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Abstract

Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolution-

ary histories. Recently, statistical methods were devised for inferring such networks from

either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic

markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment

length polymorphisms (AFLPs), provide a powerful source of genome-wide data. In a recent

paper, a method called SNAPP was introduced for statistical inference of species trees from

unlinked bi-allelic markers. The generative process assumed by the method combined both

a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A

novel component of the method was a polynomial-time algorithm for exact computation of

the likelihood of a fixed species tree via integration over all possible gene trees for a given

marker. Here we report on a method for Bayesian inference of phylogenetic networks from

bi-allelic markers. Our method significantly extends the algorithm for exact computation of

phylogenetic network likelihood via integration over all possible gene trees. Unlike the case

of species trees, the algorithm is no longer polynomial-time on all instances of phylogenetic

networks. Furthermore, the method utilizes a reversible-jump MCMC technique to sample

the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very

good performance in terms of accuracy and robustness as we demonstrate on simulated

data, as well as a data set of multiple New Zealand species of the plant genus Ourisia (Plan-

taginaceae). We implemented the method in the publicly available, open-source PhyloNet

software package.

Author summary

The availability of genomic data has revolutionized the study of evolutionary histories

and phylogeny inference. Inferring evolutionary histories from genomic data requires, in

most cases, accounting for the fact that different genomic regions could have evolutionary

histories that differ from each other as well as from that of the species from which the

genomes were sampled. In this paper, we introduce a method for inferring evolutionary

histories while accounting for two processes that could give rise to such differences across

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005932 January 10, 2018 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh

L (2018) Bayesian inference of phylogenetic

networks from bi-allelic genetic markers. PLoS

Comput Biol 14(1): e1005932. https://doi.org/

10.1371/journal.pcbi.1005932

Editor: Frederick A Matsen, IV, Fred Hutchinson

Cancer Research Center, UNITED STATES

Received: June 6, 2017

Accepted: December 14, 2017

Published: January 10, 2018

Copyright: © 2018 Zhu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Data files are

available at http://www.cs.rice.edu/*nakhleh/

ZhuEtAl-PLoSCB-OurisianInputFiles.zip.

Funding: This work was supported by DBI-

1355998 and CCF-1302179 to LN from the

National Science Foundation (http://www.nsf.gov).

This work was supported in part by the Data

Analysis and Visualization Cyberinfrastructure

funded by NSF under grant OCI-0959097 and Rice

University, and by the Big-Data Private-Cloud

Research Cyberinfrastructure MRI-award funded

by NSF under grant CNS-1338099 and Rice

https://doi.org/10.1371/journal.pcbi.1005932
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005932&domain=pdf&date_stamp=2018-01-23
https://doi.org/10.1371/journal.pcbi.1005932
https://doi.org/10.1371/journal.pcbi.1005932
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.rice.edu/&sim;nakhleh/ZhuEtAl-PLoSCB-OurisianInputFiles.zip
http://www.cs.rice.edu/&sim;nakhleh/ZhuEtAl-PLoSCB-OurisianInputFiles.zip
http://www.nsf.gov


the genomes, namely incomplete lineage sorting and hybridization. We introduce a novel

algorithm for computing the likelihood of phylogenetic networks from bi-allelic genetic

markers and use it in a Bayesian inference method. Analyses of synthetic and empirical

data sets show a very good performance of the method in terms of the estimates it obtains.

This is a PLoS Computational Biology Methods paper.

Introduction

The availability of genome-wide data from many species and, in some cases, many individuals

per species, has transformed the study of evolutionary histories, and given rise to phyloge-

nomics—the inference of gene and species evolutionary histories from genome-wide data.

Consider a data set S = {S1, . . ., Sm} consisting of the molecular sequences of m loci under the

assumptions of free recombination between loci and no recombination within a locus. The

likelihood of a species phylogeny C (topology and parameters) is given by

LðCjSÞ ¼
Ym

i¼1

LðCjSiÞ ¼
Ym

i¼1

Z

G
pðSijgÞpðgjCÞdg ð1Þ

where the integration is taken over all possible gene trees. The term p(Si|g) is the likelihood of

gene tree g given the sequence data of locus i [1]. The term p(g|C) is the density function (pdf)

of gene trees given the species phylogeny and its parameters. For example, Rannala and Yang

[2] derived this pdf under the multispecies coalescent (MSC). This formulation underlies the

Bayesian inference methods of [2–4].

Debate has recently ensued regarding the size of genomic regions that would be recombina-

tion-free (or almost recombination-free) and could truly have a single underlying evolutionary

tree [5, 6]. One way to overcome this issue is to use unlinked single nucleotide polymorphisms

(SNPs) or amplified fragment length polymorphisms (AFLPs). Such data provide a powerful

signal for inferring species phylogenies and the issue of recombination within a locus becomes

irrelevant. Furthermore, as long as those markers are sampled far enough from each other the

assumption of free recombination among loci holds. Indeed, this is the basis of the SNAPP

method that was recently introduced in [7]. Since a bi-allelic SNP or AFLP marker has no sig-

nal by itself to resolve much of the branching patterns of a gene genealogy, a major contribu-

tion of Bryant et al. was an algorithm for analytically computing the integration in Eq (1) for

bi-allelic markers.

While trees constitute an appropriate model of the evolutionary histories of many groups of

species, it is well known that other groups of species have evolutionary histories that are reticu-

late [8]. Horizontal gene transfer is ubiquitous in prokaryotes [9, 10], and several bodies of

work are pointing to much larger extent and role of hybridization in eukaryotic evolution than

once thought [8, 11–15]. Not only does hybridization play an important role in the genomic

diversification of several eukaryotic groups, but increasing evidence is pointing to the adaptive

role it has played, for example, in wild sunflowers [16], humans [17], macaques [18], mice

[19], butterflies [20], and mosquitoes [21, 22].

Reticulate evolutionary histories are best modeled by phylogenetic networks. Two statistical

methods were recently introduced for inference under the formulation given by Eq (1), when
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C is a phylogenetic network [23, 24], and other methods were also introduced for statistical

inference of phylogenetic networks using gene tree estimates as the input data [25–29].

The methods of [23, 24] assume that the data for each locus consists of a sequence align-

ment that has no recombination. In this paper, we devise an algorithm that builds on the

algorithm of [7] for analytically computing the integral in Eq (1) when C is a phylogenetic net-

work. In other words, our algorithm allows for computing the likelihood of a phylogenetic net-

work from unlinked bi-allelic markers while analytically integrating out the gene trees for the

individual markers. We couple this likelihood function with priors on the phylogenetic net-

work and its parameters to obtain a Bayesian formulation, and then employ the reversible-

jump MCMC (RJMCMC) kernel from [23] to sample the posterior of the phylogenetic net-

works and their associated parameters given the bi-allelic data.

We implemented our algorithm and the RJMCMC sampler in PhyloNet [30], which is a

publicly available open-source software package for inferring and analyzing reticulate evolu-

tionary histories. We studied the performance of our method on simulated and biological

data. For simulations, we extended the framework of [7] so that the evolution of bi-allelic

markers could be simulated within the branches of a phylogenetic network. For the biological

data, we analyzed two data sets of multiple New Zealand species of the plant genus Ourisia
(Plantaginaceae). The results on the simulated data show very good accuracy and robustness

as reflected by the method’s ability to recover the true phylogenetic networks and their associ-

ated parameters even when the underlying assumptions of the method are violated. For the

biological data, the method recovers two established hybrids and their putative parents

correctly.

The proposed method and Bayesian sampler provide a new tool for biologists to infer retic-

ulate evolutionary histories, while also account for the complexity arising from incomplete

lineage sorting, from bi-allelic markers, thus complementing existing tools that use gene tree

estimates or sequence alignments of the individual loci as the input data. The use of such bi-

allelic markers, particularly when they are sampled far enough across the genome, completely

sidesteps potential problems that could arise due to the presence of recombination within loci.

Materials and methods

Phylogenetic networks and gene trees

A phylogeneticX -network, orX -network for short, C is a rooted, directed, acyclic graph

(DAG) whose leaves are bijectively labeled by setX of taxa. We denote by V(C) and E(C) the

sets of nodes and edges, respectively, of the phylogenetic network C. Every node of the net-

work has in-degree 1, which we call a tree node, or in-degree 2, which we call a reticulation
node. The only exception is special node s whose in-degree is 0 and out-degree is 1; the edge

(s, r) defines the branch above the root. The edges whose head is a reticulation node are the

reticulation edges of the network; all other edges constitute the tree edges of the network. Every

edge is directed forward in time. We assume all phylogenies considered here (trees and net-

works) are binary—no node has out-degree higher than 2.

Here, we use the bottom of a branch to refer to the end of the branch that is farther from

the root of the network, and use the top of a branch to refer to the end of the branch that is

closer to the root. Given that the coalescent views the evolution of alleles backward in time, we

say that a lineage enters a branch to mean a lineage that exists at the bottom of that branch.

Similarly, we say a lineage exits a branch to mean a lineage that exists at the top of that branch.

Each node in the network has a species divergence time and each edge b has an associated

population mutation rate θb = 4Nbμ. This parameter is typically referred to in the literature as

the (rescaled) population size. Given the length τ of a branch in units of expected number of
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mutations per site, the length of that branch in coalescent units is 2τ/θ, assuming diploid indi-

viduals. The branch above the root, (s, r), is infinite in length so that all lineages that enter it

coalesce on it eventually.

For every pair of reticulation edges e1 and e2 that share the same reticulation node, we asso-

ciate an inheritance probability, γ, such that ge1
; ge2
2 ½0; 1� with ge1

þ ge2
¼ 1. We denote by Γ

the vector of inheritance probabilities corresponding to all the reticulation nodes in the phylo-

genetic network.

We use C to refer to the topology, species divergence times, population mutation rates, and

inheritance probabilities of the phylogenetic network. That is, here we include Γ as part of C.

AnX -phylogenetic tree, orX -tree, is anX -network with no reticulation nodes. A gene

tree is anX -tree. Each node in the gene tree has an associated coalescence time. In the algo-

rithm below, we make use of a coloring function c: (E(g), t)! {0, 1}, similar to that used in [7],

where c(e, t) indicates the color, or allele, at time t along the branch e of gene tree g. We will fol-

low [7] in calling the two colors red and green.

Labeled partial likelihoods

Looking forward in time (from the root toward the leaves), let u and v be the mutation rate

from red allele to green allele and the mutation rate from green allele to red allele, respectively.

The stationary distribution of the red and green alleles at the root is given by v/(u + v) and

u/(u + v), respectively. Observed alleles are indicated by values of the coloring function c at

gene tree leaves.

Given a gene history embedded within the branches of the network, the numbers and types

of lineages at both ends of each branch of the network are needed to compute the likelihood.

Let x be a branch in the phylogenetic network. We denote by nT
x and nB

x the total numbers of

lineages at the top and bottom of x, respectively, and by rTx and rBx the numbers of red lineages

at the top and bottom of x, respectively. See Fig 1 for an illustration.

Let x be an arbitrary branch in the phylogenetic network and let Rx be the event that for

every external branch z that is a descendant of x, the actual number of red alleles in z equals to

rBz .

Fig 1. Illustrating the “growth” of lineages of a gene tree in a phylogenetic network. The histories of green and red

alleles are shown as solid (green) lines and dashed (red) lines, respectively.

https://doi.org/10.1371/journal.pcbi.1005932.g001
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We define two partial likelihoods: FB
x is the product of the likelihood of a subtree rooted

at the bottom of x and the probability Pr½nB
x ¼ n�, and FT

x is the product of the likelihood at

the top of branch x and the probability Pr½nT
x ¼ n�. In the case of a species tree (i.e., no retic-

ulation nodes in the species phylogeny), the partial likelihood vectors FB
x and FT

x are given by

[7]

FB
xðn; rÞ ¼ Pr½RxjnB

x ¼ n; rBx ¼ r�Pr½nB
x ¼ n� ð2Þ

and

FT
x ðn; rÞ ¼ Pr½RxjnT

x ¼ n; rTx ¼ r�Pr½nT
x ¼ n�: ð3Þ

Here FB
x and FT

x are indexed by nonnegative integers n and r, where r� n. Let M be the

maximum possible value of nB
x and nT

x over all branches. Then, each of FB
x and FT

x has at most

l = (1 + (M + 1))(M + 1)/2 entries.

In the case of a species tree, the path from a leaf to the root is unique. However, this might

not be the case for phylogenetic networks: If there is a reticulation node on a path from a leaf

to the root, then multiple paths exist between that leaf and the root. This is the issue that

necessitates modifying the algorithm of [7] significantly, and that leads to much larger compu-

tational requirements in the case of phylogenetic networks. The key idea behind the modifica-

tion is as follows. As the algorithm proceeds to compute the likelihood in a bottom-up fashion

from the leaves to the root, whenever a reticulation node is encountered, the current set of lin-

eages is bipartitioned in every possible way so that one side of the bipartition tracks one parent

of the reticulation node and the other side tracks the other parent. As the network has a unique

root, the two sides of each bipartition eventually come back together at an ancestral node. At

that point, these two sides are merged properly.

To achieve this proper merger, we introduce “labeled partial likelihoods,” or LPL. Like the

case of [7], LPLs are not “real” partial likelihoods. The reason for this is that when partial likeli-

hood vectors are split (described below), those become symbolic terms that do not evaluate to

partial likelihoods until they are merged later. This is analogous to the difference between

ancestral configurations on species trees [31] and their labeled counterparts on phylogenetic

networks [32], where the latter are in many cases just symbolic terms that do not evaluate to

true (partial) likelihood values.

Given a phylogenetic network C with k reticulation nodes numbered 0, 1, � � �, k − 1,

an LPL P is an element of ½0; 1�
l
� Zk, where the first element of the pair is a partial likeli-

hood as in [7]. The second element is the label to keep track of partial likelihoods that

originated from a split of the same partial likelihood at a reticulation node so that these

two could be merged. More formally, we say two LPLs P1 = (F1, s1) and P2 = (F2, s2),

where |s1| = |s2|, are compatible if and only if for every 0� i< |s1|, either s1(i) = s2(i) or

s1(i) � s2(i) = 0.

We denote byPT
x andPB

x the sets of LPLs that are associated with the top and bottom of

branch x, respectively. These two quantities are computed in a bottom-up fashion, proceeding

from the leaves of the network towards its root. Once the LPLs at the root are computed, the

overall likelihood of a given site is computed. As the algorithm proceeds from the leaves

towards the root, it needs to compute LPLs at the leaves, the top of a branch, the bottom of

reticulation edges, and the bottom of tree edges. We now describe each of those computations;

Bayesian inference of phylogenetic networks from bi-allelic genetic markers
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the overall algorithm is simply a bottom-up traversal of the network while applying the appro-

priate computation as a node is encountered.

Computing LPLs for leaf nodes. Consider an external branch x that is connected to a

leaf node. Let nx denote the number of individuals sampled from the species associated with

that leaf, and let rx be the number of red lineages among those individuals. We create LPL

PB
x ¼ ðF

B
x ; s

B
xÞ, where

FB
xðn; rÞ ¼

1; if n ¼ nx and r ¼ rx

0; otherwise

(

ð4Þ

sBx ¼ 0. Finally, we associatePB
x ¼ fP

B
xg with the bottom of branch x.

As pointed out in [7], the input data may contain dominant markers like AFLPs, which

means heterozygotes and homozygotes are not distinguishable for the dominant band. If there

are dominant markers in the data, and the red allele is dominant, FB
x is computed by

FB
xðn; rÞ ¼

n!

ðr � rxÞ!ð2rx � rÞ!ðn � rxÞ!
22rx � rð2nr Þ

� 1
; if n ¼ 2nx and rx � r � 2rx

0; otherwise

8
<

:
: ð5Þ

instead of using Eq (4), where r − rx is the number of homozygous red individuals, 2rx − r is

the number of heterozygous individuals (red and green), and n − rx is the number of homozy-

gous green individuals. There are more details about this computation in [7].

Computing LPLs at the top of a branch. Bryant et al. [7] computed partial likelihoods

using a continuous-time Markov chain whose transition rate matrixQ is indexed by ((n, r);
(n0, r0)) for transitioning from n lineages r of which are red alleles to n0 individuals r0 of which

are red alleles, and its entries are given by

Qðn;rÞ;ðn;r� 1Þ ¼ ðn � r þ 1Þv

Qðn;rÞ;ðn;rþ1Þ ¼ ðr þ 1Þu

Qðn;rÞ;ðn� 1;rÞ ¼ ðn � 1 � rÞn=y

Qðn;rÞ;ðn� 1;r� 1Þ ¼ ðr � 1Þn=y

Qðn;rÞ;ðn;rÞ ¼ � nðn � 1Þ=y � ðn � rÞv � ru

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð6Þ

Let x be any branch in the phylogenetic network, with θ and t being the population muta-

tion rate and branch length of x, respectively, and assumePT
x has already been computed.

Then,

PT
x ¼ fðF exp ðQtÞ; sÞ : ðF; sÞ 2PB

xg: ð7Þ

Computing LPLs at the bottom of reticulation edges. Consider a reticulation node

given by two reticulation edges y and z, with inheritance probabilities γ and 1 − γ, respectively,

and branch x emanating from the reticulation node, as illustrated by Fig 2. The main idea in

this part is as follows. Given a set of lineages at the top of branch x, a subset of those lineages is

inherited along branch y and the remaining lineages is inherited along branch z. Since there

are multiple ways of bipartitioning the set of lineages, the labels in an LPL allow the algorithm

to keep track of the subsets of lineages that originated from the same split. We now describe

this formally.

Bayesian inference of phylogenetic networks from bi-allelic genetic markers
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Decomposing: Let (F, s) be an LPL inPT
x . Given that F has l entries, we decompose F into l

vectors, each with l entries: F0, F1, � � �, Fl−1. Let � : fðn0; r0Þ: n0; r0 2 N; r0 � n0 � mg ! N be

given by ϕ(n0, r0) = n0(m + 1) + r0. The entries of Fi are set according to

Fiðn0; r0Þ ¼
Fðn0; r0Þ if i ¼ �ðn0; r0Þ

0 otherwise

(

: ð8Þ

Splitting: Consider vector Fi and assume i = ϕ(ni, ri). The existence of ni lineages out of

which ri are red at the top of branch x means that any 0� ny� ni lineages of those could be

inherited along branch y, and out of those 0� ry�min(ri, ny) could be red; the remaining

nz = ni − ny lineages, out of which rz = ri − ry are red, are inherited along branch z. Such a split

gives rise to two LPLs: Py;ny ;ry
¼ ðFy;ny ;ry

; sy;ny ;ryÞ and Pz;nz ;rz
¼ ðFz;nz ;rz

; sz;nz ;rzÞ with sy;ny ;ry and

sz;nz ;rz assigned the same value that is unique to the specific split. For this specific split we

define

di;ny ;ry
¼ Fiðni; riÞ

ni

ny

 !

gnyð1 � gÞ
ni� ny ; ð9Þ

and compute Fy;ny ;ry
and Fz;nz ;rz

by

Fy;ny ;ry
ðn; rÞ ¼

di;ny ;ry
; if n ¼ ny and r ¼ ry

0; otherwise

8
<

:
; ð10Þ

and

Fz;nz ;rz
ðn; rÞ ¼

1; if n ¼ nz and r ¼ rz

0; otherwise

(

: ð11Þ

Fig 2. An illustration of the decompose-and-split operation. In this example, partial likelihood FT
x is decomposed

into six vectors F0 to F5. An illustration of how F4 is split in the four possible ways to trace branches y and z is shown,

and every split is assigned a unique label.

https://doi.org/10.1371/journal.pcbi.1005932.g002
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The resulting Py and Pz from all possible splits constitute the elements of the setsPB
y andPB

z ,

respectively. The full procedure for executing the decompose-and-split operations is given in

Algorithm 1.

Algorithm 1: Compute LPLs at Bottom of Reticulation Edges.
Input: Reticulation node j and the three distinct branches y = (u, j),
z = (v, j) and x = (j, w) associated with it; set PT

x.
Output: Sets PB

y, P
B
z.

oj  0;
PB

y  ;;
PB

z  ;;
foreach ðF;sÞ 2PT

x do
l  number of entries in F;
if l = 0 then
PB

y  P
B
y [ fðF;sÞg;

PB
z  P

B
z [ fðF;sÞg;

end
// decompose
for i = 1 ! l − 1 do
(ni, ri)  �−1(i);
Compute Fi using Eq (8);
// split
foreach 0 � ny � ni and 0 � ry � min(ri, ny) do
(nz, rz)  (ni − ny, ri − ry);
sy;ny ;ry  s; sz;nz ;rz  s;
sy;ny ;ry ðjÞ  oj þ 1; sz;nz ;rz ðjÞ  oj þ 1;

Compute Fy;ny ;ry
and Fz;nz ;rz

Eqs (10) and (11);

PB
y  P

B
y [ fðFy;ny ;ry

; sy;ny ;ry Þg;
PB

z  P
B
z [ fðFz;nz ;rz

; sz;nz ;rz Þg;
oj  oj + 1;

end
end

end
return PB

y, P
B
z;

Let n be the number of individuals in branch x and all its descendants. In the middle for

loop, l, which is the number of entries in each F, equals to O(n2). The inner foreach loop over

ni and ri runs for O(n2) times. Therefore the number of pairs of new LPLs generated is O(n4)

for each LPL in branch x.

Computing LPLs at the bottom of a tree edge. Consider an internal tree node j with its

three associated edges x = (u, j), y = (j, v), and z = (j, w). We are interested in computing the

setPB
x in terms of the two setsPT

y andPT
z . The labels in LPLs allow the algorithm to deter-

mine whether two LPLs originated from a split at a descendant reticulation node or not

(including the case of no descendant reticulation nodes of node j). Let Py = (Fy, sy) and

Pz = (Fz, sz) be two elements ofPT
y andPT

z , respectively, that are compatible. A label sx is

computed by

sxðiÞ ¼
syðiÞ if syðiÞ ¼ szðiÞ or szðiÞ ¼ 0

szðiÞ if syðiÞ ¼ 0

8
<

:
ð12Þ

Bayesian inference of phylogenetic networks from bi-allelic genetic markers
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for 0� i� |sy|. Furthermore, Fx is computed by

Fxðn; rÞ ¼
Xn� 1

ny¼1

Xr

ry¼0

FT
y ðny; ryÞF

T
z ðn � ny; r � ryÞ

�

r

ry

0

@

1

A

n � r

ny � ry

0

@

1

A

n

ny

0

@

1

A

:

ð13Þ

The LPL (Fx, sx) is added toPB
x . The full procedure for computing setPB

x is given in Algo-

rithm 2.

Algorithm 2: Compute LPLs at Bottom of Tree Edge.
Input: Internal tree node j and the three distinct branches y = (j, v),
z = (j, w) and x = (u, j) associated with it; sets PT

y , P
T
z .

Output: Set PB
x.

PB
x  ;;

foreach ðFy; syÞ 2PT
y do

foreach ðFz; szÞ 2PT
z do

if sy and sz are compatible then
Compute sx using Eq (12);
Compute Fx using Eq (13);
PB

x  P
B
x [ fðFx; sxÞg;

end
end

end
return PB

x;

Termination: Computation above root node. Let the infinite-length branch associated

with root be ρ. Then, we let FB
r

be the sum of all vectors F in elements (F, s) of setPB
r
.

To obtain the overall likelihood LðCjSiÞ given the data Si for site i, vector x is obtained as a

nonzero solution ofQx ¼ 0. Like in [7], x is indexed by (n, r) pairs, such that x(1, 0) + x(1, 1) =

1. Hence we have x(n, r) = Pr[R = r|N = n], where N is the number of lineages and R is the num-

ber of red lineages, if we sample from a single population of constant size with same distribu-

tion for the root allele probabilities and allele frequencies as in [7]. The likelihood is given by

LðCjSiÞ ¼ FB
r
� x: ð14Þ

Optimizing the computation. As described above, the partial likelihood vectors are split

to follow every possible wayof bipartitioning a set of lineages at a reticulation node. It is this

operation that leads to a significant increase in the running time and memory requirement of

the likelihood computation as compared to the case of species trees. Here we describe an opti-

mization step that we employ to improve performance in terms of computational require-

ments, without affecting the correctness of the likelihood computation.

An articulation node in a graph is a node whose removal disconnects the graph into two or

more components. In a directed graph, a lowest articulation node is an articulation node that

has at least one child that is neither an articulation node nor a leaf. For example, in a tree,

every node is an articulation node. However, in a phylogenetic network that is not necessarily

the case. For example, in the phylogenetic network of Fig 1, the reticulation node is an articula-

tion node. However, the root of the network is the only lowest articulation node (its removal

disconnects the special node s—the parent of the infinite-length branch above the root—from

Bayesian inference of phylogenetic networks from bi-allelic genetic markers
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the rest of the network). The reticulation node is not a lowest articulation node since it has one

child and that child is a leaf.

The main idea of the optimization is that all LPLs at a lowest articulation node could be

merged into a single LPL, thus avoiding carrying forth all that information. More formally,

given a set of LPLs at the bottom of a lowest articulation node, a new LPL is produced by sum-

ming all the partial likelihood vectors in the LPLs, and assigning it an empty label. This new

LPL is the only one assigned to the bottom of the articulation node; all other LPLs are deleted.

Time complexity

Our algorithm computes the likelihood of a phylogenetic network given a set of biallelic mark-

ers. This algorithm computes matrix exponential along every branch, and processes the net-

work’s nodes in a post-order traversal. Computation at a leaf takes O(1) time.

At a reticulation node, the time consumption increases after each reticulation node is pro-

cessed, due to the accumulation of (split) LPLs. In the last processed reticulation node, the

number of LPLs in its descendant is at most O(n4(k−1)). There are at most O(n4) new LPLs

generated due to decompose-and-split operation for each original LPL. Therefore the time

complexity of processing a reticulation node is at most O(n4k). We adopted the same approxi-

mation of matrix exponential as in [7], so the time complexity of computing matrix exponenti-

ation is O(n2), and computation along every branch is at most O(n4k+2).

At a tree node, computation is mostly spent on evaluating Eq (13). Let n be the number of

individuals present under an internal tree node. Then, this evaluation takes O(n4) time for a

pair of compatible LPLs. The total time consumption of processing tree nodes also depends on

the number of LPLs. Assuming k reticulation nodes in the phylogenetic network, there are at

most O(n4k) pairs of compatible LPLs. Therefore the time complexity of processing a tree node

is O(n4k+4).

In total, the time complexity of the algorithm is O(mn4k+4), where m is the number of spe-

cies, n is the total number of lineages sampled from the species, and k is the number of reticula-

tion nodes. Notice that when k = 0, which means the species phylogeny is a tree, the time

complexity is O(mn4), which is the running time of the SNAPP algorithm without fast Fourier

transforms.

To speed up computation, and since markers are independent, computations for the indi-

vidual markers are parallelized by multi-threading. Furthermore, the data is preprocessed so

that the unique marker patterns are identified and their probabilities are computed only once

and reused for for all markers with the same patterns (states for the taxa).

Bayesian inference

The prior on the phylogenetic network is the same as that employed in [23], which we review

briefly here. The prior is given by

pðCjn; d; Z; z; a;bÞ ¼ pnumretðCjnÞ � pdiamðCjZÞ � pdivðCjdÞ � ppopðCjzÞ � pinhðCja; bÞ: ð15Þ

Here, p(C|ν) is a Poisson prior on the number of reticulation nodes, normalized by the num-

ber of networks with the same number of reticulation nodes as C. pdiam(C|η) is an exponential

prior on the diameters of reticulation nodes. The diameter of a reticulation node is the sum of

the branch lengths on the cycle that contains the reticulation node in the underlying undi-

rected graph of the network. pdiv(C|δ) is an exponential prior on the divergence times. Rannala

and Yang used independent Gamma distributions for time intervals (branch lengths) instead

of divergence times. However, in the absence of any information on the number of edges of

the species network as well as the time intervals, it is computationally intensive to infer the
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hyperparameters of independent Gamma distributions. Currently, we use a uniform distribu-

tion (as in BEST [33]). ppop(C|z) is a Gamma prior on the population mutation rate. For ppop,
we use the Gamma distribution Γ(2, z) with mean value 2z and shape parameter 2. pinh(C|α,

β) is a Beta prior, with parameters α and β, on the inheritance probabilities. Unless there is

some specific knowledge on the inheritance probabilities, a uniform prior on [0, 1] is adopted

by setting α = β = 1.

It is important to note here that if the topology of C does not follow the phylogenetic net-

work definition (e.g., has a cycle), then p(C|ν, δ, η, ψ) = 0. This is crucial since, in the MCMC

kernels we employ for sampling the posterior distribution, we allow the moves to produce

directed graphs that slightly deviate from the definition; in this case, having the prior be 0

guarantees that the proposal is rejected. Using the strategy, rather than defining only “legal”

moves simplifies the calculation of the Hastings ratios. However, the sampler always guaran-

tees that the divergence times are consistent; that is, no node has a divergence time smaller

than or equal to the divergence time of any of its descendants.

We employed the reversible-jump MCMC, or RJMCMC [34] algorithm implemented in

PhyloNet [30] to sample from the posterior distribution given by

pðCjSÞ / LðCjSÞpðCÞ; ð16Þ

where C here denotes the topology of the network and all its parameters, and p(C) is the prior

on the network and its parameters as described above.

We make use of only the 12 proposals designed for sampling phylogenetic networks and

their parameters described in [23], but not the proposals aimed at sampling gene trees, as gene

trees are integrated out.

Synthetic data generation

We implemented in PhyloNet [30] a program to simulate bi-allelic markers on a given phylo-

genetic network. Bryant et al. [7] simulated bi-allelic markers by first generating gene trees

inside a species tree (under the multispecies coalescent model), and then simulating the mark-

ers down the gene trees. In our case, we replaced the first step by generating gene trees inside a

phylogenetic network under the multispecies network coalescent [26]; the second step of simu-

lating bi-allelic markers down gene trees remains the same as that employed in [7]. When

requiring the data set to contain only polymorphic sites, if the generated site is not polymor-

phic, we discard both gene tree and markers, and repeat until a polymorphic site is generated.

Results

Simulations

The method’s ability to infer the phylogenetic network topology. We used the following

commands in PhyloNet to generate 200 data sets, 20 replicates for each of the two model phy-

logenetic networks in Fig 3 and each number of sites (numsites 2 {100, 1000, 10000, 100000,

1000000)}:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites -tm <A:
A_0; C:C_0;L:L_0;Q:Q_0;R:R_0> -truenet “[0.006]
(((((Q:0.004:0.006)I5#H1:0.002:0.005:0.7,A:0.006:0.006)
I3:0.016:0.005,L:0.022:0.006)I2:0.02:0.005,
(I5#H1:0.003:0.005:0.3,R:0.007:0.006)I4:0.035:0.005)
I1:0.038:0.005,C:0.08:0.006);” -out “markers.txt”;
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SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites -tm <A:
A_0; C:C_0;L:L_0;Q:Q_0;R:R_0> -truenet “[0.006]
(((((Q:0.004:0.006)I5#H1:0.002:0.005:0.7,(A:0.003:0.006)I6
H2:0.003:0.005:0.6)I3:0.016:0.005,L:0.022:0.006)
I2:0.02:0.005,(I5#H1:0.003:0.005:0.3,R:0.014:0.006)
I4:0.028:0.005)I1:0.038:0.005,(C:0.005:0.006,
I6#H2:0.002:0.005:0.4)I7:0.075:0.005);” -out “markers.txt”;

For the value of seed in the “-sd” option, we used a different 8-digit integer for each of the 20

replicates.

The true networks of those commands correspond to two models, given by the two phylo-

genetic networks, their branch lengths, and inheritance probabilities, shown in Fig 3. These

networks and parameters were inspired by the phylogenetic networks inferred from an empiri-

cal genomic data set in [21, 22].

For each of the two models, we simulated data sets consisting of 100, 1000, 10000, 100000,

and 1000000 bi-allelic sites, with one haploid generated for every taxon. In the simulations, we

set u = 1 and v = 1 as the mutation rates. Furthermore, similar to [7], we used θ = 0.006 as the

population mutation rate for the external branches and the branch above the root, and θ =

0.005 for the internal branches, both in the unit of population mutation rate per site. Under

these settings, we observed that each of the 200 data sets contained between 19% and 21% poly-

morphic sites; the remaining sites were all monomorphic.

To test the ability of our algorithm to recover the topology of the true phylogenetic network,

we ran the RJMCMC sampler on the simulated data sets. To test how robust the method is to

the setting of the prior on the population mutation rate, we ran the sampler under both the

“correct” (α = 2, β = 0.003) and “incorrect” (α = 2, β = 0.0003) prior settings as in the following

commands:

MCMC_BiMarkers -cl 1500000 -bl 200000 -sf 500 -prebl 10000
-premc3 (2.0,4.0) -premr 1 -pi0 0.5 -varytheta -dd -pp 1.0 -ee
2.0 -mr 2 -pl 8 -ptheta 0.006 -thetawindow 0.006 -sd seed
-taxa (A_0,C_0,L_0,R_0,Q_0) -tm <A:A_0; C:C_0;L:L_0;Q:Q_0;R:
R_0>;

Fig 3. The two model phylogenetic networks used to generate the simulated data sets. The branch lengths of the

phylogenetic networks are measured in units of expected number of mutations per site (scale is shown). The

inheritance probabilities are marked in blue. Both networks are based on the same “backbone” tree: Removing the

R!Q reticulation edge in (A) and the C!A and R!Q reticulation edges in (B) gives rise to the tree (C,(R,(L,(A,Q)))).

The hybridization events in the panel can be viewed as involving pairs of branches of this tree: (A) The hybridization is

from R to Q. (B) One hybridization is from R to Q and another is from C to A.

https://doi.org/10.1371/journal.pcbi.1005932.g003
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MCMC_BiMarkers -cl 1500000 -bl 200000 -sf 500 -prebl 10000
-premc3 (2.0,4.0) -premr 1 -pi0 0.5 -varytheta -dd -pp 1.0 -ee
2.0 -mr 2 -pl 8 -ptheta 0.0006 -thetawindow 0.006 -sd seed
-taxa (A_0,C_0,L_0,R_0,Q_0) -tm <A:A_0; C:C_0;L:L_0;Q:Q_0;R:
R_0>;

To speed up convergence, we used a pre-burn-in phase before we ran the actual sampling pro-

cess. The pre-burn-in phase consisted of 3 chains with temperatures 1.0, 2.0, and 4.0, respec-

tively, and each with 10,000 iterations. Following that, the actual sampling phase consisted of

an MCMC chain for 1.5 × 106 iterations, with a burn-in period of 2 × 105 iterations, and one

sample was collected from every 500 iterations. We used the network with the highest likeli-

hood from the pre-burn-in phase as the starting network for the actual sampling phase. A

maximum number of reticulations in this pre-burn-in phase was set at 1 and 2 for the data sets

simulated on the networks in Fig 3(A) and 3(B), respectively. In the actual sampling phase, the

maximum number of reticulations was set to 2 and 3, respectively.

We summarized the results based on 1,040,000 samples (20 replicates, 2 networks, 2 prior

settings, 5 different numbers of sites, and 2600 samples per chain). Fig 4 shows the method’s

performance in terms of the number of reticulation it infers. In this figure, for each number of

sites, each bar corresponds to the ratio of networks (out of 52,000) with the specified number

Fig 4. The ratio of trees (blue), 1-reticulation networks (green), 2-reticulation networks (black), and 3-reticulation

networks (purple) sampled under different simulation settings. Top row: The true network is the 1-reticulation

network in Fig 3(A). Bottom row: The true network is the 2-reticulation network in Fig 3(B). Left column: The correct

prior hyperparameters for the population mutation rate were used. Right column: The incorrect prior hyperparameters

for the population mutation rate were used.

https://doi.org/10.1371/journal.pcbi.1005932.g004
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of reticulations. As the results show, the method almost always infers a tree when the number

of sites is 100, for both true networks and regardless of the prior setting on the population

mutation rate. When 1000 sites are used, the method infers the correct number of reticulations

in almost 75% of the samples in the case of the true 1-reticulation network, whereas the rest of

the samples are almost all trees. However, when 10,000 sites or more are used, almost all sam-

ples have the correct number of reticulations, for both model networks and regardless of the

prior setting on the population mutation rate. In the case of the true 2-reticulation network,

when 1,000 sites are used, the method almost always infers a 1-reticulation network.

While the method performs well in terms of estimating the number of reticulations, the

next natural question is: Does the method infer the correct topology of the network? To answer

this question, we assessed the topological differences between the sampled networks and the

true ones in two different ways. When the method infers a network with at least one reticula-

tion node, we compared the topology of the network to the true network topology using the

topological distance measure of [35]. Furthermore, when the method infers a tree, we com-

pared the tree to the “backbone tree” of the true network using the Robinson-Foulds metric

[36]. Given a phylogenetic network with inheritance probabilities on its reticulation edges,

removing for each reticulation node the incoming edge with the smaller inheritance probabil-

ity results in a tree, which we call the backbone tree. For example, for the network in Fig 3(B),

the reticulation edges with inheritance probabilities 0.3 and 0.4 would be removed, resulting in

the backbone tree (C,((L,(A,Q)),R)). It is important to note that in the presence of deep coales-

cence, it is extremely hard to capture the relationship between a phylogenetic network and its

parental trees by a backbone tree [37]. The results for the simulated data sets are shown in

Fig 5.

Considering first the data sets simulated on the 1-reticulation network, the results indicate

a very good performance. When a network is sampled, it is almost always the true network, as

reflected by the topological distance close to 0. The only exception is the network inferred

when using the incorrect prior hyperparameters on 100 sites. However, it is important to note

that in most cases under this setting, a tree was sampled. Furthermore, when a tree was sam-

pled by our method, its distance to the backbone tree is almost 0. In other words, when our

methods failed to infer the true network, its because of lack of signal to infer the reticulation

event, but it still inferred the underlying backbone tree.

In the case of the data sets simulated on the 2-reticulation network, the results differ. When

the correct prior hyperparameters are used, 10,000 sites or more are needed to infer the true

network. When the incorrect prior hyperparameters were used, the true network was sampled

almost exclusively when 1,000,000 sites were used. When the method sampled a tree, that tree

did not exactly match the backbone tree in this case, but was very close to it.

These results combined demonstrate a natural aspect of network inference: The more retic-

ulate the evolutionary history, the more sites are needed for accurate inference of the network’s

topology. In general, when the method makes a wrong inference, it is mostly in inferring the

reticulation events themselves. However, in some cases, the tree inferred by the method does

not match exactly the backbone tree, which is not unexpected given that the network in many

cases is more than the sum of a backbone tree and a set of reticulation edges [37]. It is worth

noting that while not many empirical AFLP- or SNP-based studies currently include as many

as 10,000 loci, such large data sets may become commonplace as genomic technologies con-

tinue to advance.

The method’s ability to estimate the continuous parameters. We used the following

command in PhyloNet [30] to generate 80 data sets on the network of Fig 3(A) to test the abil-

ity of our algorithm to estimate the continuous parameters (branch lengths, inheritance proba-

bilities, and population mutation rates):

Bayesian inference of phylogenetic networks from bi-allelic genetic markers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005932 January 10, 2018 14 / 32

https://doi.org/10.1371/journal.pcbi.1005932


SimBiMarkersinNetwork -diploid -dominant -op -pi0 0.5 -sd
12345678 -num numsites -tm <A:A_0; C:C_0;L:L_0;Q:Q_0;R:R_0>
-truenet “[0.006](((((Q:0.004:0.006)I5 H1:0.002:0.005:0.7,
A:0.006:0.006)I3:0.016:0.005,L:0.022:0.006)I2:0.02:0.005,
(I5#H1:0.003:0.005:0.3,R:0.007:0.006)I4:0.035:0.005)
I1:0.038:0.005,C:0.08:0.006);” -out “markers.txt”;

We used numsites 2 {1000, 10000, 100000, 1000000} given that the method almost never

inferred a network when using only 100 sites. As before, we varied the value of seed for each of

the 20 replicates. Here, we assumed one diploid genome per taxon, with dominant markers.

For the analysis, we first used a pre-burn-in phase with the exact same setting as above, and

then started an RJMCMC chain from the network with the highest likelihood, using the fol-

lowing command:

MCMC_BiMarkers -cl 1500000 -bl 200000 -sf 500 -prebl 10000
-premc3 (2.0,4.0) -premr 1 -pi0 0.5 -diploid -dominant 0 -op
-varytheta -dd -pp 3.0 -ee 2.0 -mr 2 -pl 8 -ptheta 0.006

Fig 5. The topological distance (pink) between sampled networks and true network, and the Robinson-Foulds

distance (orange) between sampled trees and true backbone tree, under different simulation settings. Top row:

The true network is the 1-reticulation network in Fig 3(A). Bottom row: The true network is the 2-reticulation network

in Fig 3(B). Left column: The correct prior hyperparameters for the population mutation rate were used. Right column:

The incorrect prior hyperparameters for the population mutation rate were used. The samples underlying the orange

points correspond to thoseunderlying the blue bars in Fig 4, whereas the samples underlying the pink points

correspond to all other samples in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005932.g005
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-thetawindow 0.006 -sd 12345678 -taxa (A_0,C_0,L_0,R_0,Q_0)
-tm <A:A_0; C:C_0;L:L_0;Q:Q_0;R:R_0>;

We ran the chain for 1.5 × 106 iterations, with 2 × 105 burn-in iterations, and one sample was

collected from every 500 iterations. We summarized the results based on the collected samples

whose topologies were the true network topology (otherwise, there is no easy way to find cor-

respondence between the parameters in the inferred networks and those in the true one) in the

form of histograms.

Histograms of the sampled branch lengths are shown in Fig 6. The results indicate a very

good performance of the method. The histograms peak around the true value for all branches,

regardless of the number of sites used. However, as the number of sites increases, the variance

around the true value shrinks.

Histograms of the sampled population mutation rates are shown in Fig 7. Unlike the case of

branch lengths, we observe here that the population mutation rates of the external branches

are well estimated, with the distribution tightening around the true values as the number of

sites increases. However, the population mutation rates seem to be unidentifiable by the

method for internal branches, especially those closer to the root. As we show below, increasing

the number of individuals sampled per species help improve these estimates.

Fig 6. Histograms of the branch lengths sampled by our method on the simulated data set corresponding to the

phylogenetic network of Fig 3(A). Blue: 1,000 sites. Green: 10,000 sites. Black: 100,000 sites. Purple: 1,000,000 sites.

The red dashed lines correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g006
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Finally, a histogram of the sampled inheritance probabilities is shown in Fig 8. The method

does a very good job at sampling the true value in this case. As the number of sites increases,

the distribution of sampled value tightens around the true value and becomes almost all con-

centrated within 0.1 around it when 1,000,000 sites are used.

To further assess the mixing of our sampler, we also performed five independent runs on

an arbitrary data set with 10,000 sites, where each run consisting of an MCMC chain under the

same settings as above. The results for the continuous parameters are shown in Figs 9–11.

Samples from the different runs are in very good agreement, further indicating good mixing.

The effect of the number of sampled individuals on parameter estimates. Monomor-

phic sites help estimate parameter values, but sometimes they are removed because they are

uninformative for estimating the topology and to reduce the computation time for the phylo-

genetic analyses. If there are only polymorphic sites in the data set, sampling multiple individ-

uals could improve parameter estimation. To investigate this aspect, we set up a simulation

with the phylogenetic network in Fig 12 (we reduced the number of taxa to make the running

time over many data sets manageable). In the simulation, we set u = 1 and v = 1 as the muta-

tion rates. Furthermore, we used θ = 0.005. We sampled one diploid individual for each of the

three species A, B, and D, and four diploid individuals for species C. We generated 10,000

polymorphic sites with dominant markers for each of those individuals, with 5 replicates.

Fig 7. Histograms of the population mutation rates sampled by our method for each of the branches on the

simulated data set corresponding to the phylogenetic network of Fig 3(A). Blue: 1,000 sites. Green: 10,000 sites.

Black: 100,000 sites. Purple: 1,000,000 sites. The red dashed lines correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g007
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We used following command in PhyloNet to generate the data set:

SimBiMarkersinNetwork -diploid -dominant -op -pi0 0.5 -sd seed
-num 10000 -tm <A:A_0; B:B_0; C:C_0,C_1,C_2,C_3; D:D_0> -true-
net “[0.005]((((C:0.005:0.005)I1#H1:0.006:0.005:0.8,
D:0.011:0.005):0.009:0.005,(B:0.014:0.005,
I1#H1:0.009:0.005:0.2):0.006:0.005):0.005:0.005,
A:0.025:0.005);” -out “markers.txt”;

We ran the method on the entire data set (7 diploid individuals, amounting to 14 haploid

individuals), and on a subset that consists of a single diploid individual from each of the four

species (8 haploids in total).

We ran each MCMC chain for 5 × 105 iterations, with 5 × 104 burn-in iterations, and one

sample was collected from every 500 iterations. We used the collected samples whose topolo-

gies were the true network topology to summarize the results in the form of histograms of the

parameter estimates.

Histograms of the sampled branch lengths are shown in Fig 13. As the results show, the

inclusion of multiple individuals from the hybrid species (C) helps most in estimating the

lengths of the three branches surrounding the reticulation event (the three edges incident with

node I1).

Fig 8. A histogram of the inheritance probabilities sampled by our method on the simulated data set

corresponding to the phylogenetic network of Fig 3(A). Blue: 1,000 sites. Green: 10,000 sites. Black: 100,000 sites.

Purple: 1,000,000 sites. The red dashed line corresponds to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g008
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Histograms of the sampled population mutation rates are shown in Fig 14. In this case, the

most improvement gained from the inclusion of multiple individuals pertains to the external

branch to taxon C.

A histogram of the sampled inheritance probabilities is shown in Fig 15. The inheritance

probability estimates improve when four individuals are sampled, as the distribution of the

sampled values become more concentrated and peak much closer to the true value.

This simulation was performed on DAVinCI, which is a batch scheduled High-Through-

put Computing (HTC) cluster. We used 6 cores, with one thread per core running at

2.83GHz, and 4G RAM per thread. The average runtime for analyzing the full data set with

four individuals sampled from C is 47.5 hours for each replicate. The average runtime for

analyzing the subset with a single individual sampled from C is 0.3 hour for each replicate.

This shows the drastic effect of the number of individuals sampled on the running time of the

method.

The method’s robustness to violations in the assumptions. To study the robustness of

our method to violations in the underlying assumptions of the model, we simulated data sets

on the network of Fig 3(A) with 100, 200, 300, 400, and 500 sites under different conditions.

Our model assumes the markers are unlinked. To simulate data with linked markers, we

used the following command to produce multiple markers coming from the same gene tree:

Fig 9. Histograms of the branch lengths sampled by our method on the simulated data set corresponding to the

phylogenetic network of Fig 3(A). The five curves correspond to five independent runs. The red dashed lines

correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g009
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SimBiMarkersinNetwork -diploid -dominant -op -pi0 0.5 -sd seed
-num numstes -sitespergt numsites_per_genetree -tm <A:A_0; C:
C_0;L:L_0;Q:Q_0;R:R_0> -truenet “[0.006](((((Q:0.004:0.006)
I5#H1:0.002:0.005:0.7,A:0.006:0.006)I3:0.016:0.005,
L:0.022:0.006)I2:0.02:0.005,(I5#H1:0.003:0.005:0.3,
R:0.007:0.006)I4:0.035:0.005)I1:0.038:0.005,C:0.08:0.006);”
-out “markers.txt”;

Here, numsites_per_genetree was once set to 10 to generate 10 markers per gene tree, and then

set to 100 to generate 100 markers per gene tree. Naturally, the number of gene trees generated

was divided by either 10 or 100, respectively. Each setting was used to generate 100, 200, 300,

400, 500 sites in total, and with 5 replicates using different integers as the random seeds.

Our model assumes a constant rate of mutation across all lineages and all markers. We sim-

ulated data sets with rate variation across markers and lineages. In the second step of our simu-

lator, we adopted a rate variation which mimics the GTR + I + Γ setting in [38]. The following

is one of the commands we used to simulate rate variation:

SimBiMarkersinNetwork -diploid -dominant -op -pi0 0.5 -sd seed
-num numsites -rvl -i 0.1 -a 3.0 -g 3 -tm <A:A_0; C:C_0;L:L_0;
Q:Q_0;R:R_0> -truenet “[0.006](((((Q:0.004:0.006)

Fig 10. Histograms of the population mutation rates sampled by our method for each of the branches on the

simulated data set corresponding to the phylogenetic network of Fig 3(A). The five curves correspond to five

independent runs. The red dashed lines correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g010
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I5#H1:0.002:0.005:0.7,A:0.006:0.006)I3:0.016:0.005,
L:0.022:0.006)I2:0.02:0.005,(I5#H1:0.003:0.005:0.3,
R:0.007:0.006)I4:0.035:0.005)I1:0.038:0.005,C:0.08:0.006);”
-out “markers.txt”;

The command was repeated with “-rvl -i 0.1 -a 3.0 -g 3”, “-rvl -i 0.2 -a 5.0 -g 3”, “-rvm -i 0.1 -a

3.0 -g 3”, “-rvm -i 0.2 -a 5.0 -g 3”. Here, “-rvl” means rate variation across lineages, “-rvm”

means rate variation across markers, “-i” indicates the proportion of invariable sites, “-a” indi-

cates the shape for the gamma rate heterogeneity, and “-g” indicates the number of categories

for the discrete gamma rate heterogeneity model. Five replicates were generated for each set-

ting, using different integers as the random seeds.

Furthermore, in our Bayesian formulation given by Eq (16), the prior p(C) includes a Pois-

son distribution on the number of reticulation nodes in the network. In our experiments here,

we varied the mean of the Poisson distribution in {1, 3}.

In total, there are 8 settings. For each setting, we generated five replicate 100-, 200-, 300-,

400-, 500-site data sets.

As above, we employed a pre-burn-in phase to obtain a good starting point, from which we

then started an MCMC chain for each data set with 1.5 × 106 iterations, 2 × 105 burn-in itera-

tions, and one sample collected from every 500 iterations. In total, there were 13,000 samples

collected for each data set with different number of sites and different settings.

Fig 11. A histogram of the inheritance probabilities sampled by our method on the simulated data set

corresponding to the phylogenetic network of Fig 3(A). The five curves correspond to five independent runs. The

red dashed line corresponds to the true value.

https://doi.org/10.1371/journal.pcbi.1005932.g011
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To avoid reporting results for all branch lengths in the sampled networks, Fig 16 shows the

estimation of the height of trees and networks sampled in each setting. The five bars from bot-

tom to top correspond to the minimum, first-, second-, third-quantile, and the maximum. The

most important striking pattern in the figure is that as the number of sites increases, the esti-

mate of the height converges to the true value and the variance in the estimated value becomes

smaller. In all cases of assumption violations, 500 sites are sufficient to obtain a very accurate

estimate of the height.

Fig 17 shows the estimates of the number of reticulations under the different settings and

violations. In all cases, 500 sites were sufficient to recover the true number of reticulations,

regardless of the violation in assumptions. Interestingly, the set mean of the Poisson distribu-

tion on the number of reticulations has an almost identical effect regardless of whether it is set

to 1.0 or to 3.0. The inclusion of linked loci has much more of an effect on the number of retic-

ulations inferred. As can be seen in the figure, even with 400 sites, the method still infers trees

in many of the samples. Rate variation across lineages and sites has a similar effect, which is

overcome by the method when 400 sites or more are used.

The topological differences between the inferred networks and true one and between the

inferred trees and the true backbone tree are shown in Fig 18. With the exception of the

100-site data sets, the method is very robust in terms of the topology of the inferred network.

When it infers a network, it almost always obtains the true one. When it infers a tree, it almost

always obtains the backbone tree.

Fig 12. The phylogenetic network used to investigate effect of multiple individuals. The branch lengths of the

phylogenetic networks are measured in units of expected number of mutations per site. The inheritance probabilities

are marked in blue.

https://doi.org/10.1371/journal.pcbi.1005932.g012
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Put together, these results point to a very robust method. In particular, when at least 500

sites are used, the method is almost completely robust to any of the violations we studied here.

Analysis of an empirical data set

Two small subsets of a larger AFLP data set of multiple New Zealand species of the plant genus

Ourisia (Plantaginaceae) [39] were analyzed, including previously unpublished AFLP profiles

from two different hybrid individuals O. × cockayneana and O. × prorepens (herbarium codes

follow [40] [continuously updated]). There are both morphological [41] and molecular

(Meudt unpubl.) data supporting the hybrid nature of these two individuals. Although other

Ourisia hybrid combinations have been reported in New Zealand [41], O. × cockayneana and

O. × prorepens are perhaps the most common, both involve O. caespitosa as a putative parent,

and both have been formally named. Each data subset comprised five diploid individuals in

total, which means ten haploid individuals were effectively analyzed due to the correction for

dominant markers. A Poisson distribution with λ = 1.5 as the prior on the number of reticula-

tions, an exponential prior with λ = 2.0 as the prior on the species divergence times, and a

Gamma distribution with α = 2.0 and β = 0.05 as the prior on the population mutation rates

were adopted. An MCMC chain was run on each data subset for 1.5 × 106 iterations with

Fig 13. Histograms of the branch lengths sampled by our method on the simulated data set corresponding to the

phylogenetic network of Fig 12. In all cases, a single diploid individual was sampled from A, B, and D. Blue: A single

diploid individual is sampled from C. Green: Four diploid individuals are sampled from C. The red dashed lines

correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g013
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2 × 105 burn-in iterations, and a sample was collected every 500 iterations. We used following

commands:

MCMC_BiMarkers -cl 1500000 -bl 200000 -sf 500 -prebl 5000
-premc3 (2.0, 4.0) -premr 1 -diploid -dominant 1 -op
-varytheta -pp 1.5 -ee 2.0 -mr 2 -pl 4 -ptheta 0.1 -sd 12345678
-taxa (HYB_175a_Otir, cae_174a_Otir, mcccal_176a_Otir,
mccmcc_133a_Burn, mcplac_13392_Sylv) -tm <HYB:HYB_175a_Otir;
cae:cae_174a_Otir; mcccal:mcccal_176a_Otir;
mccmcc:mccmcc_133a_Burn; mcplac:mcplac_13392_Sylv>

MCMC_BiMarkers -cl 1500000 -bl 200000 -sf 500 -prebl 5000
-premc3 (2.0, 4.0) -premr 1 -diploid -dominant 1 -op
-varytheta -pp 1.5 -ee 2.0 -mr 2 -pl 4 -ptheta 0.1 -sd 12345678
-taxa (HYB_203a_Shri, cae_196a_Shri, sesses_199a_Shri,
mccmcc_133a_Burn, sesspl_PH_SealA) -tm <HYB:HYB_203a_Shri;
cae:cae_196a_Shri; sesses:sesses_199a_Shri;
mccmcc:mccmcc_133a_Burn; sesspl:sesspl_PH_SealA>

Fig 14. Histograms of the population mutation rates sampled by our method for each of the branches on the

simulated data set corresponding to the phylogenetic network of Fig 12. In all cases, a single diploid individual was

sampled from A, B, and D. Blue: A single diploid individual is sampled from C. Green: Four diploid individuals are

sampled from C. The red dashed lines correspond to the true values.

https://doi.org/10.1371/journal.pcbi.1005932.g014
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Data subset with hybrid O. × cockayneana. The first data subset comprises the following

five individuals: O. macrocarpa (voucher: Meudt 133a, MPN 29546; herbarium codes follow

[40] [continuously updated]), O. macrophylla subsp. lactea (Cameron 13392, AK 294893),

hybrid O. × cockayneana (Meudt 175a, MPN 29710), O. caespitosa (Meudt 174a, MPN 29705),

and O. calycina (Meudt 176a, MPN 29713). The number of loci in this data set is 802.

The maximum a posteriori (MAP) phylogenetic network is shown in Fig 19. The effective

sample size was larger than 2,000. All topologies sampled successfully detected the hybrid and

its putative parents. If the hybrid is removed, the topology in Fig 19 also agrees with that of

Fig. 3 in [39].

It should be noted that the posterior standard deviations reported in Fig 19 are much larger

than those in [7]. This is perhaps not unexpected because we only used one individual per spe-

cies in our analysis. Our simulation study shows that increased sampling of individuals helps

the estimation of parameters, whereas when only one individual per species is sampled, the

posterior distribution is much wider.

Data subset with hybrid O. × prorepens. The second data subset comprises O. sessilifolia
subsp. splendida (Heenan s.n., MPN 32149), O. macrocarpa (Meudt 133a, MPN 29713), hybrid

O. × prorepens (Meudt 203a, MPN 29774), O. sessilifolia subsp. sessilifolia (Meudt 199a, MPN

29771), and O. caespitosa (Meudt 196a, MPN 297695). The number of loci in this data set is

820.

Fig 15. A histogram of the inheritance probabilities sampled by our method on the simulated data set

corresponding to the phylogenetic network of Fig 12. In all cases, a single diploid individual was sampled from A, B,

and D. Blue: A single diploid individual is sampled from C. Green: Four diploid individuals are sampled from C. The

red dashed lines correspond to the true value.

https://doi.org/10.1371/journal.pcbi.1005932.g015
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The MAP phylogenetic network is shown in Fig 20. The effective sample size was also larger

than 2,000 in this case. The result shows our method successfully detected the hybrid and its

putative parents. If the hybrid is removed, the topology in Fig 20 also agrees with that of Fig. 3

in [39]. As with the first data subset, the posterior standard deviations reported in Fig 20 are

large.

Nevertheless, the mean values of inferred parameters are very similar for the two species

that were common to the two data subsets, O. caespitosa and O. macrocarpa. The mean value

of inferred population mutation rate of their corresponding leaves are similar. This shows that

the method is both robust and consistent.

In summary, our method was able to extract the signal of the hybrid and successfully

recover its putative parents, as well as reconstruct network topologies which were consistent

with a previous study of a larger dataset [39].

Fig 16. The height of trees and networks sampled under different simulation settings and violations in the

different assumptions. The red dashed lines correspond to the true values. In each panel at most one condition is

violated. (a) Mean of 1.0 is used for the Poisson prior on the number of reticulations. (b) Mean of 3.0 is used for the

Poisson prior on the number of reticulations. (c) Linked loci: 10 sites are generated per gene tree. (d) Linked loci: 100

sites are generated per gene tree. (e) Rate variation across lineages with 0.1 of invariable sites and 3.0 as shape of

gamma rate heterogeneity. (f) Rate variation across lineages with 0.2 of invariable sites and 5.0 as shape of gamma rate

heterogeneity. (g) Rate variation across markers with 0.1 of invariable sites and 3.0 as shape of gamma rate

heterogeneity. (h) Rate variation across markers with 0.2 of invariable sites and 5.0 as shape of gamma rate

heterogeneity.

https://doi.org/10.1371/journal.pcbi.1005932.g016
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Discussion

Phylogenetic networks allow for representing evolutionary relationships that involve both ver-

tical and horizontal transmission of genetic material. Extensions of the multispecies coalescent

process to include hybridization events have facilitated the development of statistical methods

for inferring and analyzing phylogenetic networks from gene tree estimates and sequence data.

A major challenge with using gene tree estimates as the input to species phylogeny inference

methods is the error in these estimates. While using the sequence data directly overcomes this

issue, the problem of recombinations within loci can confound inferences. Using bi-allelic

markers from individual, independent loci could provide a way to avoid both the gene tree

uncertainty and recombination problems (the two are not necessarily independent). Further-

more, it is important to note that many biological studies use data sets that consists of bi-allelic

markers and no available sequence alignment data for individual loci.

Bryant et al. recently devised an algorithm for inferring species trees from bi-allelic genetic

markers while analytically integrating out the gene trees for the individual loci [7]. In this

Fig 17. The ratio of trees (blue) and 1-reticulation networks (green) sampled under different simulation settings

and violation in the different assumptions. The true number of reticulations is 1. In each panel at most one condition

is violated. (a) Mean of 1.0 is used for the Poisson prior on the number of reticulations. (b) Mean of 3.0 is used for the

Poisson prior on the number of reticulations. (c) Linked loci: 10 sites are generated per gene tree. (d) Linked loci: 100

sites are generated per gene tree. (e) Rate variation across lineages with 0.1 of invariable sites and 3.0 as shape of

gamma rate heterogeneity. (f) Rate variation across lineages with 0.2 of invariable sites and 5.0 as shape of gamma rate

heterogeneity. (g) Rate variation across markers with 0.1 of invariable sites and 3.0 as shape of gamma rate

heterogeneity. (h) Rate variation across markers with 0.2 of invariable sites and 5.0 as shape of gamma rate

heterogeneity.

https://doi.org/10.1371/journal.pcbi.1005932.g017
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paper, we extended their algorithm significantly so as the likelihood of a phylogenetic network

given bi-allelic markers could be computed while integrating out the gene trees. This method

complements existing ones that use gene tree estimates or sequence alignments as input for

statistical inference of phylogenetic networks.

We implemented a Bayesian method for sampling the posterior of phylogenetic networks

and their associated parameters from bi-allelic data, and studied its performance on both sim-

ulated and empirical data. The results indicate a very good performance of the method. This

work adds a powerful method to the biologist’s toolbox that allows for estimating reticulate

evolutionary histories.

A major bottleneck of the method is its computational requirements. While the SNAPP

method is very time consuming on species trees, our method is much more time consuming

given that reticulations in the phylogenetic network give rise to an explosion of the number of

partial likelihoods that need to be computed and stored. More generally, the number of taxa in

a data set has more of an effect on the running time of the method than the number of loci

does. In particular, two aspects of the phylogenetic network under consideration affect the

Fig 18. The topological distance (pink) between sampled networks and true network, and the Robinson-Foulds

distance (orange) between sampled trees and true backbone tree, under different simulation settings and violation

in the different assumptions. In each panel at most one condition is violated. (a) Mean of 1.0 is used for the Poisson

prior on the number of reticulations. (b) Mean of 3.0 is used for the Poisson prior on the number of reticulations. (c)

Linked loci: 10 sites are generated per gene tree. (d) Linked loci: 100 sites are generated per gene tree. (e) Rate variation

across lineages with 0.1 of invariable sites and 3.0 as shape of gamma rate heterogeneity. (f) Rate variation across

lineages with 0.2 of invariable sites and 5.0 as shape of gamma rate heterogeneity. (g) Rate variation across markers

with 0.1 of invariable sites and 3.0 as shape of gamma rate heterogeneity. (h) Rate variation across markers with 0.2 of

invariable sites and 5.0 as shape of gamma rate heterogeneity.

https://doi.org/10.1371/journal.pcbi.1005932.g018
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Fig 19. The MAP phylogenetic network for the subset with the hybrid O. × cockayneana (Meudt 175a, MPN 29710) and putative parents. The width of each tube

is proportional to the population mutation rate of each branch, which is printed on each tube. The length of each tube is proportional to the length of the

corresponding branch in units of expected number of mutations per site (scale shown). Blue arrows indicate the reticulation edges and their inheritance probabilities

are printed in blue.

https://doi.org/10.1371/journal.pcbi.1005932.g019

Fig 20. The MAP phylogenetic network for the subset with the hybrid O. × prorepens (Meudt 203a, MPN 29774) and putative parents. The width of each tube is

proportional to the population mutation rate of each branch, which is printed on each tube. The length of each tube is proportional to the length of the corresponding

branch in units of expected number of mutations per site (scale shown). Blue arrows indicate the reticulation edges and their inheritance probabilities are printed in

blue.

https://doi.org/10.1371/journal.pcbi.1005932.g020
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computational requirements of the method: The number of leaves under the reticulation

nodes and the diameter of each of the reticulation nodes. As discussed above, the set of lineages

entering a reticulation node must be bipartitioned in every possible way. This number of line-

ages is dependent on the number of leaves under that reticulation node. For example, if a sin-

gle individual is sampled from a single species that exist under the reticulation node, then the

number of bipartitions is very small (only two bipartitions exist). However, if n individuals are

sampled from a single species that exist under the reticulation node or one individual is sam-

pled per n species that exist under the reticulation node, then a number of bipartitions on the

order of 2n arises. This computation becomes much more demanding if there are more reticu-

lation nodes on the path to a lowest articulation node. As for the diameter—which is the num-

ber of branches on the paths between the two parents of the reticulation node and a lowest

articulation node above them, the larger its value, the more demanding the computation

becomes. An important direction for future research is improving the computational require-

ments of the method to scale up to data sets with many taxa.
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28. Solı́s-Lemus C, Ané C. Inferring phylogenetic networks with maximum pseudolikelihood under incom-

plete lineage sorting. PLoS Genetics. 2016; 12(3):e1005896. https://doi.org/10.1371/journal.pgen.

1005896 PMID: 26950302

Bayesian inference of phylogenetic networks from bi-allelic genetic markers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005932 January 10, 2018 31 / 32

https://doi.org/10.1016/j.ympev.2015.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26238460
https://doi.org/10.1093/molbev/mss086
http://www.ncbi.nlm.nih.gov/pubmed/22422763
https://doi.org/10.1002/bies.201500149
http://www.ncbi.nlm.nih.gov/pubmed/26709836
https://doi.org/10.1093/oxfordjournals.molbev.a004046
http://www.ncbi.nlm.nih.gov/pubmed/12446813
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1146/annurev.micro.55.1.709
https://doi.org/10.1046/j.1365-294x.2001.01216.x
https://doi.org/10.1046/j.1365-294x.2001.01216.x
http://www.ncbi.nlm.nih.gov/pubmed/11298968
https://doi.org/10.1016/j.tree.2005.02.010
https://doi.org/10.1038/nature05706
http://www.ncbi.nlm.nih.gov/pubmed/17361174
https://doi.org/10.1146/annurev.ecolsys.28.1.359
https://doi.org/10.1126/science.1086949
https://doi.org/10.1126/science.1086949
http://www.ncbi.nlm.nih.gov/pubmed/12907807
https://doi.org/10.1038/nrg3936
http://www.ncbi.nlm.nih.gov/pubmed/25963373
https://doi.org/10.1111/j.1365-294X.2009.04212.x
https://doi.org/10.1111/j.1365-294X.2009.04212.x
http://www.ncbi.nlm.nih.gov/pubmed/19457196
https://doi.org/10.1073/pnas.1406298111
https://doi.org/10.1186/s13059-016-0889-0
https://doi.org/10.1186/s13059-016-0889-0
http://www.ncbi.nlm.nih.gov/pubmed/26921238
https://doi.org/10.1126/science.1258524
http://www.ncbi.nlm.nih.gov/pubmed/25431491
https://doi.org/10.1111/mec.13544
http://www.ncbi.nlm.nih.gov/pubmed/26808290
https://doi.org/10.1093/sysbio/syx085
http://www.ncbi.nlm.nih.gov/pubmed/29088409
https://doi.org/10.1371/journal.pgen.1002660
https://doi.org/10.1371/journal.pgen.1002660
http://www.ncbi.nlm.nih.gov/pubmed/22536161
https://doi.org/10.1073/pnas.1407950111
https://doi.org/10.1073/pnas.1407950111
https://doi.org/10.1186/1471-2164-16-S10-S10
http://www.ncbi.nlm.nih.gov/pubmed/26450642
https://doi.org/10.1371/journal.pgen.1005896
https://doi.org/10.1371/journal.pgen.1005896
http://www.ncbi.nlm.nih.gov/pubmed/26950302
https://doi.org/10.1371/journal.pcbi.1005932


29. Wen D, Yu Y, Nakhleh L. Bayesian Inference of Reticulate Phylogenies Under the Multispecies Network

Coalescent. PLoS Genetics. 2016; 12(5):e1006006. https://doi.org/10.1371/journal.pgen.1006006

PMID: 27144273

30. Than C, Ruths D, Nakhleh L. PhyloNet: a software package for analyzing and reconstructing reticulate

evolutionary relationships. BMC Bioinformatics. 2008; 9(1):322. https://doi.org/10.1186/1471-2105-9-

322 PMID: 18662388

31. Wu Y. Coalescent-based species tree inference from gene tree topologies under incomplete lineage

sorting by maximum likelihood. Evolution. 2012; 66(3):763–775. https://doi.org/10.1111/j.1558-5646.

2011.01476.x PMID: 22380439

32. Yu Y, Ristic N, Nakhleh L. Fast algorithms and heuristics for phylogenomics under ILS and hybridiza-

tion. BMC Bioinformatics. 2013; 14(Suppl 15):S6. https://doi.org/10.1186/1471-2105-14-S15-S6 PMID:

24564257

33. Liu L. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics. 2008;

24(21):2542–2543. https://doi.org/10.1093/bioinformatics/btn484 PMID: 18799483

34. Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika. 1995; 82(4):711–732. https://doi.org/10.1093/biomet/82.4.711

35. Nakhleh L. A metric on the space of reduced phylogenetic networks. IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB). 2010; 7(2):218–222. https://doi.org/10.1109/TCBB.

2009.2

36. Robinson DR, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981; 53:131–147. https://

doi.org/10.1016/0025-5564(81)90043-2

37. Zhu J, Yu Y, Nakhleh L. In the light of deep coalescence: revisiting trees within networks. BMC Bioinfor-

matics. 2016; 17(14):415. https://doi.org/10.1186/s12859-016-1269-1 PMID: 28185572

38. Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent model. Bioinformatics.

2014; 30(23):3317–3324. https://doi.org/10.1093/bioinformatics/btu530 PMID: 25104814

39. Meudt HM, Lockhart PJ, Bryant D. Species delimitation and phylogeny of a New Zealand plant species

radiation. BMC Evolutionary Biology. 2009; 9(1):111. https://doi.org/10.1186/1471-2148-9-111 PMID:

19457251

40. Thiers B. Index Herbariorum: A global directory of public herbaria and associated staff. New York

Botanical Gardens Virtual Herbarium; [continuously updated].

41. Meudt HM. Monograph of Ourisia (Plantaginaceae). Systematic Botany Monographs. 2006; 77:1–188.

Bayesian inference of phylogenetic networks from bi-allelic genetic markers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005932 January 10, 2018 32 / 32

https://doi.org/10.1371/journal.pgen.1006006
http://www.ncbi.nlm.nih.gov/pubmed/27144273
https://doi.org/10.1186/1471-2105-9-322
https://doi.org/10.1186/1471-2105-9-322
http://www.ncbi.nlm.nih.gov/pubmed/18662388
https://doi.org/10.1111/j.1558-5646.2011.01476.x
https://doi.org/10.1111/j.1558-5646.2011.01476.x
http://www.ncbi.nlm.nih.gov/pubmed/22380439
https://doi.org/10.1186/1471-2105-14-S15-S6
http://www.ncbi.nlm.nih.gov/pubmed/24564257
https://doi.org/10.1093/bioinformatics/btn484
http://www.ncbi.nlm.nih.gov/pubmed/18799483
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1109/TCBB.2009.2
https://doi.org/10.1109/TCBB.2009.2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1186/s12859-016-1269-1
http://www.ncbi.nlm.nih.gov/pubmed/28185572
https://doi.org/10.1093/bioinformatics/btu530
http://www.ncbi.nlm.nih.gov/pubmed/25104814
https://doi.org/10.1186/1471-2148-9-111
http://www.ncbi.nlm.nih.gov/pubmed/19457251
https://doi.org/10.1371/journal.pcbi.1005932

