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Abstract

Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently,

conservation assessments of polar bears identify the ongoing reduction in sea ice to repre-

sent a significant threat to their survival. However, the additional role of sea ice as a poten-

tial, indirect, source of energy to bears has been overlooked. Here we used the highly

branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with

quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather

than pelagic, carbon contributions dominated the marine component of polar bear diet

(72–100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean

estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to

the most rapidly increasing open water season. Therefore, our data illustrate that for future

Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears

will not only be impacted by a change in their physical habitat, but also potentially in the sup-

ply of energy to the ecosystems upon which they depend. This data represents the first

quantifiable baseline that is critical for the assessment of likely ongoing changes in energy

supply to Arctic predators as we move into an increasingly uncertain future for polar

ecosystems.

Introduction

Polar bears (Ursus maritimus) are an ice-obligate species, utilising sea ice for hunting, travel-

ling and mating[1]. Accordingly, the recent decline in Arctic sea ice extent[2] is likely to be a

serious threat to polar bears[3] as recognised by the IUCN[4]. Recent simulations have esti-

mated a 71% probability that the mean global population of polar bears will decrease by> 30%

over the next 3–4 decades if sea ice continues to decline at its current rate[3]. However, such

assessments are based mainly on the value of sea ice as a physical habitat and its influence on,

for example, seasonal sea ice-terrestrial migratory movement [5], hunting and feeding success

[6], habitat availability for denning [7] and cub survival effects [8] and so likely underestimate
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the additional potential value of sea ice as an underlying energy source to the food web upon

which polar bears prey.

Annually, sympagic (sea ice associated) algae are estimated to provide a substantial propor-

tion of marine energy, ranging from 3 to 57% of total Arctic primary production [9, 10] and

can, during spring, represent up to as much as 100% of the algal primary production in surface

waters[11]. The importance of this ice algae to the base of the Arctic ecosystem has been quan-

tified previously using stable carbon and nitrogen isotopes, fatty acids and highly branched

isoprenoid (HBI) lipids to demonstrate that the dietary content of some zooplankton can be as

high as 100% sympagic algae[12–14]. However, the challenges associated with tracing and

quantifying sympagic carbon through higher trophic levels of Arctic food webs, experimen-

tally, is challenging, which likely explains a general paucity of such quantitative sympagic car-

bon data for polar bears in the literature.

Recently, the analysis of certain source-specific diatom lipid biomarkers (HBIs) has begun

to provide quantitative estimates of sympagic carbon in the Arctic. First identified in the

marine diatoms Haslea ostrearia and Rhizosolenia setigera [15], HBIs have subsequently been

reported in a number of other marine diatom genera including Pleurosigma and Berkeleya[16,

17]. Some of these diatom sources represent common components of sympagic algae and pro-

duce one mono-unsaturated HBI that has not been identified in any pelagic species. Thus, the

Arctic sea ice diatoms H. crucigeroides, H. spicula,H. kjellmanii and P. stuxbergii var rhom-
boides biosynthesise a highly source-specific HBI which has become known as the “Ice Proxy

with 25 carbon atoms” or “IP25” (Fig 1[18, 19]). Following the initial detection of IP25 within

Arctic animals[20], direct (albeit qualitative) links were subsequently observed between sym-

pagic algae and Arctic consumers[21]. In an effort to quantify the composition of sympagic

algae carbon consumed, analysis of IP25 in animals were supplemented with further HBIs that

are common within pelagic diatoms (e.g. III; Fig 1). Recently the planktonic species R. setigera,

R. polydactyla f. polydactyla and R. hebetata f. semispina were identified as in-situ sources of III

in polar and sub-polar marine settings[22], with Pleurosigma intermedium also producing III

in culture[23]. In fact, III is the most widely reported HBI in marine sediments worldwide[24],

supporting its common production by certain phytoplanktic marine diatoms. By combining

the relative abundances of HBIs of both sea ice and planktonic algae origin (Eq 1), a unique

HBI-fingerprint, or “H-Print”, was initially proposed as an indicator of the relative composi-

tion of sympagic (H-Print = 0%) and pelagic (H-Print = 100%) algae in a given sample.

H � Print %ð Þ ¼
ðpelagic HBIsÞ

ðsympagic HBIs þ pelagic HBIsÞ
� 100 Eq 1

Although other HBIs have been reported in the marine environment[25], it was recently

found that IP25 and II best represented sympagic algae, while III most clearly represented phy-

toplankton[25]. Using these three HBIs, the ability of the H-Print to accurately reflect mixed-

source compositions of algae was determined by calibration, following analysis of known

quantities of sympagic and pelagic algae[25]. From this calibration, a linear model was con-

structed to enable quantitative estimates of the proportion of sea ice vs. phytoplanktic algae

carbon in animals. Subsequent tests demonstrated that the original source H-Print was trans-

ferred into the food web[25]. Accordingly, analysis of the H-Print has the potential to provide

the quantitative data required to assess the proportion of sympagic algae carbon reaching

higher trophic levels[12].

Here we apply the H-Print approach to samples of polar bear liver to obtain quantitative

estimates of the proportions of sympagic and pelagic marine carbon reaching these top preda-

tors. Based on the established reliance of bears on sea ice as a physical platform for hunting[1],
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we anticipated that the ecosystem upon which the bears were dependent for prey would con-

tain higher proportions of sea ice carbon and that this would be reflected in bears with rela-

tively low H-Prints.

Materials and methods

Sample collection

Polar bear samples were collected by Inuit hunters during annual subsistence hunts and

were harvested adhering to local guidelines, following territorial acts and regulations; sam-

ples were collected under approved Wildlife Research Permits 2012–026, 2013–018, and

2014–006. We analysed freeze-dried liver (HBIs and δ15N) and adipose tissue (fatty acids)

from 55 individual polar bears (Fig 2) between October-May (2012–14) (S1 Table). Liver

was chosen for HBI and δ15N analysis because it is metabolically highly active resulting in

Fig 1. Structures of highly branched isoprenoid lipids. Structures of C25 highly branched isoprenoid lipids measured

in polar bear liver for calculation of quantitative H-Prints.

https://doi.org/10.1371/journal.pone.0191631.g001
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Fig 2. Geographic setting. Map of polar bear subpopulations and locations of harvest (red dots) in Baffin Bay (BB), western Hudson

Bay (WH) and southern Hudson Bay (SH). Coastlines were created using the Global Self-consistent, Hierarchical, High-resolution

Geography database distributed under the GNU Lesser General Public license [28].

https://doi.org/10.1371/journal.pone.0191631.g002
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turnover times on the order of weeks to 1 month[26]. This was demonstrated previously

where H-Print analysis of >300 ringed seals (Pusa hispida) enabled a seasonal scale assess-

ment of diet in Cumberland Sound[27].

H-Print

Liver tissue (0.4–2.4 g) was saponified (~ 5 mL H2O:MeOH, 1:9; 20% KOH; 60 mins; 70˚C) and

mixed with hexane (3 x 4 mL), then centrifuged (2 min; 2500 revolutions per minute), with hex-

ane then being transferred and dried (N2 stream). Dried lipid extracts were fractionated (5 mL

hexane) using column chromatography (SiO2; 0.5 g). HBIs were analysed by gas chromatogra-

phy–mass spectrometry and quantified by measuring the mass spectral intensities for each HBI

in selective ion monitoring (SIM) mode[29]. The H-Print was calculated using the analytical

intensities of three HBIs (IP25:m/z 350.3, II;m/z 348.3 and III;m/z 346.3), according to Eq 2,

since this combination enabled a linear calibration to be constructed previously[25].

H � Print %ð Þ ¼
ðIIIÞ

ðIP25 þ IIþ IIIÞ
� 100 Eq 2

Sympagic carbon estimates

Sympagic carbon, as a proportion of marine-origin carbon within polar bear livers, was esti-

mated using Eq 3 from previous H-Print calibration (R2 = 0.97, P =<0.01, df = 23[25]). Sym-

pagic carbon estimates are expressed here as mean values with the 99% confidence interval of

estimates in parenthesis.

Sympagic carbon % ¼ 101:08 � 1:02�H � Print Eq 3

Quantitative fatty acid signature analysis (QFASA)

Fatty acids were extracted with CHCl3, MeOH and H2O [30] and derivatised to methyl esters

using MeOH and H2SO4[31] and analyzed using gas-liquid chromatography—flame-ioniza-

tion detection[31]. Diet composition of each bear was estimated via quantitative fatty acid sig-

nature analysis, QFASA[32], by modelling fatty acid (FA) profiles or “signatures” of bears as a

linear combination of mean prey signatures. Our prey dataset included 6 prey species available

in all 3 regions. Prey were collected during the annual subsistence harvest in Baffin Bay, west-

ern Hudson Bay, southern Hudson Bay, and adjacent polar bear subpopulations from 2003

to 2012. When available, prey samples from a given polar bear subpopulation were used to

model polar bear diet from that same subpopulation. In cases when prey samples were not

available for a given region, samples were used from adjacent/nearby regions. For Baffin Bay,

prey libraries are detailed in Galicia et al[33] and are comprised of bearded seal (Erignathus
barbatus; Davis Strait, Foxe Basin and Western Hudson Bay), beluga whale (Delphinapterus
leucas; Davis Strait, Lancaster Sound, Northern Beauport Sea, Southern Beaufort Sea, Southern

Hudson Bay and Western Hudson Bay), harbour seal (Phoca vitulina; Western Hudson Bay),

harp seal (Pagophilus groenlandicus; Davis Strait), ringed seal (Lancaster Sound) and walrus

(Odobenus rosmarus; Foxe Basin and Lancaster Sound). Narwhal (Monodon monoceros; Baffin

Bay and Lancaster Sound) was included in the model for Baffin Bay, but was absent from bear

diet composition. For southern Hudson Bay and western Hudson Bay, prey libraries were

combined, comprising bearded seal (Western Hudson Bay), beluga whale (Western Hudson

Bay and Southern Hudson Bay), harbour seal (Western Hudson Bay), harp seal (Davis Strait),

ringed seal (Western Hudson Bay) and walrus (Foxe Basin). Diet simulations conducted in

previous studies[33, 34] indicated that differences in fatty acid composition among these prey

species were greater than spatial differences within prey species, and thus pooling prey samples

Sea ice derived carbon in polar bear tissue
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increases sample size and improved model performance. Polar bear diets were estimated as the

proportional combination of prey that minimized statistical distance between observed and

modelled predator FA signatures, after accounting for patterns of lipid metabolism[32, 35].

Modelling procedures are described elsewhere[34].

Nitrogen stable isotopes

Prior to stable nitrogen isotope (δ15N) analysis on polar bear liver samples, lipids were re-

moved using a 2: 1 CHCl3:MeOH solvent following a modified Bligh and Dyer method[36].

Between 400–600 μg lipid extracted liver tissue was weighed into tin capsules where δ15N val-

ues were measured by a Thermo Finnigan DeltaPlus mass-spectrometer coupled with an ele-

mental analyzer[29]. Analytical precision, (SD of replicate analyses; NIST 1577c, n = 7; NIST

8414, n = 46; tilapia muscle, n = 53), was� 0.1‰ Instrumental accuracy (NIST 8573 and 8547,

n = 19) was� 0.1‰.

Numerical analysis

Numerical analyses were undertaken in R (version 3.3.2). QFASA diet estimates were done

using the “qfasar” package (version 1.2.0)[37]. Conversion of H-Prints into sympagic carbon

estimates were done using the previously defined regression model; Eq 3[25]. The Kruskal-

Wallis test was used to compare H-Prints, δ15N and QFASA-derived diets between sample var-

iables (population, sex, age and harvest date) since it does not assume data normality and

accepts groups of different sizes (homoscedasticity was confirmed using Bartlett’s test at

P = 0.05). Where significant differences were identified, Nemenyi’s post-hoc test (corrected for

ties) was used to carry out pairwise comparisons to identify significantly different factors. Sta-

tistical tests were considered significant at α = 0.05.

Results

Each of the HBIs were quantifiable within all 55 liver samples, including bears of both sexes

and all ages from each year and population sampled (Fig 3). Low H-Prints (<10%), indica-

tive of mainly sympagic carbon contributions, were recorded for every month, accounting

for 53% of all bears sampled. Only two bears had H-Prints > 50% (December 2012 and Feb-

ruary 2013). None of the tested variables were significant predictors of polar bear H-Prints

including; sample months (H(5) = 9.8, P = 0.08), population (H(2) = 2.4, P = 0.3), bear sex

(H(1) = 0.3, P = 0.8), bear age (H(1) = 1.9, P = 0.2) or estimated prey species (P = >0.4).

Conversion of H-Prints to estimates of sympagic carbon, using Eq 3, indicated that, on aver-

age 86% (72–100; 99% CI) of the marine carbon reaching polar bears was of sympagic origin

(Table 1).

In contrast to H-Prints, mean δ15N values differed regionally (H(2) = 13.5, P = 0.001)

with Baffin Bay bears being generally higher than those from southern (P = <0.001) and

western (P = 0.04) Hudson Bay. Neither bear age (H(1) = 3.5, P = 0.06), or sex (H(1) = 0.07,

P = 0.8) influenced the δ15N of bears for any of the three population in this study. QFASA

indicated highly variable diet compositions between individual bears with significant

regional differences in some prey (Table 2). For example, together, bearded seals and ringed

seals comprised 47%, 70% and 76% of mean bear prey in Baffin Bay, western Hudson Bay

and southern Hudson Bay respectively (Fig 3). In contrast, the average contribution of

beluga whale, as a component of bear diet, was 28%, 1% and 0% from the same three

locations.

Sea ice derived carbon in polar bear tissue
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Discussion

Consistent with previous biomarker studies of marine mammals[29], HBIs were present in all

polar bears analysed here. Thus, H-Print data have now been reported across all trophic levels

of the Arctic food web, from particulate organic matter[11] to primary and secondary consum-

ers[20, 29, 38] and top trophic level predators here, confirming that the H-Print can be applied

throughout the Arctic ecosystem. For polar bears here, this enabled the high contribution of

sympagic carbon to diet to be identified (Table 1), revealing the importance of sympagic car-

bon to the food web, including bears, throughout winter, as hypothesised. Indeed, our data

Table 1. Summary data for polar bears studied.

Population Biometrics Sympagic carbon (%) Sea ice melt onset (days

decade-1; 1979–2014)

[2]

Interval between spring ice melt and

autumn freeze (days decade-1; 1979–

2014)[2]

Age yrs (5

+: 3–4)

Sex

(M:F)

Years sampled

(2012:2013:2014)

Mean Minimum maximum

Baffin Bay 20:13 18:7 7:10:8 82 (68–

96)

47 (33–

61)

100 (85–

114)

-7.3 +12.7

Western

Hudson Bay

20:9 25:4 16:13:0 88 (74–

102)

45 (31–

59)

100 (86–

115)

-5.1 +8.7

Southern

Hudson Bay

21:13 28:6 0:20:14 87 (73–

101)

35 (20–

48)

100 (86–

115)

-3.0 +6.6

all bears 61:35 71:17 23:43:22 86� (72–

100)

- - - -

�Calculated using the mean of the three sub-populations

Biometric data with sympagic carbon estimates (%), calculated from H-Prints using Eq 3 (99% CI[25]), of bear diet with regional sea ice metrics.

https://doi.org/10.1371/journal.pone.0191631.t001

Fig 3. Polar bear (Ursus maritimus) data. a) QFASA estimates of marine mammal prey (Bearded seal (Erignathus barbatus), beluga whale (Delphinapterus leucas),
harbour seal (Phoca vitulina), harp seal (Pagophilus groenlandicus), ringed seal (Pusa hispida) and walrus (Odobenus rosmarus)) consumed by individual polar bears

(stacked coloured bars) and overlaid with H-Prints (black circles) of individual bears. Individual polar bears are grouped according to the geographical location of

collection and the corresponding subpopulation designation: Baffin Bay, western Hudson Bay and southern Hudson Bay (see Fig 2). For each subpopulation, mean

QFASA estimates of marine mammal prey and mean (black circles) and median (grey diamonds) H-Prints are summarised in the single plot adjacent to each

subpopulation plot (for H-Print-derived estimates of sympagic carbon, refer to Table 1). b) δ15N of individual bears (grey squares). For each subpopulation, mean δ15N are

summarised in the single plot (box and whiskers) adjacent to each subpopulation plot.

https://doi.org/10.1371/journal.pone.0191631.g003
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demonstrate that sympagic carbon was underpinning the carbon supply of the majority of

bears during sampling (October to May), with comparable H-Print values for both Baffin Bay

and Hudson Bay bears, despite the significant regional differences in prey composition

(Table 2; Fig 3A).

Diversity of polar bear prey in Baffin Bay and the surrounding regions has been observed

previously[33] and is linked to selective foraging related to variability in bear age and sex, sea

ice dynamics, migratory patterns and regional differences in prey availability[34] and commu-

nity structure lower in the food web[39], all of which probably contribute to the variability

observed in δ15N of bears here (Table 2, Fig 3B). In contrast, neither bear age or sex, nor sam-

pling month or population were significant predictors of polar bear H-Prints here. Further,

the generally high proportion of sympagic carbon underpinning polar bear diets during winter

did not appear to be prey-dependant. While a larger-scale study of polar bear H-Prints might

provide further insight into the reason for the variability in H-Prints observed, we note that

estimates of mean sympagic carbon composition were high across the populations studied.

Such high sympagic carbon composition is consistent with the high incorporation of sympagic

carbon in lower trophic levels, including amphipods[12, 14, 40, 41] and fish[42, 43], which

facilitate the transfer of sympagic carbon to higher trophic levels. Our data extend the knowl-

edge of the extent of this transfer by providing numerical estimates of sympagic carbon within

polar bears during winter. Indeed, 89% of bears here were sampled over winter (October–

March) and all contained IP25. Since sympagic carbon (including IP25) is only produced within

sea ice during the spring sea ice algae bloom (March–June[44, 45]), it is possible that the IP25

and related HBIs detected in polar bear livers during winter had bioaccumulated, similar to

contaminants such as mercury[46] or organochlorine compounds[47]. If so, H-Print data

would be expected to provide an indication of diet averaged over a longer period of feeding

(e.g. months to years). However, since turnover times in liver tissue is more rapid than for

muscle or adipose[26], for example, we believe H-Print data represent much more recent feed-

ing habits, as demonstrated previously by monthly resolved changes in H-Prints of ringed

seals[27]. On this basis we reason that, while the sympagic carbon present in the ecosystem

during October to March likely originated from the previous spring bloom (IP25 is produced

within sea ice during the spring bloom[44]), it only recently became incorporated into the eco-

system. Certainly, following the spring bloom, ice algal cells are exported to the benthos in the

Arctic[48–54] resulting in marine sediments containing an important supply of carbon to

both pelagic [55, 56] and benthic consumers [57–59] year round. This pathway of sympagic

carbon supply to the coastal shelf ecosystem, long after the spring ice algae bloom, has also

been observed using HBIs where high abundances of IP25 in sediments and benthic consum-

ers, was coupled with an absence of IP25 from the overlying waters and sea ice in Rjipfjorden,

Svalbard in January 2012[60]. Combined, these observations led to the proposition that sym-

pagic carbon stored in sediments was providing energy to consumers during winter,

Table 2. Regional differences in polar bear prey.

Bearded seal Harbour seal Harp seal Ringed seal Beluga whale Walrus δ15N H-Print

Baffin Bay A A A A A A A A

Western Hudson Bay B B AB A B A B A

Southern Hudson Bay AB B B A B A B A

Pairwise multiple comparisons (Nemenyi’s post-hoc test) to identify where significant between-population differences occur in QFASA estimates of polar bear prey and

δ15N and H-Print of polar bears. Different letters indicate significant (α = 0.05) differences.

https://doi.org/10.1371/journal.pone.0191631.t002

Sea ice derived carbon in polar bear tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0191631 January 23, 2018 8 / 13

https://doi.org/10.1371/journal.pone.0191631.t002
https://doi.org/10.1371/journal.pone.0191631


underpinning the idea that sympagic carbon remains important for the ecosystem, including

polar bears, year-round and should, therefore, be considered in conservation assessments.

Assessments of polar bear conservation status are, at present, linked to the impact of sea ice

decline as a physical habitat[3], specifically in relation to forcing changes in seasonal sea ice-

terrestrial migratory habits [5], hunting and feeding success [6], availability of suitable habitat

for denning [7] and the associated effect on the survival of cubs [8]. With each of the regions

studied here experiencing recent reductions in sea ice extent and thickness[2, 3], it is antici-

pated that sympagic carbon availability will also decrease, leading to a likely replacement by

pelagic-based systems[61]. Indeed, such change is already becoming evident in Cumberland

Sound (south east Baffin Island) where decreasing sea ice extent, coupled with an increased

presence of pelagic fish[62], has been proposed as the cause of changing trends in isotope sig-

natures and H-Prints within beluga whale over the last 30 years[29, 63]. However, in contrast

to the beluga whale, polar bears are more sensitive to changes in trophic structure and dietary

diversity[64] that are likely to result from ongoing decline in sea ice cover[61, 65]. This higher

sensitivity to change is supported in the communities studied here where bears are showing

reduced body condition that is attributed to sea ice decline in Baffin Bay[66], western Hudson

Bay[67], and southern Hudson Bay[68]. As sea ice shows continued decline[69], this may

become more pronounced. Indeed, here we observed that bears with the lowest mean sympa-

gic carbon (Baffin Bay), although not statistically significant at present, coincided with the

most rapidly increasing summer open water period (Table 1). With a trend of continued sea

ice decline[69], it is anticipated that a longer-term H-Print analysis of Baffin Bay polar bears

might identify whether this link is significantly related to increasing open water or other fac-

tors, such as the presence of the North Water (NOW) polynya in northern Baffin Bay[70]. At

present, at least, the high contributions of sympagic carbon observed in polar bears here sug-

gest that future conservation assessments should include estimates of the sympagic/pelagic car-

bon component of polar bear diet, and this could be especially valuable if applied to long-term

monitoring programmes.

Supporting information
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