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Abstract

Here, we examine key regulatory pathways underlying the transition from compensated 

hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a 

guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances 

from sham-operated HYP and HF hearts were assessed by iTRAQ LC–MS/MS. Metabolites were 

quantified by LC–MS/MS or GC–MS. Transcriptome profiles were obtained using mRNA 

microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left 

ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, 

mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial 

procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate 

extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. 

Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in 
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HF. The correlation of transcript and protein changes in HF was weak (R2 = 0.23), suggesting 

post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic 

bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as 

TCA cycle inhibition. On the basis of these findings, we present a model of cardiac 

decompensation involving impaired nuclear integration of Ca2+ and cyclic nucleotide signals that 

are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α 
transcriptional axis.
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INTRODUCTION

Heart failure (HF) is increasing in prevalence (5.1 million) and incidence (>825 000 new 

cases per year) in the United States as the general population ages.1 It is the most common 

inpatient diagnosis in patients over 65, and alarmingly, the prevalence of HF is projected to 

increase to 8 million people by 2030.2 Despite advances in treatment, mortality is ~50% 

within 5 years of diagnosis, and up to half of these deaths are from sudden cardiac death 

(SCD), while the rest occur after progressive cardiac decompensation.3 Mechanistic 

understanding of HF/SCD has been hindered by a paucity of experimental models with the 

SCD component of the human disease, perhaps contributing to the limited number of new 

therapeutic strategies developed over the past few decades.

We recently developed a novel guinea pig model of cardiac hypertrophy (HYP) and HF that 

employs a combination of ascending aortic constriction and daily β-adrenergic stimulation 

with isoproterenol (ACi model).4 This model exhibits early-acquired long QT syndrome 

during a compensated hypertrophy phase followed by progressive functional decline starting 

2 weeks postconstriction. Interestingly, arrhythmias leading to spontaneous SCD were also 

observed, a particularly relevant finding given that the electrophysiological and Ca2+ 

handling properties of the guinea pig are known to be closer to the human phenotype than 

those of other rodents.5 Guinea pig electrocardiograms sufficiently resemble those of 

humans6 to permit the study of QT alterations and arrhythmias associated with HF, and beat-

to-beat Ca2+ handling is also much more representative of human physiology than that of 

rats or mice.7 A further advantage is that computational models of the guinea pig 
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cardiomyocyte are well-developed, incorporating the major subsystems of the cell, including 

energetics and reactive oxygen species (ROS) metabolism.8

Developing new avenues for rational therapeutic intervention requires a comprehensive 

understanding of how the heart is remodeled during the progression from HYP to HF. Over 

the past decade and a half, transcriptomic or microarray profiling has provided information 

about modifications of gene expression that support current paradigms driving HF research, 

including impaired energy metabolism, calcium-handling defects, the role of ROS, and 

extracellular matrix remodeling.9 Proteomic analysis further extends our inferential vision, 

first by providing information about the final gene product, the protein, rather than its 

transcript and also by its capacity to identify and quantify changes in post-translational 

modifications. Until recently, however, the bulk of proteomic HF profiling studies have been 

conducted at either the level of specific organellar subproteomes10 or by characterization of 

the most abundant highly soluble proteins amenable to characterization by two-dimensional 

(2D) gel electrophoresis techniques (see ref 11 for early examples of the >50 studies of HF 

across etiologies and species). Indeed, striated muscle has presented unique challenges to 

global proteomic characterization, as the top 100 most abundant proteins typically account 

for greater than 65% of total protein in shotgun experiments,12 thereby limiting proteome 

depth. Nevertheless, over the past few years improvements in mass spectrometry 

instrumentation, sample preparation, and evolving best practices for robust protein 

quantitation and statistical analysis have made deep, global-scale quantitative cardiac 

proteomics tractable.13

Cardiac metabolomics, the high-throughput identification and quantification of biological 

metabolites of different classes, is another tool for examining changes in cardiac metabolism 

in HF, a topic of much interest over the past 50 years.14 As in the field of proteomics, 

advances in both hardware and software have led to increased analyte coverage; therefore, it 

is now feasible to examine multiple metabolic processes simultaneously and in considerable 

detail. This provides an orthogonal view into defects associated with HF progression, since 

metabolites, lipids, and hormones collectively comprise the substrates, products, and ligands 

on which the proteome acts.

The key objective in this study is to ascertain what molecular processes distinguish 

hypertrophy with preserved contractile function from a failing heart with increased 

susceptibility to SCD. Here we integrate three omic technologies to map the transition from 

compensated hypertrophy to decompensation in a model that provides a reasonable 

simulacrum of human HF. We have quantified over 17 000 transcripts, 3000 proteins, and 

275 lipids/metabolites. The three independent sources of information provided unique 

insights into the key pathways contributing to the pathological transition. In several 

instances, a plausible causal connection between changes in the proteome and metabolome 

could be established. Finally, an overall working hypothesis about the critical gene 

regulatory modules involved in HF progression has been developed.
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METHODS

Guinea Pig Models of Heart Failure and Sudden Cardiac Death

Heart failure and sudden cardiac death were elicited in guinea pigs as described previously.4 

Details are provided in panel 1 in the Supporting Information.

Quantitative Proteomics, Transcriptomics, and Metabolomics

Quantitative proteomics was performed using gel-free 2D LC–MS/MS employing isobaric 

tags for relative and absolute quantification (iTRAQ). The transcriptome was evaluated by 

microarray analysis (Affymetrix). Metabolomic studies were performed on a contract basis 

by Metabolon Inc. Detailed descriptions of instrumentation and methodology are provided 

in the Supporting Information.

Project Design and Overview

The scope and design of the project are outlined in Figure 1. We sought to examine changes 

in transcripts, proteins, and metabolites over the course of cardiac remodeling from 

hypertrophy (HYP) to heart failure (HF). Transcriptome and metabolome determinations 

were made with six biological replicates per experimental group, while quantitative 

proteome profiling was performed by comparing sham, HYP, and HF animals in three 

independent multiplexed experiments. The statistical analyses differed in accordance with 

prevailing conventions. Microarray analysis was performed according to the methods of 

Irizarry et al.15 A linear model empirical Bayesian (EB)-modified Student’s paired two-

sample t test16 was applied for rigorous determination of the statistical significance of 

differential protein levels. Finally, as elements of the metabolome were quantified 

individually and on multiple platforms, differential metabolite levels were determined by a 

Welch’s two-sample t test. The effect of multiple-hypothesis testing on the differential 

regulation false-discovery rate (FDR) was documented using the q-value method of Storey.17 

Detailed descriptions of data processing and statistical methodology are provided in panel 1 

in the Supporting Information.

Bioinformatic Analysis

Pathway analysis and inference of upstream regulators were performed using QIAGEN’s 

Ingenuity Pathways Analysis (IPA; QIAGEN, Redwood City, www.qiagen.com/ingenuity).
18 Details are provided in panel 1 in the Supporting Information.

Animal Care

This study conformed to the Guide for the Care and Use of Laboratory Animals published 

by the National Institutes of Health (NIH Publication No. 85-23, revised 1996) and was 

approved by the Johns Hopkins Animal Care and Use Committee.

Methodological References

The Supporting Information contains an extensive bibliography of methodological 

references.
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RESULTS

Proteome Data Set

Comparison of sham, HYP, and HF hearts was conducted by means of three independent 

multiplexed (4-plex) experiments (Figure 2). Each experiment identified over 3200 proteins. 

Because of stochastic data-dependent acquisition of peptides in LC–MS/MS, not all of the 

proteins identified with high confidence were observed in all three experiments. Therefore, 

statistical methods capable of handling instances of missing data were chosen. Specifically, 

by applying a linear model empirical Bayesian analysis,16a we were able to quantify and 

statistically evaluate proteins common to all three experiments (2429) as well as those 

present in at least two of the three experiments (675), i.e., 3104 of the 4150 proteins 

identified in the combined analyses (Figure 2A). Application of the median-sweep algorithm 

of Herbrich et al.,19 provided robust (log-transformed and median-summarized) estimation 

of protein abundance across iTRAQ channels within each multiplex, properly normalized for 

incidental differences in protein concentration among samples. Principal component analysis 

indicated that the protein levels clustered on the basis of experimental groups (sham, HYP, 

HF) rather than any other technical factor (Figure 2B) and therefore could be compared 

across experimental groups, as visualized in a volcano plot (Figure 2C). The plot reveals that 

for comparison of HF and sham groups, statistically significant protein changes (EB-

modified p values <0.05) were among the subset of log2(fold change) values less than −0.22 

or greater than 0.22. Changes in protein levels between the HF and sham groups, as 

determined by iTRAQ, exhibited a strong correlation with changes determined by 

immunoblot analysis (R2 = 0.97; Figure 2D). The slope of the best-fit line was 1.46, 

indicating that the protein abundance ratios (HF vs sham) obtained by chemiluminescence 

and X-ray film were compressed relative to spectrally derived protein abundance ratios.

Overview of Protein and Transcript Changes in Heart Failure Progression

In addition to the 3104 proteins, 17 244 transcripts were quantified, permitting assessment of 

differential regulation between the sham, HYP, and HF groups. Complete tables of protein 

and transcript quantification are presented in panels 2 and 3, respectively, in the Supporting 

Information. One of the primary objectives of this study is to map changes in proteins and 

transcripts over the transition from HYP to HF. Accordingly, each was mapped to a 

corresponding gene and classified according to regulation exclusively in HYP, in both HYP 

and HF, and exclusively in HF (Figure 3A–F). The names of the top genes represented in 

each group were tabulated (Figure 3 right).

Ion Channels and Transporters

The acquired long QT and arrhythmogenic phenotype of the model4 motivated us to analyze 

the changes in ion channels and transporters in HYP and HF hearts (Table 1). Low-copy-

number transmembrane proteins were under-represented in the proteome, as expected; 

however, several important ion channel subunits were identified. Significant changes were 

noted for the cardiac L-type Ca2+ channel α subunit (CACNA1C; decreased 21% in HF) and 

the background inward rectifier potassium channel Kir2.1 (KCNJ2; decreased 18% in HYP 

and 36% in HF). Three isoforms of chloride intracellular channels, CLIC1, CLIC2, and 

CLIC4, increased in HF (by 48%, 28%, and 48%, respectively). Altered levels of Na+/K+ 
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ATPase subunits were also observed: the α1 and β1 subunits (ATP1A1 and ATP1B1) were 

significantly decreased in HF, while the α2 subunit (ATP1A2) was increased in HYP (33%) 

and HF (129%). Consistent with the failing phenotype, the cardiac sarcoplasmic reticulum 

Ca2+ATPase (SERCA2a; ATP2A2) and ryanodine receptor (RYR2) were both significantly 

decreased by ~20%, while phospholamban (PLN) was down 49% in HF.

Analysis of the transcriptome provided broad coverage of ion channel/transporter subunit 

mRNA expression (Table 2). Correlation with the proteomic changes was evident in some 

cases. For example, Clic channel messages (Clic2 and Clic4) were increased in HF and 

Kcnj2 was significantly down-regulated. Moreover, the isoform shift in Na+/K+ ATPase 

subunits was recapitulated. The mRNAs for the repolarizing K+ channels Kcnq1 and Kcnh1, 

known to be altered in human heart failure,20 were also decreased in HF relative to sham and 

HYP animals, respectively. Trpc6 message was markedly increased, in accord with other HF 

animal models,21 and SERCA2a (Atp2a2) was decreased. In HYP, gap junctional channel 

mRNAs C×43 (Gja1) and C×31 β5 (Gjb5) increased significantly while C×37 (Gja4) 

decreased slightly. HF was marked by decreases in C×37 and C×45 (Gjc1).

Several of the most pronounced changes observed were unexpected. For example, Hcn1, a 

hyperpolarization-activated cyclic nucleotide-gated potassium channel normally associated 

with the pacemaker cells of the heart or brain, stood out as the most upregulated channel in 

HYP and HF (>7-fold in HF) despite the ventricular origin of the samples. Another typical 

atrial pacemaker channel, the acetylcholine G-protein-regulated K+ channel, KAch (Kcnj5; 

aka GIRK4), was the second most downregulated ion channel in HF (decreased 1.8-fold). 

Although these changes could potentially contribute to the prolonged QT interval and 

increased the incidence of arrhythmias in the ACi group,4 other repolarizing voltage-gated K
+ channel subunits were increased (e.g., Kcna3, Kcne3; Table 2). Hence, a detailed 

experimental assessment of each channel subtype’s individual contribution to repolarization 

defects in HF will be required.

Pathways Inferred from Analysis of the Proteome or Transcriptome

The pathways and networks implicated by genes changing in HYP, HF, or both were 

assessed using Ingenuity Pathways (Figure 4). Details regarding the interpretation of this 

figure are presented in the figure legend. Figure 4 shows the pathways implicated in HYP 

and HF (Figure 4A) and those implicated in HF only (Figure 4B). Briefly, proteins changing 

in HYP and HF (p < 0.05; Figure 4A) predominantly were associated with catabolic 

pathways, including degradation of the humoral factors adrenaline, noradrenalin, and 

serotonin. Metabolism of retinoic acid (RA) and retinoic acid receptor signaling, key 

determinants of early cardiac development, were implicated, as were enzymes responsible 

for amino acid and nucleotide metabolism.

By virtue of its depth and sensitivity, microarray analysis showed changes in many signaling 

pathways in HYP and HF (Figure 4A). Fibrotic and inflammatory pathways such IL-17 

signaling and prostanoid synthesis were implicated. Notably, acute phase response signaling 

was strongly inferred to be activated. As in the proteome, pathways related to retinoic acid 

signaling were likewise implicated by transcript changes, particularly through the retinoid X 

receptors. Many of the pathways, including the acute phase response, IL-17, IGF-1, and 
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NRF2-mediated stress response pathways and others, share common elements, in particular, 

branches of the MAP kinase family pathway (ERK, p38, or JNK signaling). Structural 

remodeling was evident in the form of metalloprotease pathways and signaling through focal 

adhesion kinase (FAK).

The number and extent of the changes in protein levels were greater in HF than in HYP 

(Figure 4B). Thus, analysis of proteins and transcripts regulated in the HF-Only group 

implicated several prominent pathways that were significantly altered (p < 0.05), and in 

many cases the direction of the regulation could be determined (z score). Broadly 

interpreted, the pathway profiles could be classified as spanning from the extracellular 

matrix/interstitium to the ventricular myocyte. For example, extracellular signaling pathways 

figured prominently in the transcriptome, including matrix remodeling pathways (fibrosis) 

and immune cell/inflammatory responses (IL8, NF-κB, acute phase and complement 

responses), including those normally involved in viral defense, such as viral endocytotic 

pathways. Endothelin, epidermal growth factor, α-adrenergic, Gαq, and phospholipase C 

signaling were inferred to be activated, as were a host of inflammatory responses.

In contrast, the proteome, likely dominated by the cardiomyocyte protein abundance, 

revealed a host of down-regulated pathways (Figure 4B); a number of these were previously 

associated with HF, including inhibition of calcium cycling, β-adrenergic/cyclic-AMP/PKA, 

and NOS signaling. Protein networks regulated by PGC1α/PPAR/RXR were strongly 

inhibited in the proteome, including fatty acid transport and metabolism and mitochondrial 

dysfunction. Notably, the primary mitochondrial transcription/replication regulator, TFAM, 

was the second most downregulated protein in the HF-only group (decreased 56%; panel 2 

in the Supporting Information). Interestingly, pathways related to cardiac hypertrophic 

signaling were decreased in the HF-only group relative to sham-operated controls, despite 

evident hypertrophy and substantial elevation of atrial natriuretic peptide (NPPA) (increased 

55% in HF), possibly reffecting the transition from a phase of active hypertrophic growth to 

one of cardiac decompensation.

Activated processes inferred from the proteome were fewer. As in the transcriptome 

analysis, the implication was that these could be attributed to the extramyocyte 

compartment, including a strong acute phase immune response, integrin signaling, the 

coagulation system, RhoA signaling, and epithelial adherens junction remodeling (Figure 

4B).

Upstream Signaling Deduced from the Proteome or Transcriptome

In addition to pathway analysis, which is essentially a form of ontology analysis, inferences 

can also be made regarding putative upstream regulators or signaling ligands by comparing 

the directionality of transcript and protein changes in the omic data sets to the IPA database 

of microarray studies in assorted cell lines in response to specific signaling agonists or gene 

manipulations. Upstream regulator or causal network analysis18 provides a determination of 

regulatory factor involvement (p value) as well as projected activation or inhibition (z score) 

(Figure 5). From proteome changes in HYP and HF (Figure 5A), significant activation of 

TGFβ and interferon γ (IFNG) signaling was indicated. The extensiveness of the inferred 

network can be appreciated by a graphical depiction of the levels of TGFβ-responsive 
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proteins (Figure 5A). Specifically, the observation that eight out of 11 TGFβ-responsive 

proteins were significantly upregulated in HYP and HF is sufficient to make a strong 

inference (z score) that TGFβ is activated in this model. Other growth factor programs were 

implicated by analysis of the proteome, including connective tissue growth factor (CTGF), 

insulin-like growth factor (IGF1), and the neurotrophic growth factors NTF4 and BDNF, 

though there was insufficient information in either our data set or the IPA database to predict 

their directionality in the HYP and HF subsets. Mild inhibition of angiotensinogen-related 

signaling (AGT) was inferred from the proteome; however, AGT as a positive upstream 

regulator was strongly indicated in the transcriptome, highlighting one example of 

transcriptome–proteome disparity.

In addition to the positive correlation with renin-angiotensin as an upstream regulator, the 

transcriptome changes in HYP and HF (Figure 5A) were consistent with activation of 

hallmark hypertrophy-associated programs, including TGFβ1–3 and endothelin 1 (EDN1), 

and the inflammatory response pathways TNF, IFNG, IL1-B, IL5, and possibly IL6. Growth 

factor programs predicted to be inhibited in HYP and HF include FAS, CCL2, IL17A, and 

FGF1.

Proteins significantly regulated in HF only (Figure 5B), as in HYP and HF, also implicate 

TGFβ. Inflammatory programs include predicted activation of TNF, IFNG, IL1B, IL4, IL6, 

IL11, and IL15. Predicted inhibited signals include BDNF, IGF1, IGFR1, and CXCl12, 

among others. Signaling programs from HF-only changes in the transcriptome paralleled 

and extended those of the proteome, again heavily featuring upregulated pathways. 

Specifically, the panel of inferred interleukin signals included those aforementioned but also 

IL2, IL10, and IL13. While there was overall concordance between the proteome- and 

transcriptome-derived predictions, there were also examples of divergence, notably FAS, 

CXCL12, IGF1, and Leptin (LEP).

Upstream Transcription Factors Deduced from the Proteome or Transcriptome

Similar upstream analysis can be applied to reveal upstream transcriptional programs whose 

activation or inhibition would yield the resultant transcriptome and proteome changes in the 

HYP and HF or HF-only groups (Figure 6). Protein changes in HYP and HF (Figure 6A) 

implicated many transcription programs that were either directly cAMP-responsive (ATF2 

and ATF4) or transcriptional binding partners of cAMP-responsive proteins (HIF1A, 

CEBPB, CEBPG, and DDIT3). Consistent with the pathway analysis, the retinoic acid-

dependent transcription factors RXRA and RARG were implicated. Other notable 

transcription factors implicated in both HYP and HF included MEF2C, FOS, and HMGA1.

Changes in the transcriptome in HYP and HF (Figure 6A) likewise implicated cAMP- and 

RA-dependent programs (e.g., CREB1, CEBPA and RXRA, PPARD, PPARG). In addition, 

TGFβ-responsive gene regulation is predicted through SMADs 2, 3, and 4. MYC-, 

NFKB1A-, and CTNNB1-dependent transcription is also inferred. Among the most strongly 

inhibited programs are those associated with the KLF family, KLF2 and KLF15. In contrast, 

KLF4 action is predicted to be activated.
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The upstream regulators driving the proteins whose levels change in the HF-Only group 

(Figure 6B) implicate many of the same pathways identified in the HYP and HF group. The 

major PGC1α axis controlling mitochondrial fatty acid metabolism and mitochondrial gene 

expression, including PPARGC1A, PPARGC1B, PPARA, PPARD, and PPARG, were 

inhibited, as was the orphan estrogen receptor, ESRRA, which also participates in 

mitochondrial biogenesis. Notably, MEF2C, HNF4A, MYC, and TP53,22 which are 

implicated in mitochondrial gene expression and/or mitochondrial integrity, were also 

inferred to be inhibited on the basis of proteomic analysis. The most strongly activated 

program was XBP1, which is responsible for controlling genes of the unfolded protein 

response (UPR). Other activated programs include NFKBIA, an inhibitor of NFKB, NRIP1, 

a broad specificity transcriptional corepressor of metabolic genes,23 and ING1, an inhibitor 

of growth factor 1. Finally, transcriptome changes strongly implicated activation of the 

CTNNB1, SP1, and NOTCH3 pathways.

The strong indication that PGC1α-regulated mitochondrial metabolic and antioxidant 

enzymes (e.g., TXNRD2, SOD2, PRDX3, and PRDX5) were decreased in HF motivated us 

to further examine whether defective signaling through the crucial upstream regulators of 

PGC1α, CREB1/CREBBP, could partly explain the progressive loss of these enzymes 

(Figure 7). Although a few CREB/CREBBP-associated proteins were, in fact, increased 

rather than decreased in HF, remarkably, many of the key proteins involved in the altered 

acute ion/redox imbalance observed in the model could be traced back to impaired CREB 

signaling. This of course includes PGC1α itself and its downstream protein network. 

Moreover, the known dependence of BDNF expression24 and PGC1α on CREB25 further 

focuses attention on CRE-modulated transcriptional coupling (Figure 7).

Characterization of Transcriptome/Proteome Concordance and Divergence

Although there was noticeable overlap between the proteome-and transcriptome-derived 

pathway and upstream regulator analyses, there was also a degree of divergence. This 

prompted us to compare the magnitudes of transcript and protein changes in HF (Figure 8). 

For 2722 genes to which proteins and transcripts could be easily mapped, their log2(fold 

change) values are plotted in Figure 8A. The immediately striking observation is the weak 

correlation between the transcript and protein fold changes (R2 = 0.23). Allowing for 

differences in platforms and comparing proteins and transcripts on a rank basis did not 

improve the correlation. We found that for one-quarter of genes, the difference between the 

fold changes for transcript and protein exceeded 20% (not shown). Finally, perhaps the 

simplest comparison of concordance was to tally the number of entries for transcripts and 

proteins for which the directionality of the fold changes concurred or diverged (Figure 8B). 

Two-thirds of transcript/protein pairs showed concordant fold changes, both positive and 

negative. For the remaining third of the entries, the directions of the fold changes for the 

transcripts and proteins diverged. A certain level of discordance is to be expected, 

particularly for those genes whose regulation in HF is marginal and therefore not statistically 

significant. However, there are others for which the differences between protein and 

transcript levels are more dramatic. In these cases, divergence may be a source of novel 

mechanistic insight and point to genes subject to post-transcriptional regulation. Pathway 
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analysis and inferred microRNA activity that might explain the divergences are found in 

panels 18–22 in the Supporting Information.

Overview of Metabolome Changes in the Heart

Metabolomic analysis identified 288 analytes. Of these, 275 could be reasonably quantified, 

whereas 13 low-abundance metabolites were characterized by missing signals in >50% of 

samples. The metabolites spanned multiple classes from lipids, amino acids, and 

carbohydrates to nucleotides, vitamins, and cofactors. Data are summarized in panel 4 in the 

Supporting Information.

The metabolite profile of the HF group was most distinctive compared with the sham group, 

according to partial least-squares discriminant analysis (Figure 9A). The magnitudes of 

metabolite changes tended to be greater in HF than in HYP and in many cases changed in a 

different direction. Examples include amino acids, which trended higher in HYP but lower 

than sham in the HF group. By comparison, long-chain fatty acid (LCFA) levels trended 

lower in HYP but were elevated in HF (panel 4 in the Supporting Information).

To determine which metabolic pathways were most impacted in HF, the matrix of integrated 

peak intensities for metabolites was subjected to metabolite set enrichment analysis 

(MSEA).26 Implicated pathways are shown in Figure 9C. Pathways at the top of the list are 

likely to be most profoundly influenced in HF. MSEA showed that lipid pathways were also 

among the most dynamically regulated species in the data set. Specifically, arachidonic acid 

metabolism, branched-chain fatty acid (FA) metabolism, β-oxidation of very long chain FAs, 

steroid biosynthesis, and phospholipid biosynthesis were implicated. Select amino acid 

pathways were also heavily implicated in HF, among them taurine/hypotaurine, D-

arginine/D-ornithine, glycine/serine/threonine, and glutamate as well as the sulfur-

containing amino acids cysteine and methionine. A full table of enriched pathways is found 

in panel 23 in the Supporting Information.

Beyond changes in metabolite concentration and their relative over-representation, directed 

metabolic pathways are also influenced by the position of the metabolite within a pathway. 

For instance, large changes in upstream metabolites often, but not always, tend to impact the 

flux through those pathways. Other metabolites intersect several upstream or downstream 

paths and likewise may be influential. Metabolites at the end of defined pathways may reveal 

less information about a pathway, particularly if they are downstream of multiple branches. 

This is the basis of topological analysis,27 which is assessed in Figure 9D. The y axis, 

−log(p), encapsulates the main findings of Figure 9C, i.e., the prominence of arachidonic, 

taurine, and glycerophosphate metabolism. The x axis provides an index of likely pathway 

impact by taking metabolite topology into account. The analysis provides a rational basis for 

further investigation and hypothesis prioritization. Taurine/hypotaurine and 

glycerophospholipid metabolism pathways are characterized by both metabolite enrichment 

and potentially high impact on the basis of topology. Linoleic metabolism, by comparison, 

may have fewer metabolites regulated in HF, but the impact of that regulation may be 

substantial. Conversely, biotin metabolism is highly enriched on the basis of elevated lysine 

levels, yet lysine is downstream of biotin in the metabolic pathway (actually the terminal 

metabolite) and provides little information about biotin levels without ancillary information. 
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Pathways of broad interest to the cardiac community, such as glutathione, FA, and TCA 

metabolism, land near the middle of this plot (see panel 24 in the Supporting Information for 

a tabular representation of Figure 9D).

Proteome/Metabolome Integration

At present, metabolite coverage from existing platforms lags the coverage from more mature 

transcriptomic and proteomic pipelines. As a result, metabolomic pathway analyses are 

susceptible to biases, particularly toward more abundant analytes and against recalcitrant 

(volatile, labile) compounds. To strengthen inference from metabolomic studies, we 

performed integrated pathway analysis, which takes changes in both protein and metabolite 

levels in HF into account, using pathways in the KEGG database of reference pathways 

(Figure 10A). Metabolic pathways implicated by both changes in protein and metabolite 

levels are prioritized, while lower priority is assigned to pathways implicated by relatively 

few total metabolites and proteins or by analytes found solely in either the proteome or 

metabolome. It should be noted, however, that though the proteome coverage extends to 

>3000 proteins, it is by no means complete and therefore is subject to its own biases.

Integrated analysis reaffirmed the prominence of the TCA cycle, propanoate, FA, and 

glutathione metabolism on the basis of both protein and metabolite enrichment and 

topological considerations. A few pathways that scored well in Figure 9C, including the 

arachidonic acid and taurine/hypotaurine pathways, are not prioritized in Figure 10A. This is 

likely because although arachidonic acid was significantly downregulated in HF, coverage of 

enzymes responsible for arachidonic acid was sparse in the proteome. Other pathways with 

middling scores in Figure 9C, such as valine/leucine/isoleucine metabolism and arginine/

proline metabolism, figure more prominently in Figure 10A because of buttressing 

information from the proteome. The complete list of pathways, p values, and topological 

scores is provided in panel 25 in the Supporting Information.

Fatty Acid Metabolism

In Figure 10A, FA metabolism distinguishes itself both for its enrichment of protein and 

metabolites and its high topology score, whose basis is illustrated in Figure 10B. First, 

metabolome analysis showed that several LCFAs were statistically significantly elevated in 

HF relative to HYP, while levels of the long-chain acylcarnitines trended down in HF. Figure 

10B indicates how these observations dovetail with proteomic data. First, acyl-CoA ligase, 

ACSL3, which is responsible for activation of fatty acids to acyl-CoA intermediates, is 

significantly downregulated in HF. Moreover, the carnitine palmitoyl transferases, CPT1B 

and CPT1C, which are responsible for the conversion of fatty-acyl-CoAs to fatty-

acylcarnitines are likewise downregulated by 44% and 24%, respectively. Acylcarnitine 

transport into the mitochondria is also likely compromised, as levels of the carnitine/

acylcarnitine translocase (CACT) declined significantly in HF (19%). Once inside the 

mitochondria, reconversion of the acylcarnitines to acyl-CoA is effectuated by CPT2, whose 

levels were marginally lower. However, many of the enzymes responsible for β-oxidation of 

LCFAs (EHHADH, HADHA, and HADHB) were downregulated. Taken together, one can 

see that bottlenecks of FA activation (ASCL3/CPT1B) and transport (CACT) could account 

for the observed increase in the ratio of FA to fatty-acylcarnitines.
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TCA Cycle and Anaplerosis

The integrated analysis in Figure 10A revealed that the TCA cycle species were highly 

enriched and had the highest topology score in the analysis. Figure 10C indicates the basis 

for this robust inference. Three out of eight of the enzyme complexes responsible for the 

TCA reactions harbored a subunit that was significantly downregulated in HF (IDH3G, 

SUCLG1, and SDHC; p < 0.05). Moreover, ACO2 (responsible for two more reactions) and 

α-ketoglutarate dehydrogenase subunit, DHTKD1, were substantially downregulated (p = 

0.07 and 0.06, respectively). Supporting metabolomic evidence shows that citrate, 2-

methylcitrate, and acetyl-CoA are elevated in HF relative to the sham group (1.70-, 2.03-, 

and 1.29-fold, respectively), suggestive of inhibition in the upper span of the TCA cycle. 

Citrate participates in product inhibition of citrate synthase, and acetyl-CoA is a feedback 

inhibitor of pyruvate dehydrogenase. Interestingly, 2-methylcitrate, a high-potency inhibitor 

of citrate synthase, aconitase, and isocitrate dehydrogenase,28 was also significantly 

increased. Finally, two out of three of the enzymes that replenish TCA cycle intermediates 

from amino acid, nucleotide, and odd-chain fatty acid metabolism (anaplerotic enzymes), 

glutamate dehydrogenase (GLUD1) and methylmalonyl-CoA mutase (MUT), were also 

statistically downregulated.

DISCUSSION

Despite advances in HF treatment, little progress has been made with respect to prevention 

of HF-associated sudden cardiac death (SCD),29 apart from defibrillator implantation, and 

the relatively few treatments for cardiac decompensation are palliative, not curative.30 The 

multifactorial nature of HF/SCD requires an approach that takes into consideration the 

integrative physiology of the organ, including both myocyte and nonmyocyte compartments. 

Animal models of HYP and HF have made important contributions to understanding the 

changes in the electrophysiology, excitation–contraction coupling, and signaling 

mechanisms during adaptive muscle growth and cardiac decompensation, yet relatively few 

models display spontaneous arrhythmogenic SCD.31 Moreover, the striking differences in 

the electrophysiology and Ca2+-handling properties of mice compared with larger animals 

and humans raise questions about the translational applicability of potential antiarrhythmic 

strategies based on findings in this species. Because the guinea pig more closely mimics the 

electro-physiological5 and Ca2+-cycling32 properties of humans, the HF/SCD model studied 

here provides a relevant platform for detailed mechanistic investigation.

This study revealed a number of insights informed by the unique outputs of the three 

methods employed. The transcriptome provided the broadest coverage of target remodeling 

in the HYP and HF conditions. In many cases, particularly for fibrosis- and inflammation-

related pathways, the transcriptome and proteome were concordant. However, for roughly 

one-third of the changes, discordance between mRNA and the proteome was observed. The 

proteomic analysis yielded robust information about the impact of key upstream regulatory 

factors on the primary effectors of function/dysfunction in the heart, whereas the 

metabolome both reinforced the inferences made from the protein quantitation data and 

added new information about potentially important inhibitory molecules. The findings 

converged on regulatory nodes impacting the metabolic network that were strongly 
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correlated with the functional decline during HF progression, whereas extramyocyte 

signaling (growth factor and extracellular matrix remodeling) and immunomodulation (acute 

phase response) were prominent from the onset of HYP and persisted through end-stage HF.

Strengths of Each “Ome”

The transcriptome, assessed by microarray or RNA sequencing, is the most mature of the 

omes presented and has, by a long measure, the greatest depth of coverage. This advantage 

is most evident for genes whose protein products are either recalcitrant to proteomic analysis 

(e.g., transmembrane-located) or of low abundance, resulting in their under-representation. 

In view of the interesting HF/SCD phenotype of this model, the transcriptome is particularly 

useful to assess the levels of ion channel transcripts that may provide candidate mechanisms 

for altered excitability, propensity to arrhythmia, and SCD. Early candidates identified 

include the pacemaker channel, Hcn1, and the inward rectifier K+ channels Kir2.1 (Kcnj2) 

or GIRK4 (Kcnj5). Hcn1 mRNA levels were elevated 7-fold in HF over controls and 

increased markedly in going from HYP to HF. When these results are considered together 

with a decrease in background K+ conductance and impaired repolarization reserve (due to 

decreased delayed and inward rectifier currents), it is tempting to speculate that ectopic 

HCN expression could increase the probability of spontaneous ectopic depolarization and 

triggered arrhythmia, such as the premature ventricular beats we frequently observe in the 

ACi model.4 An increase in ventricular HCN1 expression was observed previously in a 

mouse model of pressure-overload-induced hypertrophy;33 however, it was not directly 

linked to increased If current, as double knockout of Hcn2 and Hcn4 was sufficient to 

attenuate the arrhythmias and eliminate all hyperpolarization-activated current in ventricular 

myocytes from the hypertrophied hearts. In another study, increasing ventricular If by 

transgenic overexpression of Hcn2 or a dominant negative Nrsf 2 resulted in an increase in 

arrhythmias during β-adrenergic stimulation that could be suppressed by the HCN channel 

inhibitor ivabradine.34 Interestingly, ivabradine was recently approved to reduce the risk of 

hospitalization for worsening heart failure in patients with stable, symptomatic chronic heart 

failure with left ventricular ejection fraction <35% and bradycardia.35 Whether the 

beneficial effects are solely due to heart rate reduction or to possible effects on ventricular or 

conduction system electrophysiology remains to be investigated. Concerning GIRK4, a 

recent study suggested that these channels are present in ventricular myocytes and can 

hasten repolarization via adenosine- or muscarinic- receptor-mediated activation.36 In 

addition to ion channels and transporters, the transcriptome uniquely provided a direct 

assessment of the message levels of low-abundance growth factors, cytokines, and 

transcription factors.

The proteome presented here quantifies >3000 proteins, comparing favorably with recent 

studies in mice.13c While less comprehensive than the transcriptome, the proteomic 

approach provides valuable information that cannot be obtained otherwise. First, it provides 

an index of the levels of the ultimate executors of cellular function. Second, it permits 

evaluation of post-translational modifications that modulate protein activity. Third, analysis 

of the networks of proteins altered in HF permits one to infer which transcriptional pathways 

were most strongly regulated, even when the changes in the mRNAs of the transcription 

factors themselves were more subtle. The latter could result from the effect of post-
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transcriptional RNA editing/degradation or the requirement for several cis- or trans-

regulatory elements to be active in combination (e.g., joint regulation by CREB and 

PPARγ). Reassuringly, we showed that the protein level biosignatures recapitulate the 

accepted HF canon as well as functional data from our lab, including deficits in Ca2+ 

handling, impaired repolarization, energetics, redox modulation, and extracellular 

remodeling in the failing hearts. Notwithstanding differences in species, proteomic 

platforms, methods of protein quantitation, and subsequent statistical analysis, our results in 

the guinea pig model appear to be consistent with a recent proteomic analysis of pressure-

overload-induced hypertrophy in mouse hearts (961 proteins),13b particularly with respect to 

downregulation of many enzymes of the TCA cycle and FA metabolism, including proteins 

like the highly downregulated CPT1B. CPT1B is particularly notable since modeling of 

upstream regulators showed that it is subject to regulation by up to 10 of 12 transcriptional 

programs likely inhibited in HF, including PGC1a, MEF2C, and KLF15, among others.

Notably, a number of proteins not previously associated with heart failure were markedly 

and significantly changed in our HF model. Some of the most downregulated proteins have 

unknown or poorly characterized functions, especially in the heart, including DIRAS2, a ras 

GTPase family member, CHTOP, which may be involved in mRNA transport and estrogen 

signaling, calmegin (CLGN), an endoplasmic reticulum chaperone involved in 

spermatogenesis, and the serine/threonine-protein kinase SBK2, of unknown function.

Integration of the Metabolomic Data

The metabolome consisted of 288 metabolites spanning the lipids, carbohydrates, and 

nucleotides and is therefore similar in scope to recently published HF metabolomes using 

mouse models.37 Work over the last several years has suggested that metabolic dysfunction 

associated with the onset of heart failure may be a causal factor in the transition rather than 

an epiphenomenon.38 If so, then the key to developing new therapies lies in establishing the 

landscape of cardiac metabolism and the state of the enzymes that govern them. A key 

finding of this study is that the levels of LCFA are dramatically increased upon transition to 

HF. This has been noted previously in recent metabolomic analyses of mouse models of 

heart failure.37b Interestingly, fatty acid accumulation is also a hallmark of the diabetic heart, 

where the mechanism is believed to involve hyperactivation of the PGC1α/PPAR axis that 

increases the levels of plasma membrane fatty acid transporters, leading to lipid 

accumulation, notwithstanding activation of fatty acid oxidation (see ref 39 for review). In 

our guinea pig model of pressure overload and persistent adrenergic stimulation, though 

fatty acids also accumulate, low levels of acylcarnitines and proteins associated with 

mitochondrial FA activation, transport, and oxidation indicate that the PGC1α/PPAR axis is 

downregulated. The lipid accumulation, therefore, likely arises from a choke point at the 

level of carnitine palmitoyl transferase (CPT), the enzyme responsible for the conversion of 

acyl-CoAs into acylcarnitines for transport from the cytosol to the mitochondria; CPT1B 

was among the most down regulated proteins in the HF proteome.

With respect to glucose metabolism, dynamic changes were noted at the proteome level. 

Cardiac forms of glycolytic enzymes declined, while ratios of brain isoforms increased. 

Despite these changes, which might suggest a priming of the heart for higher glycolytic flux, 
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our metabolomics snapshot reveals no significant changes in levels of glycolytic 

intermediates in heart failure relative to control hearts. Moreover, oxidative glycolytic flux 

ultimately depends on the downstream conversion of pyruvate to acetyl-CoA and TCA cycle 

flux. Here, we report that in heart failure, every single enzyme complex of the TCA cycle 

trended downward, three of which were substantially downregulated and statistically 

significant. Moreover, two of three TCA-cycle-replenishing anaplerotic enzymes were, 

likewise, downregulated. Proteomic data alone would, therefore, suggest an impingement on 

TCA cycle flux in HF. The metabolomic data further show that the problem is compounded 

by the accumulation of citrate, likely due to oxidatively damaged aconitase. Citrate is a 

potent feedback inhibitor two enzymes, citrate synthase from the TCA cycle and cytosolic 

phosphofructokinase, a rate-determining step in glycolysis.

We also noted the accumulation of 2-methylcitrate, which is a potent inhibitor of three TCA 

cycle enzymes, namely, citrate synthase, aconitase, and isocitrate dehydrogenase.28 In 

humans, it is rarely detected, except in the case of inborn errors of metabolism associated 

with profound cardiomyopathy, including methylmalonyl-CoA and propionyl-CoA 

acidemia.40 Specifically, 2-methylcitrate is produced from the reaction of oxaloacetate with 

elevated propionyl-CoA40b that arises from defects in odd-chain fatty acid (OCFA), amino 

acid, or vitamin B12 metabolism.41 Our proteome shows that the enzyme common to each of 

these processes, methylmalonyl-CoA mutase (MUT), declined 22%, while integrated 

proteome/metabolome pathway analysis implicated altered propionyl-CoA metabolism in 

HF. Taken together, these results suggest a bottleneck for anaplerosis via impaired OCFA or 

amino acid metabolism that favors the accumulation of propionyl-CoA and the TCA cycle 

toxin 2-methylcitrate. It remains to be determined whether elevated 2-methylcitrate or 

propionyl-CoA is detectable in human heart failure.

Limitations of the Model, Methods, and Analyses

The primary utility of the guinea pig model of HF/SCD is that it is one of very few small-

animal models of heart failure that exhibit the hallmarks of the progression of systolic heart 

failure together with clinically relevant sudden cardiac death, and it will likely provide 

insight into human heart failure arising from hypertensive heart disease or aortic stenosis. 

However, the combination of aortic constriction and β-adrenergic stimulation may not be 

representative of other forms of heart failure arising from different etiologies, which would 

include ischemic, idiopathic, familial, and chemotherapy-induced cardiomyopathies. With 

respect to proteomic methodology, we have used the iTRAQ shotgun strategy, in which 

multiplexing has the advantage of limiting technical variability. Nevertheless, iTRAQ 

quantitation is subject to well-documented compression of fold changes stemming from 

factors such as peptide coisolation. Coisolation interference was minimal in our study 

because of extensive front-end peptide fractionation by basic reversed-phase HPLC 

combined with a concatenated pooling strategy. Moreover, median summarization of the 

protein abundances in each iTRAQ channel minimizes the influence of outlier spectra on 

fold-change ratios. Finally, the analyses presented implicate certain pathways, signals, or 

transcriptional programs on the basis of Fisher’s exact test, which yields a p value. The 

reader is reminded that the magnitude the p value is not a measure of biological significance 
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or importance, but simply a reffection of the likelihood that coordinate regulation in this 

study occurred by chance.

Concluding Remarks and Model of Excitation–Transcription Coupling in HF Progression

In the context of known hallmarks of heart failure, a broad integrated picture of crosstalk 

between acute inotropic/redox impairment and chronic cardiac remodeling during 

decompensation emerges from the pathway analyses described herein and encapsulated in 

Figure 7. This integrative view allows us to generate a hypothesis to explain the systems 

pathobiology of HF. In this scheme (Figure 11), desensitization of β-adrenergic signaling/

cyclic AMP generation contributes to blunted Ca2+ transients, Na+ overload, and insufficient 

mitochondrial Ca2+ signal under conditions of high metabolic demand. Loss of Ca2+-

dependent dehydrogenase regulation, along with other defects in the Krebs cycle, impairs 

the ability of mitochondria to maintain the pyridine nucleotides NADH and NADPH in the 

reduced state, limiting maximal ATP production and ROS scavenging, respectively. Chronic 

impairment of cyclic AMP (and possibly CaM kinase) signaling to the nucleus through 

CREB, an essential driver of PGC1α and a number of other Ca2+ regulatory and antioxidant 

proteins that are decreased in HF, contributes to a cascading depression of mitochondrial 

protein expression and biogenesis as PPAR-, NRF1- and NRF2-regulated genes are 

suppressed. Parallel transcriptional pathways linked to activation of mitochondrial 

metabolism are also suppressed, including BDNF, MEF2C, and MYC, whose expression has 

been shown to be regulated by CREB and/or PPAR, which would further contribute to a 

vicious circle leading to progressive metabolic, redox, and Ca2+-handling failures.

The unifying feature of this model is that it incorporates many of the accepted mechanisms 

that have been implicated in hypertrophy and heart failure in the past but ties them together 

in a new way. In an attempt to maintain cardiac output, early adaptation to stress likely 

involves a parallel increase in cell growth, metabolic capacity, and catecholamine drive, but 

ultimately, impaired Ca2+ handling and β-adrenergic desensitization could disrupt 

homeostatic nuclear transcriptional programs, hitting hardest at control nodes for the critical 

metabolic, Ca2+, and redox pathways. Understanding the nature of this off switch and how 

to delay it from flipping should be fertile areas for further research. Moreover, therapeutic 

intervention may depend on whether this process is irreversible or whether the defect can be 

bypassed in novel ways in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design.
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Figure 2. 
Quantitative proteomic data set. (A) Venn analysis of protein identification across three 

independent iTRAQ experiments. Data-dependent sampling of peptides for MS2 spectral 

acquisition yielded distinct but overlapping proteomes. Empirical Bayesian statistical 

methods can accommodate sampling-related absence and, therefore, analysis of relative 

abundance, provided that the protein is observed in two or more independent experiments 

(denoted with *). (B) Principal component analysis of protein abundances across the data 

set. Component 1 differentiates distinct global protein abundance biosignatures of sham, 

HYP, and HF hearts. (C) Volcano plot providing a visual representation of differential 

protein regulation in HF, for which a detailed table is found in panel 2 in the Supporting 

Information. Dark-red circles represent significantly regulated (p < 0.05) proteins identified 

in all three experiments. Light-red circles denote those identified in two out of three 

experiments. The use of EB-modified p values obviates arbitrary fold-change thresholds that 

undermine FDR assessment. (D) Corroboration of fold changes (FCs) determined by mass 

spectrometry with those determined by immunoblot analysis.
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Figure 3. 
Top regulated proteins and transcripts. The proteome (A–C) and the transcriptome (D–F) 

were parsed into three categories, those regulated (p < 0.05) in HYP only, in HYP and HF, 

and in HF only. Red symbols and traces denote entities upregulated in the specified 

condition. Blue symbols and traces denote entities that are downregulated in the specified 

condition. Transcripts and proteins were mapped to their respective genes, and the top genes 

in each category are listed in the right-hand panel.

Foster et al. Page 24

J Proteome Res. Author manuscript; available in PMC 2018 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Pathway analysis. (A) Pathway analysis of transcripts and proteins significantly regulated in 

both HYP and HF. (B) Analysis of transcripts and proteins significantly regulated in HF 

only. Where sufficient information exists, pathways are colored according to inferred 

activation or inhibition on the basis of their z scores (see the Supporting Information). Warm 

colors (orange, brown) denote inferred pathway activation. Cool colors (blue shades) denote 

inferred pathway inhibition.
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Figure 5. 
Upstream signaling. (A) Upstream signaling analysis of transcripts and proteins significantly 

regulated in both HYP and HF. Exemplar signaling networks are shown. The TNF network 

was inferred from the transcriptome, whereas the TGFB1 network was inferred from the 

proteome. (B) Analysis of transcripts and proteins significantly regulated in HF only. The 

INFG network was inferred from the proteome and the BDNF network was inferred from 

the proteome. Where sufficient information exists, pathways are colored according to 

inferred activation or inhibition on the basis of their z scores (see the Supporting 

Information). The peripheral nodes represent the HF/sham ratios from the Supporting 

Information. The colors of the peripheral nodes are given by the red/green spectrum, where 

red denotes upregulation and green denotes downregulation. The central node indicates the 

inferred upstream signal that would explain the ratios represented in the peripheral nodes. 

The dotted lines linking the central node to the peripheral nodes indicate indirect 

relationships between the signal and the ultimate transcript or protein ratios. The colors of 

the dotted lines indicate inferred activation or inhibition of signaling. Yellow dotted lines 

indicate a transcript or protein ratio at odds with the predicted effect of signaling.
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Figure 6. 
Upstream transcriptional programs. (A) Upstream transcriptional program analysis of 

transcripts and proteins significantly regulated in both HYP and HF. The top three programs 

in the transcriptome (according to log(p value)), KLF2, FOS, and NEUROG1, are shown as 

a network. The top three transcriptional programs inferred from proteomic data are HIF1A, 

ATF4, and DDIT3. (B) Transcriptional programs inferred from transcripts and proteins 

significantly regulated in HF only. Where sufficient information exists, pathways are colored 

according to inferred activation or inhibition on the basis of their z scores (see the 

Supporting Information). The top 11 activated transcriptional programs (from z scores) 

based on transcriptome data are shown to illustrate the degree of redundancy between 

programs. The top six activated programs based on the proteome are shown. It should be 

noted that the cases of ING1 and NFKB1A illustrate how activation of the program is 

consistent with repression of downregulation of the protein (blue lines). The network 

specifications are the same as in Figure 5, with the exception that the solid lines between the 

central and peripheral nodes indicate direct regulatory relationships.
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Figure 7. 
Emerging network underlying guinea pig HF. Pathway analysis and upstream activator 

analysis predicted cAMP and retinoic acid deficiencies in guinea pig HF. Here we indicate 

the inferred impact on cAMP- and RA-responsive transcriptional programs, including Creb, 

CREBBP, RXRA, PGC1a, BDNF, and MEF2C. Inhibition of the programs (top; blue) is 

consistent with the proteomic profile observed in HF (downregulation in green, upregulation 

in red). CP denotes canonical pathway involvement. Tx denotes inferred toxic or 

pathological sequelae.
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Figure 8. 
Concordance and divergence between the transcriptome and proteome in HF. (A) Fold 

changes in HF for the proteome and transcriptome exhibit a weak correlation (Pearson’s R = 

0.48). (B) Concordant/divergent directions of fold changes. One-third of genes display 

divergent fold-change directions in HF (see panel 18 in the Supporting Information).
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Figure 9. 
Characterization of the metabolome in HYP and HF. (A) Partial least-squares discriminant 

analysis reveals the distinctive nature of the metabolome in HF. The metabolome in HYP 

was less differentiated relative to the sham group. (B) Box plots representing the metabolite 

trajectories in HYP and HF, including metabolites up- or downregulated in HF only and 

metabolites progressively downregulated in HYP and HF. (C) Metabolite set enrichment 

analysis (MSEA) of metabolite regulation in HF. The x axis shows fold enrichment, and the 

color spectrum represents the span of Holm’s FWER-corrected p values. (D) Metabolite 

pathway analysis (MetPA) incorporating MSEA (y axis) and pathway topology (x axis). The 

size of the circles is proportional to the number of compounds identified in a given pathway, 

and the color reffects the Holm’s FWER-corrected p value. Selected pathways are 

highlighted. The entire set of pathways identified by MSEA and MetPA can be found in 

panels 23 and 24 in the Supporting Information.
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Figure 10. 
Integration of the proteome and metabolome. (A) Combined GSEA/MSEA analysis of 

protein (mapped to the gene) and metabolite ratios in HF relative to sham. Dark gray bars 

indicate relative fold enrichment, and light gray bars indicate the impact of pathway 

topology. The composite score is simply the sum of the enrichment score (−log(p value)) 

and the topology score. (B) Schematic representation of proteins and metabolites underlying 

the fatty acid metabolism pathway. Squares denote metabolites, and ovals indicate gene 

names of proteins implicated in HF. Red indicates upregulation, and green denotes 

downregulation. The combined data suggest a bottleneck immediately prior to mitochondrial 

fatty-acylcarnitine import. (C) Schematic representation of proteins and metabolites of the 

citrate (TCA) cycle. ** denotes p < 0.05, and * denotes p < 0.075. The combined protein 

and metabolite data imply TCA cycle flux and/or anaplerosis may be inhibited in guinea pig 

HF.
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Figure 11. 
Model for excitation–transcription coupling responsible for maladaptive metabolic and 

antioxidant remodeling in HF. Deficits in β-adrenergic signaling and Ca2+ handling are 

hallmarks of HF that are recapitulated in the guinea pig model. These deficits are expected 

to diminish the activity of protein kinase A (PKA) and Ca2+ calmodulin-dependent kinases. 

Pathway analysis suggests an analogy to neuronal signaling, in which PKA and CAMK 

activity have been shown to govern the phosphorylation state and activation status of the 

cAMP-responsive element (CRE) binding protein (CREB), a transcriptional coactivator. 

Since CREB is a documented transcriptional coactivator of PGC1α (itself a coactivator) and 

other genes (e.g., RYR2, BDNF), impaired CREB activation by CaMK/PKA would impinge 

on PGC1α-dependent gene programs, among them PPAR/RXR-mediated activation of genes 

for fatty acid metabolism (e.g., CPT1B, β-oxidation enzymes). PGC1α also participates in 

NRF 1- and 2-mediated activation of genes responsible for mitochondrial homeostasis (e.g., 

TFAM) and antioxidant function (e.g., SOD2 and PRDX3). Finally, antioxidant defenses 

suffer a double blow. Not only are antioxidant proteins downregulated, but also, acute 

Ca2+/Na2+ dysregulation abrogates mitochondrial TCA-cycle-dependent NADPH 

production, which is required to sustain the activity of thiol-bearing antioxidant enzymes.
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