amygdala (BLA) [t(11) = 2.4, p 

= 0.04] following response-contingent exposure to cues previously associated with alcohol 

delivery. There was no significant change in pCaMKII-T286 IR in the central amygdala 

(CeA), t(11) = 0.82, p = 0.42. Representative photomicrographs illustrating the cytological 

pattern of pCaMKII-T286 IR in subnuclei of the amygdala following extinction and 

reinstatement are shown in Fig. 5B.

3.4.6. Thalamus (paraventricular, intermediodorsal, mediodorsal and nucleus 
reuniens) and lateral habenula—Cue-induced reinstatement of alcohol-seeking 

behavior was associated with a site-specific increase in pCaMKII-T286 IR in the 

mediodorsal thalamus [t(8) = 1.9, p = 0.04] (Fig. 6A). No changes were observed in 

paraventricular or intermediodorsal thalamus, or the more ventral nucleus reuniens (Fig. 6A, 

Table 1). No changes in pCaMKII-T286 IR were observed in the lateral habenula (Table 1). 

pCaMKII-T286 IR in the medial habenula was consistently intense regardless of 

experimental condition, which precluded differentiation of specific cells for analysis. 

Representative photomicrographs illustrating the cytological pattern of pCaMKII-T286 IR in 

subnuclei of the dorsal thalamus following extinction and reinstatement are shown in Fig. 

6B. The nucleus reuniens is not pictured.

3.4.7. Hypothalamus—There were no changes in pCaMKII-T286 in the ventromedial or 

ventrolateral hypothalamus associated with cue-induced reinstatement of alcohol-seeking 

behavior (Table 1).

4. Discussion

Addiction can be conceptualized as a disorder of neuroplasticity (Chandler, 2003; Kalivas, 

2009; Kauer and Malenka, 2007; Koob and Volkow, 2010; McCool, 2011; Nestler, 2001; 

Winder et al., 2002) involving maladaptive associative learning and memory (Berke and 

Hyman, 2000; Hyman, 2005; Kelley, 2004). Consequently, exposure to environmental 

stimuli that have been paired with a drug of abuse, such as alcohol, can induce craving and 
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relapse in humans (Carter and Tiffany, 1999; Papachristou et al., 2014; Schneider et al., 

2001; Seo and Sinha, 2014) and relapse-like behavior in animal models (Chaudhri et al., 

2008; Le and Shaham, 2002; Maccioni et al., 2007). CaMKII-T286 phosphorylation is a 

primary molecular mechanism of neuroplasticity at the cellular level (Colbran and Brown, 

2004; Malinow et al., 1989; Silva et al., 1992b) and is required for learning, memory and 

associative conditioning (Mayford et al., 1996; Rodrigues et al., 2004; Silva et al., 1992a). 

Here we show that response-contingent exposure to environmental stimuli that were 

previously paired with the positive reinforcing effects of alcohol (associative conditioning) 

reinstates alcohol-seeking behavior and increases pCaMKII-T286 IR in specific reward-

related brain regions in C57BL/6J mice. Thus, alcohol-paired environmental stimuli may 

express motivational significance, in part, by activation of this fundamental molecular 

mechanism of neuroplasticity.

This premise is supported by growing evidence indicating that alcohol alters CaMKII 

expression and phosphorylation in brain regions that regulate the reinforcing effects of 

alcohol, such as the cortex, nucleus accumbens, and amygdala. Alcohol transiently increases 

CaMKII activity in mouse oocytes (Winston and Maro, 1995). Similarly, chronic alcohol 

produces a 25% increase in kinase activity in rat cortical astrocytes (Smith and Navratilova, 

1999). Results from in vivo studies show that forced exposure to alcohol in the drinking 

water from conception through postnatal day 8, 30, or 90 upregulates CaMKIIα protein in 

rat cortex (Mahadev et al., 2001) and that binge-like drinking (~6 g/kg/day) increases 

expression of CaMKII in the nucleus accumbens of adult mice (Lee et al., 2016). We have 

shown that voluntary alcohol drinking (24-h home-cage) increases total CaMKIIα protein 

expression in mouse amygdala and nucleus accumbens, and that low-dose operant self-

administration (~1 g/kg/day) increases pCaMKII-T286 IR in the amygdala immediately 

after intake (Salling et al., 2016). In the present study, exposure to stimuli previously paired 

with operant sweetened alcohol self-administration (positive reinforcement) increased 

pCaMKII-T286 in lateral amygdala structures (LA and BLA) and nucleus accumbens shell. 

Together these findings suggest that stimuli that are paired alcohol self-administration 

become associated with the pharmacological effect of alcohol on CaMKII-T286 

phosphorylation in reward-related brain regions; thus, acquiring conditioned reinforcing 

properties that can induce CaMKII-T286 activation (phosphorylation) and support relapse-

like behavior. Undoing or redirecting the maladaptive appropriation of CaMKII-T286 

activation may be useful in the medical management of relapse and other behavioral 

pathologies associated with alcohol addiction.

A key finding from this study is that cue-induced reinstatement of alcohol-seeking behavior 

was associated with increased CaMKII-T286 IR in the nucleus accumbens shell (AcbSh), 

with no effect in the accumbens core (AcbC) or dorsal striatum (medial or lateral). The 

nucleus accumbens is a major component of the mesolimbic reward pathway and a primary 

site of alcohol’s positive reinforcing effects (Hodge et al., 1995; Hodge et al., 1997; Hodge 

et al., 1992; Olive et al., 2000; Samson and Hodge, 1993; Samson et al., 1992), and evidence 

suggests that stress- and cue-induced reinstatement of alcohol-seeking behavior is associated 

with increased neural activity specifically in the AcbSh (Funk et al., 2006; Schroeder et al., 

2008). These findings are consistent with other evidence indicating that CaMKII-T286 

activation in the AcbSh is associated with reinstatement of opiate- and stimulant-seeking 
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behavior. For instance, priming-induced reinstatement of morphine-seeking is associated 

with increased pCaMKII-T286 in the AcbSh, but not AcbC, as compared to extinction 

controls (Liu et al., 2012). Short-term abstinence from cocaine self-administration is 

associated with increased CaMKII-T286 expression in the nucleus accumbens and medial 

prefrontal cortex, but not dorsolateral striatum (Caffino et al., 2014). Reinstatement of 

cocaine-seeking behavior is also associated with increased pCaMKII-T286 expression 

specifically in the AcbSh but not AcbC (Anderson et al., 2008). Together, these findings 

suggest that reinstatement of alcohol-, opiate-, and cocaine-seeking are all associated with 

upregulated CaMKII-T286 activation in the AcbSh. This shared molecular adaptation across 

drug classes underscores the significance of delineating the fundamental processes by which 

all drugs of abuse gain control over neural function to produce behavioral pathologies, such 

as relapse.

Sub-regional specificity was also observed in the amygdala where cue-induced reinstatement 

of alcohol-seeking behavior was accompanied by a significant increase in pCamKII-T286 IR 

in the lateral and basolateral amygdala, but not in the central nucleus. An abundance of 

evidence indicates that cue-induced relapse to alcohol-seeking behavior is associated with 

adaptations in the amygdala. Exposure to alcohol-related visual cues (Wiers et al., 2015; 

Wiers et al., 2014) or alcohol odor (Schneider et al., 2001) increases craving and neural 

activity in the amygdala of abstinent alcohol-dependent patients as measured by fMRI. 

Rodent studies show that exposure to cues paired with alcohol increases markers of neural 

activation in the basolateral amygdala including ERK1/2 MAP kinase phosphorylation 

(Radwanska et al., 2008; Schroeder et al., 2008) and Fos expression (Jupp et al., 2011; 

Radwanska et al., 2008). Further, cue-induced reinstatement of alcohol-seeking is associated 

with increased glutamate transmission in the basolateral amygdala (Gass et al., 2011), which 

should increase intracellular Ca2+ that binds calmodulin and promotes activation of CaMKII 

via phosphorylation at T286. Following activation, CaMKII can translocate to the neuronal 

membrane where it drives insertion of glutamate AMPA receptors into the synapse and 

enhances their activity via phosphorylation of the GluA1-S831 subunit (Hayashi et al., 2000; 

Lu et al., 2010; Opazo et al., 2010). We have shown that operant alcohol self-administration 

upregulates pCaMKII-T286 and pGluA1-S831 in the amygdala (Salling et al., 2016) and 

that CaMKII-dependent activation of AMPARs promotes cue-induced reinstatement of 

alcohol-seeking behavior (Cannady et al., 2013). Thus, the increased pCaMKII-T286 IR 

observed in the LA and BLA may reflect enhanced release of glutamate and enhanced 

AMPAR activity in the lateral nuclei of the amygdala during reinstatement. Thus, these 

results support future assessment of GluA1-S831 phosphorylation in reinstatement, and 

regulation of relapse by a CaMKII-AMPAR mechanism in specific brain regions.

Selective activation of CaMKII in specific subnuclei of the amygdala is consistent with 

differential functions of these anatomically distinct sub-regions. The amygdala is a 

heterogeneous set of nuclei consisting of several anatomically and functionally distinct 

nuclei. The lateral structures (i.e., LA and BLA) appear cortex-like and consist of mainly of 

glutamatergic projections neurons, whereas neurons in central structures (i.e., CeA) appear 

striatum-like and are mostly GABAergic (reviewed by (Ehrlich et al., 2009)). Recent 

evidence supports the idea that processing of associative learning information occurs 

primarily in the LA, whereas instrumental, or operant responses, are directed via the CeA 

Salling et al. Page 11

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Balleine and Killcross, 2006; Maren and Quirk, 2004). Accordingly, CaMKII activity in the 

CeA regulates the primary positive reinforcing effects of alcohol (Salling et al., 2016). By 

contrast, exposure to pairings of conditioned stimuli (CS or cues) and unconditioned stimuli 

(US, shock, food, etc.) is processed via sensory modality-specific thalamocortical inputs to 

the LA (Pare et al., 2004), supporting the view that the LA is the “gatekeeper” of the 

amygdala and a key substrate of associative learning and memory (LeDoux, 2007). 

Importantly, conditioned responses (i.e., response to a specific cue) require CaMKII activity 

in the lateral amygdala (Rodrigues et al., 2004) and pharmacological inhibition of CaMKII 

in the basolateral amygdala reduced cue-induced reinstatement of cocaine-seeking behavior 

(Rich et al., 2016). CaMKII activity in lateral amygdala nuclei represents a novel and 

untapped potential mechanism of cue-induced relapse.

A significant finding from this study is that reinstatement of alcohol-seeking behavior was 

associated with an increase in pCaMKII-T286 in the anterior piriform cortex. The piriform is 

part of the olfactory cortex and plays a critical role in odor memory (Wilson and Stevenson, 

2003) and odor cue-reward processing (Truchet et al., 2002). The piriform functions as an 

association cortex and has strong connections with the amygdala, which play a key role in 

linking odors with emotional or motivational value (Sadrian and Wilson, 2015). Prior 

research has shown that odor cue-induced reinstatement of alcohol-seeking behavior was 

associated with increased Fos expression in the piriform cortex of rats (Jupp et al., 2011). In 

the present study, reinstatement was induced by response-contingent exposure to a stimulus 

complex that included a single non-contingent alcohol reinforcer available only at the start 

of the session. No other alcohol was present during reinstatement testing. Under these 

conditions, exposure to the small volume of alcohol may have provided sufficient olfactory 

stimulation to increase pCaMKII-T286 IR in the piriform directly or through odor-based 

memory processing. Alternatively, the BLA sends CaMKII-positive glutamatergic 

projections to the piriform, allowing the amygdala to modulate odor processing (Luna and 

Morozov, 2012; Majak et al., 2004; Sadrian and Wilson, 2015). Thus, the concomitant 

increase in pCaMKII-T286 IR in the BLA and piriform may indicate circuit activation 

induced by interactive processing of the compound cue and CaMKII-dependent processing 

of alcohol reinforcement in the amygdala (e.g., (Salling et al., 2016)). Indeed, exposure to 

alcohol odor increases measures of craving, and neural activity in the amygdala, in recently 

abstinent alcoholic patients (Schneider et al., 2001) suggesting potential interaction of 

motivational and odor memory systems in relapse. Thus, CaMKII-dependent piriform 

activity may play a vital role in cue-induced relapse where alcohol odor is associated with 

the rewarding pharmacological effects of the drug, such as when individuals enjoy the smell 

of wine prior to consumption.

Results from this study also show that cue-induced reinstatement of alcohol-seeking 

behavior is associated with increased CaMKII-T286 IR in the lateral septum (dorsal, 

intermediate, and ventral sub-nuclei combined) with no change in the medial septum. The 

lateral septum regulates neural and behavioral aspects of motivation and addiction (Sheehan 

et al., 2004), and this region has long been hypothesized to regulate alcohol drinking (Myers 

and Privette, 1989; Ryabinin et al., 2003). Moreover, recent evidence indicates that 

GABAergic outputs of the lateral septum regulate alcohol-induced dopamine release in the 

nucleus accumbens (Jonsson et al., 2017), suggesting a mechanism by which the lateral 

Salling et al. Page 12

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



septum may regulate alcohol reinforcement. Although, prior data linking the lateral septum 

to reinstatement of alcohol-seeking behavior is lacking, it appears to play a key mechanistic 

role in cocaine reinstatement. For example, both cue- and stress-induced reinstatement of 

cocaine-seeking behavior is associated with increased Fos expression in lateral septum 

(Briand et al., 2010; Mahler and Aston-Jones, 2012). Moreover, a circuit from hippocampal 

area CA3 to the ventral tegmentum utilizes the lateral septum as a relay point in the 

regulation of context-induced cocaine reinstatement (Luo et al., 2011). Since the 

hippocampal projections to lateral septum are glutamatergic (Luo et al., 2011), upregulation 

of pCAMKII-T286 observed in the present may reflect increased excitatory drive via 

hippocampal projections.

pCaMKII-T286 IR was observed in a variety of thalamic nuclei (Table 1). However, 

reinstatement of alcohol-seeking behavior was associated with a selective increase in 

pCaMKII-T286 in the mediodorsal thalamus (MD, central, medial, and lateral combined). 

The MD influences numerous cognitive processes including memory, decision making, and 

reward processing (Chakraborty et al., 2016; Mitchell and Chakraborty, 2013). Lesions of 

the MD disrupt cue-induced lever selection in a food or sucrose operant behavioral task but 

have no effect on behavioral control by the reinforcer (Ostlund and Balleine, 2008). 

Similarly, contextual fear conditioning is disrupted by MD lesions but had no effect on post-

shock freezing (Li et al., 2004), suggesting a specific role for the MD in response to 

conditioned stimuli as opposed to primary appetitive or aversive stimuli. Specificity of MD 

response to cue-based stimulus control has been confirmed in cocaine reinstatement studies. 

Cue-induced reinstatement of cocaine-seeking behavior in rats was associated with increased 

Fos expression in the MD (central, medial, and lateral nuclei) (James et al., 2011) but 

GABAergic inactivation of the MD had no effect on shock-induced reinstatement of cocaine 

responding (McFarland et al., 2004). Although thiamine-deficient alcoholics with Wernicke-

Korsakoff syndrome exhibit mediodorsal thalamic lesions (Halliday et al., 1994) and show 

high propensity for relapse (Trevisan et al., 1998), potential mechanistic involvement of this 

brain region in alcohol relapse has not been investigated. Given the general role of this this 

midline thalamic structure in cue-related memory processing, our finding that a primary 

molecular mechanism of memory, pCaMKII-T286, is upregulated by exposure to alcohol-

paired cues strongly suggests that the MD may play a critical role in alcohol relapse-like 

behavior.

Although this study shows an association between CaMKII-T286 activation and cue-induced 

reinstatement, it is important to consider several methodological caveats when interpreting 

the data. First, the results from this study do not address potential mechanistic regulation by 

CaMKII. Additional work inhibiting CaMKII-T286 phosphorylation in specific brain 

regions, such as the amygdala or nucleus accumbens, prior to reinstatement testing could 

evaluate brain site-specific mechanistic regulation of relapse-like behavior. Second, the two-

group design used here (Extinction vs. Reinstatement) leaves open several questions, 

including the potential effect of extinction training on CaMKII-T286 phosphorylation, 

which could be addressed by comparison to mice that are actively self-administering 

alcohol, or to an extinction-naïve group. These additional controls could be added to future 

studies to more fully address the potential role of neuroplasticity in cue-induced 

reinstatement. Third, self-administration sessions were conducted with an alcohol solution 
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containing sucrose (2% w/v). Sweetened solutions have been used in preclinical alcohol 

research for many years and offer a variety of advantages over unsweetened alcohol, 

including increased intake by rodents and face validity to the human condition where 

sweeteners are commonly added to alcohol during the initial binge-intoxication stage of 

addiction (reviewed by (Crabbe et al., 2011)). Sweetened alcohol was chosen as the 

reinforcer for the present study for three primary reasons. First, in our laboratory, mouse 

operant behavior under control of sweetened alcohol is highly stable during baseline and 

testing phases of mechanistic studies (Salling et al., 2008) and generates meaningful blood 

alcohol levels in a 1-h session (Faccidomo et al., 2009). Second, we have shown that 

CaMKII-T286 phosphorylation is increased in amygdala subregions of mice that lever-

pressed for sweetened alcohol versus sucrose-only reinforcement (Salling et al., 2016). 

Third, the positive reinforcing effects of sweetened alcohol are specifically regulated by 

CaMKII activity, as compared to sucrose alone (Faccidomo et al., 2016). These findings 

indicate that using sweetened alcohol is a viable strategy for both assessing specific alcohol-

induced neurobiological adaptations in CaMKII-T286 phosphorylation and for evaluating 

mechanistic regulation of drug taking behavior. Thus, interpretations of the present findings 

as alcohol-specific are relatively parsimonious considering prior results, but definitive 

conclusions require further research with a sucrose-only control or unsweetened alcohol 

reinstatement model.

5. Conclusion

Results from the present study indicate that cue-induced reinstatement of sweetened alcohol-

seeking behavior is associated with an increase in CaMKII-T286 phosphorylation in specific 

subnuclei of corticolimbic brain regions that are known to regulate various aspects of 

learning, memory, and reward. CaMKII is enriched at excitatory glutamatergic synapses and 

represents one of the most abundant proteins in the postsynaptic density (PSD). CaMKII 

activity is both necessary and sufficient to induce plasticity at many excitatory synapses, and 

is required for learning and memory behavior (Lisman et al., 2002). Autophosphorylation of 

CaMKII-T286 appears to function as a molecular switch that promotes self-perpetuating 

biochemical reactions, which are required for persistent changes in behavior (Sweatt, 2016). 

In this regard, pCaMKII-T286 is an ideal molecular mechanism by which alcohol and other 

drugs of abuse may subvert adaptive neural mechanisms to produce long-term maladaptive 

changes in behavior. Future studies that manipulate CaMKII activity in the brain regions 

identified in the present study will shed new light on the molecular determinants of relapse.

References

Agoglia AE, Sharko AC, Psilos KE, Holstein SE, Reid GT, Hodge CW. Alcohol alters the activation of 
ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice. Alcohol Clin Exp 
Res. 2015; 39:463–475. [PubMed: 25703719] 

Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, et al. CaMKII: a 
biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat 
Neurosci. 2008; 11:344–353. [PubMed: 18278040] 

Balleine BW, Killcross S. Parallel incentive processing: an integrated view of amygdala function. 
Trends Neurosci. 2006; 29:272–279. [PubMed: 16545468] 

Salling et al. Page 14

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron. 2000; 
25:515–532. [PubMed: 10774721] 

Briand LA, Vassoler FM, Pierce RC, Valentino RJ, Blendy JA. Ventral tegmental afferents in stress-
induced reinstatement: the role of cAMP response element-binding protein. J Neurosci. 2010; 
30:16149–16159. [PubMed: 21123561] 

Caffino L, Cassina C, Giannotti G, Orru A, Moro F, Di Clemente A, et al. Short-term abstinence from 
cocaine self-administration, but not passive cocaine infusion, elevates alphaCaMKII 
autophosphorylation in the rat nucleus accumbens and medial prefrontal cortex. Int J 
Neuropsychopharmacol. 2014; 17:323–329. [PubMed: 23953174] 

Cannady R, Fisher KR, Durant B, Besheer J, Hodge CW. Enhanced AMPA receptor activity increases 
operant alcohol self-administration and cue-induced reinstatement. Addict Biol. 2013; 18:54–65. 
[PubMed: 23126443] 

Cannady R, Fisher KR, Graham C, Crayle J, Besheer J, Hodge CW. Potentiation of amygdala AMPA 
receptor activity selectively promotes escalated alcohol self-administration in a CaMKII-dependent 
manner. Addict Biol. 2016; 22:652–664. [PubMed: 26742808] 

Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research. Addiction. 1999; 94:327–
340. [PubMed: 10605857] 

Chakraborty S, Kolling N, Walton ME, Mitchell AS. Critical role for the mediodorsal thalamus in 
permitting rapid reward-guided updating in stochastic reward environments. elife. 2016:5.

Chandler LJ. Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic 
density as targets of ethanol. Pharmacol Ther. 2003; 99:311–326. [PubMed: 12951163] 

Chaudhri N, Sahuque LL, Cone JJ, Janak PH. Reinstated ethanol-seeking in rats is modulated by 
environmental context and requires the nucleus accumbens core. Eur J Neurosci. 2008; 28:2288–
2298. [PubMed: 19046372] 

Colbran RJ, Brown AM. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr 
Opin Neurobiol. 2004; 14:318–327. [PubMed: 15194112] 

Crabbe JC, Harris RA, Koob GF. Preclinical studies of alcohol binge drinking. Ann N Y Acad Sci. 
2011; 1216:24–40. [PubMed: 21272009] 

Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, et al. alphaCaMKII 
autophosphorylation controls the establishment of alcohol drinking behavior. 
Neuropsychopharmacology. 2013; 38:1636–1647. official publication of the American College of 
Neuropsychopharmacology. [PubMed: 23459588] 

Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A. Amygdala inhibitory circuits and the 
control of fear memory. Neuron. 2009; 62:757–771. [PubMed: 19555645] 

Faccidomo S, Besheer J, Stanford PC, Hodge CW. Increased operant responding for ethanol in male 
C57BL/6J mice: specific regulation by the ERK1/2, but not JNK, MAP kinase pathway. 
Psychopharmacology. 2009; 204:135–147. [PubMed: 19125235] 

Faccidomo S, Salling MC, Galunas C, Hodge CW. Operant ethanol self-administration increases 
extracellular-signal regulated protein kinase (ERK) phosphorylation in reward-related brain 
regions: selective regulation of positive reinforcement in the prefrontal cortex of C57BL/6J mice. 
Psychopharmacology. 2015; 232:3417–3430. [PubMed: 26123321] 

Faccidomo S, Reid GT, Agoglia AE, Ademola SA, Hodge CW. CaMKII inhibition in the prefrontal 
cortex specifically increases the positive reinforcing effects of sweetened alcohol in C57BL/6J 
mice. Behav Brain Res. 2016; 298:286–290. [PubMed: 26608538] 

Funk D, Li Z, Le AD. Effects of environmental and pharmacological stressors on c-fos and 
corticotropin-releasing factor mRNA in rat brain: relationship to the reinstatement of alcohol 
seeking. Neuroscience. 2006; 138:235–243. [PubMed: 16359808] 

Gass JT, Sinclair CM, Cleva RM, Widholm JJ, Olive MF. Alcohol-seeking behavior is associated with 
increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by 
glutamateoxidase-coated biosensors. Addict Biol. 2011; 16:215–228. [PubMed: 21054692] 

Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha 
calcium-calmodulin kinase II in LTP and learning. Science. 1998; 279:870–873. [PubMed: 
9452388] 

Salling et al. Page 15

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Grueter BA, Rothwell PE, Malenka RC. Integrating synaptic plasticity and striatal circuit function in 
addiction. Curr Opin Neurobiol. 2012; 22:545–551. [PubMed: 22000687] 

Halliday G, Cullen K, Harding A. Neuropathological correlates of memory dysfunction in the 
Wernicke-Korsakoff syndrome. Alcohol Alcohol Suppl. 1994; 2:245–251. [PubMed: 8974343] 

Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. Driving AMPA receptors into 
synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 
2000; 287:2262–2267. [PubMed: 10731148] 

Hodge CW, Samson HH, Haraguchi M. Microinjections of dopamine agonists in the nucleus 
accumbens increase ethanol-reinforced responding. Pharmacol Biochem Behav. 1992; 43:249–
254. [PubMed: 1357676] 

Hodge CW, Chappelle AM, Samson HH. GABAergic transmission in the nucleus accumbens is 
involved in the termination of ethanol self-administration in rats. Alcohol Clin Exp Res. 1995; 
19:1486–1493. [PubMed: 8749815] 

Hodge CW, Samson HH, Chappelle AM. Alcohol self-administration: further examination of the role 
of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res. 1997; 21:1083–1091. 
[PubMed: 9309321] 

Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure 
and autoregulation in cellular function. Annu Rev Biochem. 2002; 71:473–510. [PubMed: 
12045104] 

Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry. 2005; 162:1414–1422. 
[PubMed: 16055762] 

James MH, Charnley JL, Flynn JR, Smith DW, Dayas CV. Propensity to ‘relapse’ following exposure 
to cocaine cues is associated with the recruitment of specific thalamic and epithalamic nuclei. 
Neuroscience. 2011; 199:235–242. [PubMed: 21985936] 

Jonsson S, Morud J, Stomberg R, Ericson M, Soderpalm B. Involvement of lateral septum in alcohol’s 
dopamine-elevating effect in the rat. Addict Biol. 2017; 22:93–102. [PubMed: 26365786] 

Jupp B, Krstew E, Dezsi G, Lawrence AJ. Discrete cue-conditioned alcohol-seeking after protracted 
abstinence: pattern of neural activation and involvement of orexin(1) receptors. Br J Pharmacol. 
2011; 162:880–889. [PubMed: 20973776] 

Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009; 10:561–572. 
[PubMed: 19571793] 

Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. 
Mol Psychiatry. 2011; 16:974–986. [PubMed: 21519339] 

Kaplan RF, Cooney NL, Baker LH, Gillespie RA, Meyer RE, Pomerleau OF. Reactivity to alcohol-
related cues: physiological and subjective responses in alcoholics and nonproblem drinkers. J Stud 
Alcohol. 1985; 46:267–272. [PubMed: 4033125] 

Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007; 8:844–858. 
[PubMed: 17948030] 

Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004; 
44:161–179. [PubMed: 15450168] 

Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010; 35:217–238. 
official publication of the American College of Neuropsychopharmacology. [PubMed: 19710631] 

Kourrich S, Calu DJ, Bonci A. Intrinsic plasticity: an emerging player in addiction. Nat Rev Neurosci. 
2015; 16:173–184. [PubMed: 25697160] 

Le A, Shaham Y. Neurobiology of relapse to alcohol in rats. Pharmacol Ther. 2002; 94:137–156. 
[PubMed: 12191599] 

LeDoux J. The amygdala. Curr Biol. 2007; 17:R868–74. [PubMed: 17956742] 

Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent mice are 
resilient to alcohol withdrawal-induced anxiety and changes in indices of glutamate function 
within the nucleus accumbens. Front Cell Neurosci. 2016; 10:265. [PubMed: 27917110] 

Li XB, Inoue T, Nakagawa S, Koyama T. Effect of mediodorsal thalamic nucleus lesion on contextual 
fear conditioning in rats. Brain Res. 2004; 1008:261–272. [PubMed: 15145764] 

Salling et al. Page 16

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural 
memory. Nat Rev Neurosci. 2002; 3:175–190. [PubMed: 11994750] 

Liu Z, Liu XD, Zhang JJ, Yu LC. Increases in alphaCaMKII phosphorylated on Thr286 in the nucleus 
accumbens shell but not the core during priming-induced reinstatement of morphine-seeking in 
rats. Neurosci Lett. 2012; 526:39–44. [PubMed: 22884929] 

Loos M, Staal J, Smit AB, De Vries TJ, Spijker S. Enhanced alcohol self-administration and 
reinstatement in a highly impulsive, inattentive recombinant inbred mouse strain. Front Behav 
Neurosci. 2013; 7:151. [PubMed: 24198771] 

Lu W, Isozaki K, Roche KW, Nicoll RA. Synaptic targeting of AMPA receptors is regulated by a 
CaMKII site in the first intracellular loop of GluA1. Proc Natl Acad Sci U S A. 2010; 107:22266–
22271. [PubMed: 21135237] 

Luna VM, Morozov A. Input-specific excitation of olfactory cortex microcircuits. Front Neural 
Circuits. 2012; 6:69. [PubMed: 23049500] 

Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G. Linking context with reward: a 
functional circuit from hippocampal CA3 to ventral tegmental area. Science. 2011; 333:353–357. 
[PubMed: 21764750] 

Maccioni P, Orru A, Korkosz A, Gessa GL, Carai MA, Colombo G, et al. Cue-induced reinstatement 
of ethanol seeking in Sardinian alcohol-preferring rats. Alcohol. 2007; 41:31–39. [PubMed: 
17452297] 

Mahadev K, Chetty CS, Vemuri MC. Effect of prenatal and postnatal ethanol exposure on Ca2+/
calmodulin-dependent protein kinase II in rat cerebral cortex. Alcohol. 2001; 23:183–188. 
[PubMed: 11435029] 

Mahler SV, Aston-Jones GS. Fos activation of selective afferents to ventral tegmental area during cue-
induced reinstatement of cocaine seeking in rats. J Neurosci. 2012; 32:13309–13326. [PubMed: 
22993446] 

Majak K, Ronkko S, Kemppainen S, Pitkanen A. Projections from the amygdaloid complex to the 
piriform cortex: a PHA-L study in the rat. J Comp Neurol. 2004; 476:414–428. [PubMed: 
15282713] 

Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but 
not expression of LTP. Science. 1989; 245:862–866. [PubMed: 2549638] 

Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004; 5:844–852. 
[PubMed: 15496862] 

Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER. Control of memory formation 
through regulated expression of a CaMKII transgene. Science. 1996; 274:1678–1683. [PubMed: 
8939850] 

McCool BA. Ethanol modulation of synaptic plasticity. Neuropharmacology. 2011; 61:1097–1108. 
[PubMed: 21195719] 

McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-
induced reinstatement of cocaine-seeking behavior. J Neurosci. 2004; 24:1551–1560. [PubMed: 
14973230] 

Mitchell AS, Chakraborty S. What does the mediodorsal thalamus do? Front Syst Neurosci. 2013; 
7:37. [PubMed: 23950738] 

Mulholland PJ, Chandler LJ. The thorny side of addiction: adaptive plasticity and dendritic spines. 
ScientificWorldJournal. 2007; 7:9–21.

Myers RD, Privette TH. A neuroanatomical substrate for alcohol drinking: identification of 
tetrahydropapaveroline (THP)-reactive sites in the rat brain. Brain Res Bull. 1989; 22:899–911. 
[PubMed: 2765949] 

National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of 
Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press 
(U.S.). Guide for the Care and Use of Laboratory Animals. 8. National Academies Press; 
Washington, D.C: 2011. 

Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001; 
2:119–128. [PubMed: 11252991] 

Salling et al. Page 17

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Niehaus JL, Cruz-Bermudez ND, Kauer JA. Plasticity of addiction: a mesolimbic dopamine short-
circuit? Am J Addict. 2009; 18:259–271. [PubMed: 19444729] 

Olive MF, Mehmert KK, Messing RO, Hodge CW. Reduced operant ethanol self-administration and in 
vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice. Eur J Neurosci. 
2000; 12:4131–4140. [PubMed: 11069609] 

Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, et al. CaMKII triggers the 
diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010; 
67:239–252. [PubMed: 20670832] 

Ostlund SB, Balleine BW. Differential involvement of the basolateral amygdala and mediodorsal 
thalamus in instrumental action selection. J Neurosci. 2008; 28:4398–4405. [PubMed: 18434518] 

Papachristou H, Nederkoorn C, Giesen JC, Jansen A. Cue reactivity during treatment, and not 
impulsivity, predicts an initial lapse after treatment in alcohol use disorders. Addict Behav. 2014; 
39:737–739. [PubMed: 24368002] 

Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol. 
2004; 92:1–9. [PubMed: 15212433] 

Radwanska K, Wrobel E, Korkosz A, Rogowski A, Kostowski W, Bienkowski P, et al. Alcohol relapse 
induced by discrete cues activates components of AP-1 transcription factor and ERK pathway in 
the rat basolateral and central amygdala. Neuropsychopharmacology. 2008; 33:1835–1846. 
[PubMed: 17851539] 

Rich MT, Abbott TB, Chung L, Gulcicek EE, Stone KL, Colangelo CM, et al. Phosphoproteomic 
analysis reveals a novel mechanism of CaMKIIalpha regulation inversely induced by cocaine 
memory extinction versus reconsolidation. J Neurosci. 2016; 36:7613–7627. [PubMed: 27445140] 

Rodrigues SM, Farb CR, Bauer EP, LeDoux JE, Schafe GE. Pavlovian fear conditioning regulates 
Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala 
synapses. J Neurosci. 2004; 24:3281–3288. [PubMed: 15056707] 

Ryabinin AE, Galvan-Rosas A, Bachtell RK, Risinger FO. High alcohol/sucrose consumption during 
dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and 
urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology. 2003; 165:296–
305. [PubMed: 12442202] 

Sadrian B, Wilson DA. Optogenetic stimulation of lateral amygdala input to posterior piriform cortex 
modulates single-unit and ensemble odor processing. Front Neural Circuits. 2015; 9:81. [PubMed: 
26733819] 

Salling MC, Faccidomo S, Hodge CW. Nonselective suppression of operant ethanol and sucrose self-
administration by the mGluR7 positive allosteric modulator AMN082. Pharmacol Biochem Behav. 
2008; 91:14–20. [PubMed: 18593591] 

Salling MC, Faccidomo SP, Li C, Psilos K, Galunas C, Spanos M, et al. Moderate alcohol drinking and 
the amygdala proteome: identification and validation of calcium/calmodulin dependent kinase II 
and AMPA receptor activity as novel molecular mechanisms of the positive reinforcing effects of 
alcohol. Biol Psychiatry. 2016; 79:430–442. [PubMed: 25579851] 

Samson HH, Hodge CW. The role of the mesoaccumbens dopamine system in ethanol reinforcement: 
studies using the techniques of microinjection and voltammetry. Alcohol Alcohol Suppl. 1993; 
2:469–474. [PubMed: 7748341] 

Samson HH, Tolliver GA, Haraguchi M, Hodge CW. Alcohol self-administration: role of mesolimbic 
dopamine. Ann N Y Acad Sci. 1992; 654:242–253. [PubMed: 1352952] 

Schneider F, Habel U, Wagner M, Franke P, Salloum JB, Shah NJ, et al. Subcortical correlates of 
craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001; 158:1075–1083. [PubMed: 
11431229] 

Schroeder JP, Spanos M, Stevenson JR, Besheer J, Salling M, Hodge CW. Cue-induced reinstatement 
of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific 
limbic brain regions: blockade by the mGluR5 antagonist MPEP. Neuropharmacology. 2008; 
55:546–554. [PubMed: 18619984] 

Seo D, Sinha R. The neurobiology of alcohol craving and relapse. Handb Clin Neurol. 2014; 125:355–
368. [PubMed: 25307585] 

Salling et al. Page 18

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sessoms-Sikes S, Honse Y, Lovinger DM, Colbran RJ. CaMKIIalpha enhances the desensitization of 
NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol Cell 
Neurosci. 2005; 29:139–147. [PubMed: 15866054] 

Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for 
neuropsychiatry. Brain Res Brain Res Rev. 2004; 46:71–117. [PubMed: 15297155] 

Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin 
kinase II mutant mice. Science. 1992a; 257:206–211. [PubMed: 1321493] 

Silva AJ, Stevens CF, Tonegawa S, Wang Y. Deficient hippocampal long-term potentiation in alpha-
calcium-calmodulin kinase II mutant mice. Science. 1992b; 257:201–206. [PubMed: 1378648] 

Smith TL, Navratilova E. Increased calcium/calmodulin protein kinase activity in astrocytes 
chronically exposed to ethanol: influences on glutamate transport. Neurosci Lett. 1999; 269:145–
148. [PubMed: 10454153] 

Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-
dependent protein kinase II. J Biol Chem. 2001; 276:3719–3722. [PubMed: 11096120] 

Spanos M, Besheer J, Hodge CW. Increased sensitivity to alcohol induced changes in ERK Map kinase 
phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice. 
Behav Brain Res. 2012; 230:158–166. [PubMed: 22348893] 

Sweatt JD. Neural plasticity and behavior - sixty years of conceptual advances. J Neurochem. 2016; 
139(Suppl 2):179–199.

Trevisan LA, Boutros N, Petrakis IL, Krystal JH. Complications of alcohol withdrawal: 
pathophysiological insights. Alcohol Health Res World. 1998; 22:61–66. [PubMed: 15706735] 

Truchet B, Chaillan FA, Soumireu-Mourat B, Roman FS. Learning and memory of cue-reward 
association meaning by modifications of synaptic efficacy in dentate gyrus and piriform cortex. 
Hippocampus. 2002; 12:600–608. [PubMed: 12440576] 

Tsiang MT, Janak PH. Alcohol seeking in C57BL/6 mice induced by conditioned cues and contexts in 
the extinction-reinstatement model. Alcohol. 2006; 38:81–88. [PubMed: 16839854] 

Wiers CE, Stelzel C, Park SQ, Gawron CK, Ludwig VU, Gutwinski S, et al. Neural correlates of 
alcohol-approach bias in alcohol addiction: the spirit is willing but the flesh is weak for spirits. 
Neuropsychopharmacology. 2014; 39:688–697. official publication of the American College of 
Neuropsychopharmacology. [PubMed: 24060832] 

Wiers CE, Stelzel C, Gladwin TE, Park SQ, Pawelczack S, Gawron CK, et al. Effects of cognitive bias 
modification training on neural alcohol cue reactivity in alcohol dependence. Am J Psychiatry. 
2015; 172:335–343. [PubMed: 25526597] 

Wilson DA, Stevenson RJ. The fundamental role of memory in olfactory perception. Trends Neurosci. 
2003; 26:243–247. [PubMed: 12744840] 

Winder DG, Egli RE, Schramm NL, Matthews RT. Synaptic plasticity in drug reward circuitry. Curr 
Mol Med. 2002; 2:667–676. [PubMed: 12420805] 

Winston NJ, Maro B. Calmodulin-dependent protein kinase II is activated transiently in ethanol-
stimulated mouse oocytes. Dev Biol. 1995; 170:350–352. [PubMed: 7649368] 

Salling et al. Page 19

Pharmacol Biochem Behav. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Experimental procedures. (A) Timeline of experimental procedures showing each phase in 

weeks. (B) Diagram of the self-administration chambers showing 3 behavioral phases: 

baseline self-administration, extinction, and reinstatement. Cues were present during self-

administration and reinstatement test. EtOH was available only during the self-

administration phase.
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Fig. 2. 
(A) Acquisition and extinction alcohol-seeking behavior. Acquisition of alcohol self-

administration (Alcohol Self-Admin) is shown on the left and extinction on the right. Data 

are plotted as mean ( ± SEM) total responses per session on the active and inactive levers. * - 

significantly different from inactive lever control on the same day. (B) Cue-induced 

reinstatement of alcohol-seeking behavior. Data are shown as mean ( ± SEM) total responses 

during the single reinstatement test. Bars show performance of sub-groups that continued on 

extinction training (Ext) or underwent a reinstatement (Reinst) test. Data represent 

performance of n = 7 mice per group. * - significantly different from Ext, t-test.
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Fig. 3. 
Effect of cue-induced reinstatement of alcohol-seeking behavior on CaMKII-T286 activation 

in the nucleus accumbens. (A) pCaMKII-T286 immunoreactivity (IR) was selectively 

increased in the nucleus accumbens shell (AcbSh), but not the core (AcbC) following cue-

induced reinstatement (REINST) as compared to extinction (EXT). (B). Representative 

photomicrographs of the cytological pattern of pCaMKII-T286 IR in the nucleus 

accumbens. Data are plotted as MEAN ± SEM positive cells/mm2. * - significantly different 

from EXT, p < 0.05, t-test. Scale bar represents 250 μm.
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Fig. 4. 
Effect of cue-induced reinstatement of alcohol-seeking behavior on CaMKII-T286 activation 

in the septum and piriform cortex. (A, C) pCaMKII-T286 immunoreactivity (IR) was 

increased in the lateral septum (A) and piriform cortex (C) following cue-induced 

reinstatement as compared to extinction (EXT). (B, D). Representative photomicrographs of 

the cytological pattern of pCaMKII-T286 IR. Data are plotted as MEAN ± SEM positive 

cells/mm2. * - significantly different from EXT, p < 0.05, t-test. Scale bar represents 500 

μm.
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Fig. 5. 
Effect of cue-induced reinstatement of alcohol-seeking behavior on CaMKII-T286 activation 

in the amygdala. (A) pCaMKII-T286 immunoreactivity (IR) was increased selectively in the 

lateral (LA) and basolateral (BLA) following reinstatement (REINST) as compared to 

extinction (EXT). No change was observed in the central amygdala (CeA). (B). 

Representative photomicrographs of the cytological pattern of pCaMKII-T286 IR. Data are 

plotted as MEAN ± SEM positive cells/mm2. * - significantly different from EXT, p < 0.05, 

t-test. Scale bar represents 250 μm.
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Fig. 6. 
Effect of cue-induced reinstatement of alcohol-seeking behavior on CaMKII-T286 activation 

in habenula and midline dorsal thalamic nuclei. (A) pCaMKII-T286 immunoreactivity (IR) 

was increased selectively in the mediodorsal thalamus (MD) following reinstatement 

(REINST) as compared to extinction (EXT). (B). Representative photomicrographs of the 

cytological pattern of pCaMKII-T286 IR. Data are plotted as MEAN ± SEM positive 

cells/mm2. * - significantly different from EXT, p < 0.05, t-test. Scale bar represents 250 

μm.
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Table 1

pCaMKII-T286 IR in specific brain regions following cue-induced reinstatement of alcohol-seeking behavior 

vs. extinction control.

Brain region Extinction Reinstatement

Nucleus accumbens Core 167.0 ± 42.9 207.2 ± 34.8

Shell 153.8 ± 28.5 284.5 ± 23.9a

Dorsal striatum Medial 128.6 ± 48.6 116.6 ± 25.2

Lateral 87.9 ± 45.2 51.9 ± 12.7

Septum Medial 247.7 ± 24.1 233.8 ± 31.7

Lateral 221.9 ± 37.5 324.7 ± 25.8a

Piriform cortex 116.3 ± 19.5 165.1 ± 14.9a

Cingulate cortex CG1 441.6 ± 111.2 396.9 ± 131.4

CG2 287.8 ± 52.2 323.3 ± 16.1

Septohippocampal nucleus 171.6 ± 27.7 191.2 ± 33.3

Amygdala Lateral 149.6 ± 25.6 299.3 ± 58.9a

Basolateral 112.3 ± 26.6 262.6 ± 61.7a

Central 231.1 ± 22.1 263.6 ± 33.8

Habenula Lateral 182.2 ± 34.9 211.8 ± 38.2

Thalamus Paraventricular 219.1 ± 53.5 272.8 ± 39.0

Intermediodorsal 234.0 ± 27.0 271.9 ± 47.3

Mediodorsal 166.9 ± 43.5 229.6 ± 41.8a

Reuniens 195.4 ± 58.5 168.6 ± 42.1

Hypothalamus Ventromedial 195.8 ± 37.9 211.6 ± 20.0

Dorsomedial 193.4 ± 30.4 195.5 ± 41.9

Data represent MEAN ± SEM cells/mm2.

a
Indicates statistically different from Extinction, t-test.
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