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Abstract

High-dimension single-cell technology is transforming our ability to study and understand cancer. 

Numerous studies and reviews have reported advances in technology development. The biological 

insights gleaned from single-cell technology about cancer biology are less reviewed. Here we 

focus on research studies that illustrate novel aspects of cancer biology that bulk analysis could not 

achieve, and discuss the fresh insights gained from the application of single-cell technology across 

basic and clinical cancer studies.
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1. Introduction

The concept of analyzing heterogeneous cell populations at single-cell resolution has long 

held great interest for investigators across diverse fields. Methods that characterize single 

cells, such as flow cytometry and immunohistochemistry, have been workhorses of 

biological research for decades. However, what has changed over the last few years is the 

dramatic increase in the number of diverse approaches that address high-dimensional 

analysis of single cells. These approaches include single-cell transcriptome and genome 

sequencing, as well as high throughput qPCR and mass cytometry for multiplex detection of 

proteins. High dimension also refers to the number of cells being analyzed. Depending on 

the technique, this can be hundreds to millions of single cells. Thus, high-dimension single-

cell analysis involves not only high number of targets, but also a high number of cells.

It is thought that cancer starts with changes in a single cell. Shaped by selective forces 

exerted by the microenvironment, the immune system, and exposure to a wide variety of 

environmental insults, additional changes accumulate until a tumor is formed that escapes 

immune surveillance and grows progressively. Indeed, each malignancy is its own 

experiment in evolution, leading to heterogeneity among cancer cells within one patient and 
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heterogeneity amongst patients with the same disease. One of the hallmarks of high-

dimension single-cell analysis is its unparalleled ability to characterize cell-to-cell 

heterogeneity. Thus, using high-dimension single-cell analysis to study cancer is a natural 

fit, explaining why this approach is increasingly adopted by cancer researchers. As 

summarized in Figure 1 and reviewed below, single-cell technology has transformed our 

understanding of tumor heterogeneity, including intrinsic and extrinsic factors that could co-

drive disease initiation, progression, relapse, and metastasis. With the advancement of 

technology, it is now feasible to collect genome-wide profiles of DNA, RNA, histone 

modifications, chromatin accessibility, DNA methylation, nuclear lamina interactions and 

chromosomal contacts, as well as the protein signatures of single cells. This has prompted 

many reviews and perspectives on applying single-cell technology to cancer (extensively 

reviewed in Navin, 2015b [see Figure 1 for timeline] and others: Van Loo and Voet, 2014; 

Navin, 2015a; Sun et al., 2015; Saadatpour et al., 2015; Wills and Mead, 2015; Mato Prado 

et al., 2016; Schmidt and Efferth, 2016; Tellez-Gabriel, 2016; Ye et al., 2016; Zhang et al., 

2016; Zhu et al., 2017; Müller and Diaz, 2017). Rather than focusing on technology, this 

review addresses how single-cell analysis improves our understanding of tumor 

heterogeneity at multiple layers (genetic/epigenetic, transcriptomic, proteomic, multiomic).

2. Overview of single-cell technology

Different aspects of single-cell technology will be briefly summarized. Each section will 

begin with a list of recent reviews that provide more in-depth descriptions of the topic being 

discussed. These reviews should be consulted for citations to the primary references. Figure 

2 presents the overall workflow for single-cell analysis. After the isolation of single cells, 

high-dimension technology is applied either to discover heterogeneity (typically in a small 

set of patient samples) or to validate aspects of heterogeneity (typically in greater numbers 

of patient samples).

2.1. Single cell isolation

Most single-cell analysis requires isolation of single cells, previously reviewed by Bheda 

and Schneider (2014) and Hu et al. (2016). Table 1 in Wang and Navin (2015) effectively 

summarizes the methods used to isolate both abundant and rare cells. For abundant cells, 

these methods include serial dilution, mouth pipetting, flow sorting, robotic 

micromanipulation, and microfluidic platforms. The use of microfluidics is particularly 

attractive because it reduces the cost and labor required to process hundreds to thousands of 

single cells. As summarized by Prakadan et al. (2017) the most commonly used microfluidic 

methods include: (1) valve-based devices, which provide precise control of cells and 

reagents, and are best suited for implementing complex, integrated workflows; (2) droplets, 

which provide dramatic advantages in scale and speed, enabling very high throughput 

(thousands to tens of thousands of cells); and (3) nanowells (devices with nanoliter-sized 

wells), which provide operational simplicity and lower the barriers to adoption and the 

development of new protocols. One difficulty often encountered with microfluidics is the 

disconnect between the availability of microfluidic equipment and the timing/location of 

sample collection. Flow sorting into conventional microwells (typically 96- or 384-well 

plates) enables archiving of single-cell lysates, which provides flexibility in the timing and 
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location of sample collection. For example, single-cell lysates from multiple locations can be 

shipped on dry ice for processing at a central site. In addition, flow sorting enables precise 

capture of rare populations that are often depleted or lost using other methods. Thus, as 

shown in Figure 2A, flow sorting and microfluidics are now the predominant methods used 

for isolating single cells when the cells being analyzed are relatively abundant.

2.2. Genome analysis

Recent reviews of single-cell DNA sequencing (scDNA-seq) include Macaulay and Voet 

(2014), Wang and Navin (2015), Sun et al. (2015), Szulwach and Livak (2016), and Gawad 

et al. (2016). The common first step in analyzing the genome of a single cell is whole 

genome amplification (WGA). Three main types of WGA have been developed (Figure 2 in 

Gawad et al., 2016): (1) isothermal multiple displacement amplification (MDA); (2) PCR 

methods such as degenerate oligonucleotide primed PCR (DOP-PCR); and (3) hybrid 

methods such as PicoPLEX and multiple annealing and looping based amplification cycles 

(MALBAC) that have a short isothermal amplification step followed by PCR amplification. 

MDA has greater genomic coverage and a lower error rate, but the other two types of 

methods have better amplification uniformity. The DNA generated by WGA can be 

examined by whole-genome sequencing (WGS), whole-exome sequencing (WES), or 

targeted analysis. The combination of amplification method and mode of analysis depends 

on the type of variation being evaluated (see Figure 2B). For somatic copy number variation 

(sCNV), the preferred strategy has been PCR or hybrid amplification because of better 

uniformity, followed by very shallow WGS. For somatic single nucleotide variation (sSNV), 

WGS or WES of many single cells is expensive. A more efficient approach that has been 

commonly adopted is to use deep sequencing of a bulk sample to identify the sSNVs in a 

given tumor. Then, putative driver mutations or mutations implicated in clonal structure are 

detected in single cells using MDA because of broader coverage and lower error rate, 

followed by targeted analysis. The targeted analysis can be performed by sequencing of PCR 

amplicons or hybrid-selected DNA; or by PCR assays, digital PCR assays, or arrays.

2.3. Transcriptome analysis

Single-cell RNA sequencing (scRNA-seq) has been recently reviewed by Kolodziejczyk et 

al. (2015), Livak (2016), and Liu and Trapnell (2016). It is important to distinguish the two 

general methods used in scRNA-seq: whole transcript and end-tagging. Whole transcript 

analysis provides information about the entire transcript, including splice variants, the 

presence of mutations, and identification of fusion transcripts that cross translocation or 

inversion breakpoints. End-tagging methods incorporate cell barcodes during the initial 

reverse transcriptase step, enabling early pooling of single-cell samples and greatly 

simplifying the processing of a large number of cells. The highest throughput in terms of 

number of cells analyzed is achieved using end-tagging methods in droplets or nanowells. 

End-tagging methods also enable the use of unique molecular identifiers (UMIs; Hug and 

Schuler, 2003; Kivioja et al., 2011) that improve quantification by reducing the influence of 

amplification bias on transcript counting. Thus, end-tagging methods are preferred for high-

throughput quantification of transcripts while whole transcript methods are chosen when 

information about splice variants, mutations, and fusion transcripts is important. All scRNA-

seq methods, though, still have reduced sensitivity compared to targeted qPCR analysis 
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(Bengtsson et al., 2005; Dalerba et al., 2011; Livak et al., 2013) or in situ hybridization (see 

2.6). As depicted in Figure 2B, scRNA-seq is used to discover and cluster the transcriptional 

profiles of individual cells and qPCR or other methods are used to detect identified 

signatures in a greater number of patients.

2.4. Epigenome analysis

Aspects of single-cell epigenomic analysis have been reviewed in Bheda and Schneider 

(2014), Wills et al. (2015), and Clark et al. (2016). Epigenomic analysis methods that have 

been adapted for single cells include reduced representation bisulfite sequencing (RRBS), 

whole-genome bisulfite sequencing, chromatin immunoprecipitation followed by sequencing 

(ChIP-seq), the assay for transposase-accessible chromatin (ATAC-seq), DNase-seq, and the 

chromatin conformation assay Hi-C. Publications on these single-cell techniques have 

mostly been proof-of-principle demonstrations and publications documenting meaningful 

application of epigenomic methods to the study of cancer are just beginning to emerge.

2.5. Proteome analysis

Single-cell proteomic analyses have been reviewed by Heath et al. (2016) and Su et al. 

(2017) and are quite diverse (summarized in Table 1 in Heath et al., 2016). For the most part, 

detection of proteins in or from single cells has relied upon antibody recognition. Thus, 

single-cell proteomics is predominantly a targeted, rather than global, approach. Two 

approaches that might be considered high dimension are mass cytometry (reviewed by 

Spitzer and Nolan, 2016) and single-cell barcode chips (SCBCs) for multiplex detection of 

secreted proteins (Lu et al., 2015).

2.6. Spatial context measurements

To date, most high-dimension single-cell data have been collected from dispersed cancer 

cells. Spatial context, though, is very important because the microenvironment affects many 

elements of cancer development. A standard tool for detecting individual RNAs in cells is 

RNA FISH (fluorescent in situ hybridization). By direct hybridization of probes to RNA, 

RNA FISH is more sensitive than any method that uses reverse transcriptase to synthesize 

cDNA and is the gold standard for validating scRNA-seq and single-cell qPCR results. By 

performing sequential rounds of hybridization with multiplex probes, SeqFISH (Lubeck et 

al., 2014) and MERFISH (Chen et al., 2015) make RNA FISH into a high-dimension single-

cell technology that retains spatial information. For example, with four dyes and eight 

rounds of hybridization, SeqFISH can cover the entire transcriptome (48 = 65,536). The 

limitation preventing this whole-transcriptome analysis is the expense of all those 

fluorescent probes. A related technique is FISSEQ (Lee et al., 2015) that enables in situ 
sequencing of RNA. Crosetto et al. (2015) have reviewed these and other spatially resolved 

transcriptomic methods. More recently, Nichterwitz et al. (2016) reported combining laser 

capture microscopy (LCM) with global transcriptome profiling via Smart-seq2. SWITCH 

technology (Murray et al., 2015) enables multiple rounds (>20) of antibody labeling to 

achieve high-dimension proteomic imaging, similar to multiplexed immunohistochemical 

consecutive staining on single slide (MICSSS) reported by Remark et al. (2016). 

Bodenmiller (2016) has reviewed other multiplexed epitope-based tissue imaging methods, 

including mass cytometry imaging and multiplexed ion beam imaging (MIBI). Finally, Cell 
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Painting (Bray et al., 2016) measures approximately 1500 morphological features to 

generate a rich profile of individual cells. These emerging technologies that combine 

imaging with high-dimension content are just beginning to be applied to the study of cancer.

2.7. Data analysis

Addressing the computational challenges in analyzing high-dimension single-cell data, 

especially sequencing data, is beyond the scope of this review. Of note is a recent review by 

Wagner et al. (2016) on scRNA-seq. Earlier reviews on this topic include Stegle et al. 

(2015), Bacher and Kendziorski (2016), and Poirion et al. (2016). Analysis of single-cell 

DNA sequencing data has often used tools developed for bulk analysis. Recent methods that 

focus on analysis of single-cell data include Ginkgo for sCNV (Garvin et al., 2015) Monovar 

for sSNV (Zafar et al., 2016) and OncoNEM for reconstructing clonal lineage trees (Ross 

and Markowetz, 2016).

3. Heterogeneity in cancer

Clinically evident cancer can be conceptualized as emerging from initial malignant 

transformation and subsequent rounds of evolution in concert with editing due to 

interactions with the tumor microenvironment (Dunn et al., 2004). Critical questions in the 

fields of cancer biology and therapeutics include understanding the basis of heterogeneity of 

cancer patients responding to diverse forms of therapy and dissecting the biologic and 

genomic features that might be predictive or prognostic of clinical response. Typically, 

informative specimens collected and characterized from cancer patients include samples 

collected at initial detection, at time of therapy response, remission, or relapse, and from 

metastatic lesions.

3.1. Genome heterogeneity

Next-generation sequencing of cancer genomes has not only accelerated the identification of 

key cancer driving events but also clarified the vast intratumoral genetic heterogeneity 

present within malignancies. A growing body of literature has pointed to the intratumoral 

heterogeneity of cancers as the fuel for disease relapse and metastasis, thereby highlighting 

the importance of understanding clonal structure and tumor evolution in the pathogenesis of 

disease (Landau et al., 2013; Mroz and Rocco, 2013; Papemmanuil et al., 2013).

3.1.1. Clonal structure and order of genetic alterations—The existing 

computational approaches for the analysis of intratumoral heterogeneity in bulk samples are 

based on inference of subclonal structure through analysis of mutant allele frequencies. 

Precise measurement of the clonal structure, however, requires single-cell analysis because 

there are certain combinations of mutant allelic frequencies that are impossible to 

computationally resolve (Paguirigan et al., 2015). DNA analysis at single-cell resolution can 

resolve the clonal structure (tumor phylogeny), define the order of genetic alterations, and 

trace dynamic clonal evolution, providing insights to critical steps in oncogenesis.

In the first landmark report of single-cell DNA analysis, Navin et al. (2011) reported WGS 

analysis of 200 single-cell nuclei (mean coverage 6% of the whole genome) from two breast 
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cancer patients following DOP-PCR amplification and demonstrated the ability of using 

single-cell DNA characterization to dissect intratumoral heterogeneity. Both samples 

exhibited a branched mode of copy number evolution, and, in both, metastatic tumors could 

be genetically linked to subclones from the primary site. Intratumoral heterogeneity in renal 

cancer, myeloproliferative disorder, and bladder cancer was demonstrated through single-

cell WES following MDA amplification (Xu et al., 2012; Hou et al., 2012; Li et al., 2012). 

Analysis of sSNVs within samples revealed the presence of common founding mutations 

and several clustered mutations, although clear resolution of subclonal structure and 

phylogeny was hampered by the high error rates of the method used. This points out the 

difficulty of using scDNA-seq for de novo discovery of sSNVs. In their study of a colon 

cancer patient, Yu et al. (2014) addressed this issue by using bulk WES of the tumor to 

validate their single-cell WES sSNV calls. The subclonal structure observed in their single-

cell analysis supports a biclonal origin for this tumor. Using functional validation, they also 

showed that a mutation in SLC12A5, rarely seen in bulk colon cancer analysis, is a potential 

cancer driver.

Using MDA amplification followed by low-coverage WGS, Francis et al. (2014) analyzed 

two primary glioblastomas with focal EGFR amplification present as extrachromosomal 

amplicons. By performing bulk DNA sequencing on each tumor, they could correct for the 

errors generated during single-cell MDA. Single-cell resolution enabled deciphering of 

complex subclonal structures involving differing wild-type EGFR copy numbers, differing 

variant EGFR copy numbers, different EGFR variant breakpoints, and different breakpoints 

for other variants. The occurrence of distinct subclones with different breakpoints deleting 

the same gene is an example of convergent evolution.

Single-cell DNA sequencing of cancer samples has been applied to the question of order of 

genetic alterations acquired in cancer progression. Wang et al. (2014) analyzed two breast 

tumors and found that aneuploid rearrangements occurred early in disease history, while 

point mutations evolved gradually, generating extensive clonal diversity. This study 

determined sCNVs using DOP-PCR on one set of single nuclei and sSNVs using MDA on a 

parallel set of single nuclei. Although they reduced the effect of technical errors on sSNV 

detection by analyzing G2/M nuclei and limiting the time for MDA, they still needed to 

validate sSNV calls with analysis of bulk samples. In order to address the expense of 

scDNA-seq, Gao et al. (2016) focused on the detection of sCNVs using DOP-PCR in a 

highly multiplexed format. They sequenced 1000 cells from 12 triple-negative breast cancer 

samples and demonstrated that most copy number aberrations were acquired at the earliest 

stages of tumor evolution in short punctuated bursts, followed by stable clonal expansions 

that form the tumor mass.

Targeted detection of DNA alterations in single cells has been used to determine the order of 

genetic events in blood cancer. By multiplex PCR amplification of specific targets in single-

cell genomic DNA followed by the use of qPCR assays to detect sCNVs, sSNVs, and a gene 

fusion, Potter et al. (2013) analyzed three ALL samples (range from 115 to 262 single cells 

per patient) and deciphered detailed phylogenies showing branched evolution. Using the 

same method, Papaemmanuil et al. (2014) found that RAG-mediated deletions occur 

throughout leukemic evolution in ETV6-RUNX1-positive ALL. Gawad et al. (2014) used 
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MDA followed by targeted sequencing of PCR amplicons to analyze 1479 single ALL cells 

from six patients. Cells were analyzed for sSNVs, large deletions, and IgH sequences. For 

five of six patients, they resolved branched clonal structures that could not be determined 

using bulk allele frequency data alone. All three of these studies support a temporal ordering 

of events in the development of ALL with the ETV6-RUNX1 translocation occurring in 
utero, followed by preleukemic evolution due to RAG-mediated deletions and accumulation 

of sSNVs. In a study of CLL, Wang et al. (2017) used MDA followed by targeted 

sequencing of PCR amplicons to detect sSNVs and sCNVs and showed that four out of five 

patients had a branched evolutionary structure. Quek et al. (2016) also used targeted scDNA-

seq to confirm clonal structures and frequencies in six AML samples.

3.1.2. Chromothripsis—An important aspect of genome heterogeneity is exploring the 

mechanisms that generate the heterogeneity. Particularly puzzling is the phenomenon of 

chromothripsis that involves extensive genomic rearrangements and sCNV generation 

restricted to one or a few chromosomes. Correlation of live-cell tracking with single-cell 

WGS enabled Zhang et al. (2015) to elucidate the mechanism of chromothripsis. Their 

analysis showed that genetic rearrangements are restricted to a chromosome or 

chromosomes mis-segregated into a micronucleus and involved the fragmentation and 

subsequent reassembly of a single chromatid upon reincorporation of the micronucleus into 

a daughter nucleus after cell division. Thus, scDNA-seq was instrumental in characterizing a 

new mutational process fueling cancer evolution, of which chromothripsis is one extreme 

example.

3.1.3. Understanding cancer biology

3.1.3.1 Tracing disseminated tumor cells DTCs): Micro-metastases of solid tumors often 

occur in the bone marrow, generating disseminated tumor cells (DTCs). Detection of DTCs 

at time of diagnosis is a prognostic marker for poor survival, indicating that DTCs may be a 

contributing factor to relapse. Demeulemeester et al. (2016) used known surface markers to 

isolate 56 putative DTCs from the bone marrow of six non-metastatic breast cancer patients. 

For one of the patients, some of the putative DTCs were isolated three years after diagnosis 

when a lymph node metastasis was found. These cells were analyzed by MDA followed by 

low-depth sequencing (1.7× average depth and 23.7% average coverage). After eliminating 

doublets, 19 of the putative DTCs were morphologically classified as tumor cells. By 

comparing the sCNVs of single cells to that of the primary tumors, they determined that 

only 10 of the 19 were true DTCs (53% true positive rate), and these were found in only 

three of the six patients. In these true DTCs, sSNVs found in the primary tumors were also 

detected. Many of the isolated cells were aberrant cells of unknown origin that have sCNVs 

unrelated to the primary tumor and have none of the sSNVs found in the primary tumor. For 

the three patients with true DTCs, the single-cell data enabled definitive delineation of tumor 

phylogeny. Interestingly, for the patient with the lymph node metastasis, two of the true 

DTCs isolated at diagnosis were more closely related to the metastasis than the primary 

tumor. The results of this study clearly show that all true DTCs were disseminated late in 

tumor progression. Previous reports of early dissemination were probably due to the 

confounding effect of the aberrant cells of unknown origin. The targeted scDNA-seq results 
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of Leung et al. (2017) also support a late-dissemination model of metastasis in colorectal 

cancer.

3.1.3.2 Identifying cancer genes: Sleeping Beauty (SB) insertional mutagenesis has been 

used for cancer gene discovery in animal models across different types of tumors. By 

integrating single-cell genome sequencing with a SB-based animal model of myeloid 

leukemia, Sleeping Beauty capture hybridization sequencing (SBCapSeq), developed by 

Mann et al. (2016), is a version of targeted scDNA-seq that focuses the sequencing on 

transposon insertion sites in single tumor cells. The analysis of just 26 cells from one tumor 

enabled the detection of clonal insertion events not detected by bulk methods and led to the 

identification of two dominant subclones, each containing a unique pair of interacting trunk 

drivers. Within each subclone, individual cells had different combinations of additional 

candidate cancer genes (CCGs) identified from bulk analysis. CCGs in the same cell are 

potentially genes that cooperated to drive clonal expansion. It is important to note that it is 

the power of single-cell correlation that enables the clear identification of potentially 

cooperating genes. This method can be adapted to any transposon-based system and 

therefore provides a tool to evaluate clonal dynamics and identify potential cooperating 

cancer genes in model tumors.

3.2. Transcriptome heterogeneity

The emergence of the Human Cell Atlas project (https://www.humancellatlas.org/) shows 

that scRNA-seq has become the method of choice for discovering cell types and states, and 

providing an initial characterization. Recent studies have demonstrated the potential for 

high-content single-cell RNA analysis to revolutionize our understanding of tumor biology 

ranging from deconvolution of heterogeneous cell populations in the cancer ecosystem, 

trajectory analysis of cellular state transitions, and dissection of underlying regulatory 

circuits to the profiling of circulating tumor cells (CTCs) and their relationship to cancer 

metastasis.

3.2.1. Cell type and developmental stages—A variety of studies have focused on the 

use of transcriptome analysis of single cells to distinguish subpopulations in solid tumors. 

An early study by Dalerba et al. (2011) used single-cell qPCR analysis to show that the 

heterogeneity found in colon cancer cells mirrors the heterogeneity found in normal colon 

differentiation. This demonstrates that developmental differentiation can be a key source of 

transcriptional heterogeneity in colon cancer, and perhaps in other cancers as well.

Patel et al. (2014) examined 430 single cells from five glioblastoma patients using SMART-

seq. They identified four meta-signatures that characterize individual cells across the tumors: 

cell cycle, hypoxia, complement/immune response, and oligodendrocyte function. Using a 

stemness signature derived from bulk RNA analysis, they showed that single tumor cells are 

continuously distributed along a stemness-differentiation axis, similar to the findings of 

Dalerba et al. (2011). Based on bulk RNA analysis, each of the tumors in this study could be 

classifed into one of four glioblastoma subtypes defined by The Cancer Genome Atlas 

(TCGA): proneural, neural, classical, and mesenchymal. At the single-cell level, though, 

each tumor was a mixture of these different subtypes. Thus, classification based on 
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population-level data is a simplification of the true transcriptional heterogeneity present in 

each tumor.

Li et al. (2017) used scRNA-seq to profile 375 cells from the colorectal tumors of 11 

patients and 215 cells from the nearby normal mucosa. They devised a new clustering 

algorithm called reference component analysis (RCA) that projects the single-cell data onto 

a global reference panel compliled from bulk transcriptome data spanning diverse tissue and 

cell types. One hallmark of this method is that it claims to normalize for the batch effects 

inherent in clinical samples. Using RCA, both tumor-derived and normal cells were classifed 

into seven clusters: epithelial cells, fibroblasts, endothelial cells, B cells, T cells, mast cells 

and myeloid cells. Further clustering subdivided the normal epithelial cells into nine 

different types of transit-amplifying (TA) cells, enterocytes, and goblet cells. Tumor 

epithelial cells were subdivided into stem/TA-like (93% of total), enterocyte 2B–like, and 

goblet-like cells. By first classifying the cells, analysis of normal/tumor differential 

expression could be achieved by comparing cells of the same type, for example, normal 

eptithelial cells to tumor epithelial cells. Such a detailed comparison using bulk analysis is 

challenging, if not impossible, because it would require the isolation of pure cell types from 

normal and tumor tissue. Data at single-cell resoluiton enables replacing physical 

fractionation with in silico fractionation. Strikingly, cancer-associated fibroblasts (CAFs) 

showed two different expression patterns, and both of these were distinct from fibroblasts 

found in normal mucosa. Furthermore, analysis of epithelial to mesenchymal transition 

(EMT) showed that, in these samples, expression of putative EMT transcription factors was 

limited to CAFs and was not found in tumor epithelial cells.

Two smaller-scale studies have begun applying single-cell transcriptome analysis to ovarian 

and breast cancer. For high grade serous ovarian cancer (HGSOC), TCGA studies have 

already defined four molecular subtypes of disease: mesenchymal, immunoreactive, 

proliferative, and differentiated. In a study by Winterhoff et al. (2017) in which 66 single 

cells were evaluated using scRNA-seq, clustering and geneset analysis led to a 

reclassification of disease subtype that was not apparent by bulk analysis. For example, 

stromal cells, not cancer cells, were enriched for the EMT gene signature, similar to the 

finding of Li et al. (2017). Furthermore, single cancer epithelial cells classified 

predominantly as proliferative, rather than mesenchymal as indicated from the bulk analysis. 

Likewise, Anjanappa et al. (2017) used multiple single-cell qPCR asays to analyze 420 

single cells from four breast tumors and 284 adjacent normal cells, and could detect 

stemness-associated transcripts and the PAM50 geneset (Parker et al., 2009). Their results 

enabled refined classification of the tumors in terms of basal/luminal characteristics.

3.2.2 Cancer stem cells—The rare nature of putative cancer stem cells has made them 

challenging to detect and characterize using conventional bulk methods. Multiple emerging 

studies, however, have demonstrated the ability of single-cell analysis to define these rare 

populations on the basis of distinct transcriptional signatures, as described below.

First, a series of studies have examined this question in breast cancer. Lawson et al. (2015) 

used a panel of 116 qPCR assays to analyze single cells from three xenograft models derived 

from genetically distinct human triple-negative breast cancers. Based on analyzing normal 
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single cells, 49 of the assays constituted a differentiation signature that could distinguish 

basal/stem, luminal, and luminal progenitor cells. They developed a sorting strategy to 

robustly isolate human metastatic cells (>99.5% detection rate) and used the qPCR assays to 

characterize single metastatic cells. Metastases were detected in 77 mice across the three 

models. Mice were further stratified from low burden to high burden based on the number of 

metastatic cells detected per animal. Gene expression was compared between early-stage 

(low burden) and late-stage (high burden) metastatic disease. They analyzed 441 metastatic 

and 523 primary tumor cells from 12 animals. High-burden metastatic cells were more 

similar to primary tumor cells than low-burden metastatic cells. Low-burden metastatic cells 

exhibited a basal/stem-like and quiescent signature compared to high-burden metastatic cells 

that had a more proliferative signature and a spectrum of luminal-like expression. Transplant 

experiments indicated that low-burden metastatic cells have tumor-initiating capacity. 

Across all three models, 1.4% of primary tumor cells cluster with low-burden metastatic 

cells, thereby providing an estimate of the prevalence of putative cancer stem cells in these 

breast cancer models. In a separate study using 80 qPCR assays, a stem-like signature could 

be identified in single cells from four breast cancer cell lines (two ER+ and two ER−) and 

two primary breast cancer samples collected immediately after surgery (Akrap et al., 2016).

Second, for human oligodendrogliomas, Tirosh et al. (2016b) analyzed 4,347 single cells 

collected from six patients with untreated grade II disease using Smart-seq2. The tumors had 

co-deletion of chromosome arms 1p and 19q and mutations in IDH1 or IDH2. Principal 

component analysis (PCA) showed that oligodendrogliomas are primarily composed of two 

subpopulations of glial cells that have astrocyte or oligodendrocyte signatures. A stem/

progenitor signature was established by profiling normal neural progenitor cells by scRNA-

seq. By combining the three PCA-derived signatures, the authors devised scores for 

stemness/differentiation and for lineage (astrocyte/oligodendrocyte) that were used to assign 

a cellular state to each tumor cell. By applying this scoring system to the six tumors, the 

prevalence of putative cancer stem cells was assessed as 5% or less in these samples.

Finally, adult and childhood acute lymphocytic leukemia (ALL) were characterized by 

Ebinger et al. (2016), focusing on relapse-inducing cells in xenografts. In order to identify 

the human cells in mice, transplanted tumor cells were transduced with lentivirus to express 

luceriferase for in vivo imaging, an artificial antigen for cell isolation using magnetic 

sorting, and a red fluorochrome for cell sorting by flow cytometry. Slowly proliferating cells 

were identified by retention of the dye carboxyfluorescein diacetate succinimidyl ester 

(label-retaining cells, LRC). LRC exhibited the adverse characteristics of dormancy, in vivo 
drug resistance, and leukemia-initating properties upon transplantation. Surprisingly, LRC 

and non-LRC had similar stem cell frequencies and leukemia-initiating potential, indicating 

that stemness alone was insufficient to define relapse-inducing cells in ALL, and suggesting 

that the additional properties of dormancy and drug resistance were possible surrogate 

attributes critical for aggressive biologic behavior. Supporting this model, LRC and primary 

minimal residual disease (MRD) cells from patients clustered together using single-cell 

transcriptome profiling, and both were distinct from tumor cells collected at diagnosis. The 

LRC properties of dormancy and drug resistance were further associated with their 

localization to a bone marrow niche close to the endosteum, suggesting that removing MRD 

cells from their protective niche might sensitize them to treatment.
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3.2.3. Tumor ecosystem—In addition to studying heterogeneous subpopulations of 

tumor cells, single cell approaches are increasingly appreciated as an important 

methodology to comprehensively deconvolute the cellular components within the 

microenvironment surrounding tumor cells. One of the first studies to employ such an 

approach was described by Tirosh et al. (2016a) in a scRNA-seq study of 4645 malignant, 

immune, and stromal cells from 18 metastatic and one primary melanoma tumors. Malignant 

and normal cell subpopulations were identified based on the presence of tumor-associated 

chromosomal deletions or by distinct lineage-specific expressed genes, respectively. Tumor 

cells exhibited two transcriptional cell states, MITF-high and AXL-high. Analysis of 

biopsies and cell lines treated with RAF and MEK inhibitors indicated the AXL-high 

program is associated with drug resistance after MAP kinase-targeted treatment. The 

precision of single-cell profiling enabled identification of robust signatures for five 

nonmalignant cell types found in the tumors: T cells, B cells, macrophages, endothelial cells, 

and CAFs. These signatures were applied to bulk data of 471 tumors from TCGA to infer 

the relative abundance of each cell type, segregating the tumors into 10 microenvironment 

clusters. It was observed that abundance of CAFs was associated with expression of the 

AXL-rich program and a set of CAF-expressed genes correlated strongly with T cell 

infiltration. Examination of T-cell expression patterns led to identification of a 28-gene core 

exhaustion signature. Further studies will see if this exhaustion signature can be used to 

predict response to immunotherapy.

Zheng et al. (2017) focused on tumor infiltrating lymphocytes in their scRNA-seq analysis 

of 5,063 T cells isolated from tumor, nearby normal tissue, and peripheral blood from six 

patients with liver cancer. Transcriptional signatures distinguished 11 T cell subsets, six CD4 

and five CD8. They investigated relationships among these subgroups using T cell receptor 

(TCR) reconstruction (Stubbington et al., 2016) to determine clonality and using Monocle 2 

(Trapnell et al., 2014) to discern developmental trajectories. Tumor tissue was enriched for 

regulatory T cells and exhausted CD8 cells, and both showed increased frequencies of clonal 

TCRs compared to blood and normal liver tissue. Both trajectory analysis and TCR clonality 

indicated that exhausted CD8 cells likely evolved from other types of CD8 T cells in the 

tumor. On the other hand, regulatory T cells did not seem to derive from conventional CD4 

cells in the tumor or by expansion of regulatory T cells from adjacent normal tissue. This 

study analyzing just T cells emphasizes the interest in characterizing immune cells in the 

tumor microenvironment, an effort prompted by breakthroughs in immunotherapy. Thus, 

many of the scRNA-seq studies in this review include some analysis of tumor-associated 

immune cells. Furthermore, the proteomic studies of Chevrier et al. (2017) and Lavin et al. 

(2017) showcase the power of using mass cytometry to characterize the immune response to 

cancer and therapy (see 3.5).

3.2.4. Transcriptome variability—Nguyen et al. (2016) screened 29,390 cells from 200 

clonal subpopulations of two breast cancer cell lines using cell-size imaging and identified 

sub-lines with highly variable (HV) or lowly variable (LV) cell morphology. Compared to 

LV, HV subpopulations exhibit increased metastatic capacity and resistance to 

chemotherapies when inoculated into the arterial circulation of mice. Profiling by scRNA-

seq showed that HV and LV subpopulations did not differ significantly in total transcript 
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abundance per cell nor could they be classified separately using linear or non-linear 

clustering. However, HV subpopulations do have greater variability as assessed by 

coefficient of variation (CV) per individual transcript. Using pathway analysis, spliceosome 

machinery and myeloid cell differentiation were identified as the only two gene sets that 

exhibited significantly higher variability in HV subpopulations derived from both parental 

cell lines. LV subpopulations engineered to have low expression of the splicing factor 

SNRNP40 showed increased metastatic capacity. This study revealed transcriptome 

variablility as a mechansim by which cancer subpopulations can enhance fitness and 

implicated changes in the splicing machinery as a possible contributor to this variability.

3.3. Genotype/phenotype correlation

Single-cell studies have clearly established the heterogeneity of cancer genomes and 

transcriptomes, but have raised the question of how these two types of heterogeneity are 

related. Understanding how heterogeneity affects function and tumor evolution requires 

correlating genotype with phenotype. Achieving the integration of genotype and functional 

information at the single-cell level dramatically increases the power of correlation analysis 

(Wills et al., 2013).

3.3.1. Multiomics—Multiomics refers to the generation and analysis of measurements of 

multiple molecular types in the same single cell, and has been recently reviewed by 

Macaulay et al. (2017). Figure 3 presents the types of questions that can be addressed using 

multiomic analysis.

Three methods have been reported for obtaining both DNA and RNA information from the 

same single cell. Han et al. (2014) developed a microfluidics platform that physically 

separates cytoplasm from nucleus and then prepares sequencing libraries from these 

fractions. G&T-seq (Macaulay et al., 2015; Macaulay et al., 2016) also uses physical 

separation. In this case, beads are used to capture mRNA and separate it from the genomic 

DNA. In DR-Seq (Dey et al., 2015), a few rounds of MALBAC are used to amplify both 

cDNA and genomic DNA prior to splitting the sample to prepare an RNA sequencing library 

using CEL-Seq and a DNA sequencing library using MALBAC.

In order to obtain both epigenome and transcriptome information, G&T-seq has been 

adapted to create scM&T-seq (Angermueller et al., 2016) in which the DNA component 

undergoes bisulfite sequencing to characterize the methylome. In scMT-seq (Hu et al., 2016) 

and sc-Trio-seq (Hou et al., 2016), nucleus and cytoplasm are physically separated prior to 

performing sc-RNA-seq and single-cell RRBS analysis. In sc-Trio-seq, the RRBS data is 

computationally analyzed to determine the sCNV genotype of each cell as well.

3.3.2 RNA genotyping—Multiomic technologies that analyze DNA and RNA are poised 

to directly address the question of genotype/phenotype correlation in cancer, but these types 

of studies have not yet been reported. What has been done, though, is the determination of 

genotype using RNA data. Studying 77 single xenograft cells derived from a human lung 

adenocarcinoma, Kim et al. (2015) analyzed their scRNA-seq data to determine which single 

cells had the KRASG12D mutation. Their ability to detect this mutation was enhanced 

because KRAS was amplified in the tumor they studied. They also performed fairly deep 

Wang et al. Page 12

Mol Aspects Med. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequencing to an average of 8.1 million reads per cell in order to increase coverage at 

mutation sites. Based on transcriptional signature, cells could be classifed as quiescent or 

proliferative. In this manner, four genotype/phenotype categories were identified: mutant 

KRAS/quiescent, mutant KRAS/proliferative, wild type KRAS/quiescent, and wild type 

KRAS/proliferative. Of these four, drug resistance was associated with the mutant/quiescent 

subpopulation.

Patel et al. (2014) inferred sCNVs from scRNA-seq data by averaging relative expression 

levels over large genomic regions. The rationale was that genes in deleted regions would 

have reduced expression relative to genes in diploid regions. They detected arm-level copy 

number variants but not smaller, focal deletions. They used this information to distinguish 

tumor cells from normal cells in their study of glioblastoma (see 3.2.1). Using a similar 

method to detect sCNVs in glioblastomas, Müller et al. (2016) associated a subclonal 

chromosome 13 deletion with leading edge tumor cells that had an infiltrating phenotype. 

The chromosome 13 deletion includes the miR-15a/16 micro-RNA cluster. Of up-regulated 

genes in the deletion subclone, 16% were direct validated miR-15a/16 targets and 78% were 

targets of transcription factors that are repressed by miR-15a/16.

Tirosh et al. (2016b) used the same sCNV inference method as Patel et al. (2014) in their 

study of oligodendroglioma (see 3.2.2). Surprisingly, distinct sCNV subclones within tumors 

displayed similar transcriptome profiles. This finding was supported by analysis of a 

subclonal CIC mutation. Thus, in these patients, transcriptional heterogeneity was driven by 

the developmental program generating astrocyte-like or oligodendrocyte-like cells, not by 

the genotype. Genetic heterogeneity may play a modulating role but this remains to be 

shown.

In a study of chronic lymphocytic leukemia (CLL), Wang et al. (2016) provide an example 

of using targeted, allele-specific PCR assays on single-cell RNA to detect mutations 

identified by bulk WES. The mutational status of the splicing factor gene SF3B1 in each cell 

was correlated with the results from targeted qPCR assays that quantified the expression of 

96 genes and aberrant splicing of 48 transcripts. Single-cell correlation clearly demonstrated 

that aberrant splicing is due to SF3B1 mutations in a specific segment of the heat repeat 

domain. Single cells with SF3B1 mutation were confirmed to express an altered splice 

variant of DVL2, leading to dysregulated Notch signaling. In a separate study, Wang et al. 

(2017) extended the strategy of using targeted, allele-specific PCR assays on single-cell 

RNA to include assays for germline SNPs to enable inference of sCNVs known from bulk 

WES, and to enable reconstruction of phylogenies for five CLL samples.

In their study of CML, Giustacchini et al. (2017) added sensitive detection of the BCR-ABL 
fusion transcript to scRNA-seq by including fusion-specific primers at the reverse 

transcriptase and cDNA amplification steps of the Smart-seq2 protocol. Detection of BCR-

ABL enabled unambiguous identification of CML cancer stem cells (BCR-ABL+) and non-

malignant hematopoietic stem cells (BCR-ABL−). A distinct transcriptional signature 

identified a subgroup of cancer stem cells that persisted through tyrosine kinase inhibitor 

therapy. Analysis of non-malignant stem cells indicated that CML disrupts normal 

hematopoiesis.
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3.3.3. Sensitivity of mutation detection—Three of the aforementioned studies used 

both scRNA-seq for whole transcriptome analysis and targeted assays to detect specific 

mutations in single-cell RNA. Their results indicate that targeted PCR assays are more 

sensitive than scRNA-seq for mutation detection. Wang et al. (2017) detected a specific 

ATM mutation in 2.1% of single cells analyzed by scRNA-seq compared to 70% for targeted 

PCR. In Tirosh et al. (2016b), the sensitivities for detecting a specific CIC mutation were 

0.66% for sequencing and 3.9% for targeted PCR. By adding fusion-specific primers to 

whole-transcriptome scRNA-seq, Giustacchini et al. (2017) increased the detection rate for 

the BCR-ABL fusion gene in K562 cells from 25% to 100%.

3.4. Epigenomic heterogeneity

As part of their characterization of the enhancer landscape of the human hematopoietic 

hierarchy, Corces et al. (2016) analyzed single cells from two AML patients by ATAC-seq. 

The single-cell regulatory profiles were projected onto principal components derived from 

the normal stages of hematopoiesis in order to assess cell state identity. Epigenomic 

heterogeneity in AML is due both to an admixture of different cell types and the presence of 

individual cells with mixed regulatory programs. The exact nature of these mixed regulatory 

programs varies from cell to cell and from patient to patient.

In their study of K562 cells, Litzenburger et al. (2017) used single-cell ATAC-seq and 

scRNA-seq to identify CD24 as a cell surface marker that co-varies with accessibility of the 

GATA motif in chromatin and with expression levels of the GATA1 and GATA2 transcripts. 

Compared to CD24lo, CD24hi cells have more accessible binding sites for stem-ness 

transcription factors. When cells were treated with the BCR-ABL tyrosine kinase inhibitor 

imatinib, 2.9% CD24hi cells continued to proliferate compared to 0.6% for CD24lo cells. 

Identifying cell-surface surrogate markers for chromatin states represents one path for 

relating functional consequences to single-cell epigenomic findings.

3.5. Proteomic heterogeneity

Levine et al. (2015) used the fact that mass cytometry detects both surface and intracellular 

antigens to determine the correlation between surface markers and signaling-based 

phenotypes in their study of acute myeloid leukemia (AML). This study interrogated bone 

marrow aspirate samples from 16 pediatric AML patients obtained at diagnosis and from 5 

healthy adults, and used a mass cytometry panel consisting of 16 surface markers and 14 

antibody probes targeting phosphorylation. Sixteen different perturbations, such as treatment 

with various cytokines, were used to elicit signaling responses, and over 15 million single 

cells were evaluated. Analysis of normal cells established signaling phenotypes for the 

different functional states of hematopoiesis and these phenotypes correlated with the 

expected surface markers. By contrast, AML cells did not show consistent correlations 

between signaling phenotypes and surface markers. For example, AML cells with the 

functional state corresponding to leukemic stem cells did not necessarily have the surface 

markers associated with hematopoietic stem cells. Thus, the surface markers typically used 

in diagnostics were assessed as inadequate indicators of cellular state and function in AML. 

Gullaksen et al. (2017) also used mass cytometric detection of phosphorylated proteins to 
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analyze the BCR-ABL signaling pathway in CML patients before treatment with a tyrosine 

kinase inhibitor and after three hours and seven days of treatment.

Chevrier et al. (2017) characterized the tumor microenvironment (TME) by using mass 

cytometry to analyze T cells and tumor-associated macrophages (TAMs) that had infiltrated 

the TME in 73 clear cell renal cell carcinoma patients. Cells were tested with panels of 

antibodies either for T cells or for TAMs, each panel consisting of over 30 probes. Analysis 

of 3.5 million cells identified 22 T cell phenotypes and 17 TAM phenotypes. One particular 

TAM subpopulation, designated M-5, correlated with exhausted T cells and somewhat with 

regulatory T cells. Poor progression-free times were associated with high frequencies of 

M-11 or M-13 macrophages and low frequency of the M-5 set, with the suggestion that the 

relative proportions of these subpopulations could serve as a predictor of progression-free 

survival.

In a similar study, Lavin et al. (2017) used mass cytometry to generate an immune cell atlas 

of early lung cancer by analyzing 29 patients with treatment-naïve Stage I non-small cell 

lung cancer. For each patient, cells were collected from the tumor, normal lung, and the 

blood, and analyzed with one of two panels of more than 30 antibodies each. For tumor and 

normal lung, nearby tissue was also prepared for sectioning and analyzed by MICSSS (see 

2.6) in order to get spatial information. From a single patient, over 1100 tumor cells and 700 

normal lung cells were analyzed by scRNA-seq. The most abundant immune cells associated 

with tumors were T cells and mononuclear phagocytes. Spatially, immune cells were found 

predominantly in the stroma and invasive margin, although some macrophages and T cells 

infiltrated the tumor. The scRNA-seq data identified a subpopulation of macrophages with a 

transcriptional phenotype distinct from normal tissue. Overall, the lung tumors were 

enriched for a particular class of macrophages, CD1c+ dendritic cells, regulatory T cells, and 

exhausted T cells compared to normal lung. Cells depleted in the tumors included CD141+ 

dendritic cells, CD16+ monocytes, natural killer cells, and Granzyme B+ effector cells.

4. Impact on diagnostics

4.1. Solid tumors and circulating tumor cells (CTCs)

4.1.1 Liquid biopsy—Liquid biopsies for analyzing CTCs or circulating tumor DNA 

(ctDNA) in blood promise to be a minimally-invasive means for cancer diagnosis, 

monitoring during and following treament, and prognosis (Kidess and Jeffrey, 2013). Table 1 

in Calabuig-Fariñas et al. (2016) compares the utility of CTCs and ctDNA by listing the 

advantages and limitations of each. Although ctDNA may be more sensitive for detecting 

tumor-specific mutations (Shaw et al., 2017), the power of single-cell correlation means that 

CTCs provide more information for evaluating cancer phenotypes. The challenge for the 

study of CTCs is that this population is extremely rare, with abundances ranging from a few 

to hundreds per ml of blood (Krivacic et al., 2004; Zieglschmid et al., 2005; Racila et al., 

1998).

4.1.2 Isolation of CTCs—Song et al. (2017) provide a comprehensive review on CTC 

isolation and include over 50 references to the many devices that have been fabricated. Other 

recent reviews include Zhang et al. (2016) and Hardingham et al. (2015). Isolation can be 
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achieved using cell-surface markers, physical characteristics, or a combination of the two. 

Affinity reagents used to capture CTCs based on molecular markers include antibodies, 

peptides, and aptamers. The only clinically validated and FDA-cleared test for capturing and 

enumerating CTCs is the CellSearch® system that uses magnetic beads coated with 

antibodies to EpCAM. Label-free methods use physical characteristics such as size, density, 

compressibility, or polarizabilty. Most recently developed devices incorporate microfluidics 

to enhance capture efficiency and increase throughput. van der Toom et al. (2016) 

summarize the pitfalls and limitations of the most common CTC isolation and detection 

methods. For example, the rationale for using size selection to separate larger CTCs from 

smaller white blood cells is based mostly on the properties of cancer cell lines not true 

CTCs. The use of the marker EpCAM to identify CTCs is problematic because it labels only 

epithelial cells and CTCs can have variable EpCAM expression. van der Toom et al. (2016) 

have suggested using multiple biomarkers and especially disease-specific markers. Of 

particular note for high-dimension single-cell analysis is a selection-free system descrbed by 

Campton et al. (2015). Nucleated blood cells were spread on a microscope slide and 

screened to identify putative CTCs using automated immunofluorescence detection with 

multiple markers. A single-cell retrieval device was used to pick the putative CTCs for 

WGA and downstream analysis.

4.1.3. DNA analysis of CTCs—Initial efforts in the analysis of this rare population have 

focused on the feasibility of detecting tumor-specific alterations in CTCs. Heitzer et al. 

(2013) reported the detection of tumor-specific sCNVs and sSNVs in 37 CTC cells from six 

patients with stage IV colorectal carcinoma by the combination of comparative genomic 

hybridization array (copy number variation) and targeted deep sequencing for a panel of 68 

genes. sSNVs identified in bulk primary tumors or metastases were found in the CTCs. For 

sSNVs initially detected exclusively in CTCs, ultradeep sequencing showed that most of 

these were, in fact, subclonal events in the matched primary tumors. Other studies, including 

Jiang et al. (2015) and Bingham et al. (2017), support the finding that CTCs are genetically 

related to primary tumors and metastases.

Lohr et al. (2014) reported a robust process for identifying true sSNVs in CTCs. They 

captured CTCs from 36 patients with metastatic prostate cancer (0–200 CTCs per 3.75 ml of 

blood). Focusing on five patients with more than 20 CTCs captured per individual, they 

amplified genomic DNA from more than 300 CTCs by MDA, but the libraries from only 42 

CTCs survived their rigorous qualification process. After WES, sSNVs were identified using 

census-based calling (i.e., the sSNV is observed in two or more CTCs). For one patient, 70% 

of the mutations found in CTCs were present in matched primary tissue or metastatic lymph 

node. Of 10 early trunk and 56 metastasis-associated mutations identified in non-CTC tumor 

samples, 90% and 73%, respectively, were found in CTC exomes. More recently, the same 

group isolated circulating multiple myeloma cells and performed both single-cell DNA- and 

RNA-seq (Lohr et al., 2016). In this case, the DNA analysis used MDA followed by targeted 

sequencing of 35 loci. Both genetic and transcriptomic information confirm that CTCs are 

similar to bone marrow multiple myeloma cells. For genomic analysis, detailed comparison 

of CTCs and bone marrow biopsies found that both detected the same pattern of somatic 

mutations and enabled identification of actionable oncogenes. This establishes single-cell 
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analysis of CTCs as a viable alternative to bone marrow biopsies in the monitoring and 

treatment of multiple myeloma.

For patients with lung adenocarcinoma and metastases in the liver, Ni et al. (2013) 

performed MALBAC WGA on single CTCs followed by WES for detection of sSNVs and 

low-depth WGS to detect sCNVs. For four patients analyzed, the sSNVs detected in CTCs 

overlapped with sSNVs found in primary and metastatic samples, but the pattern of sSNVs 

was heterogeneous from CTC to CTC. Remarkably, analysis of seven patients found that 

CTCs from the same patient have very similar sCNV patterns. For five of these patients, the 

sCNV patterns are similar between patients, with an average of 78% of the gain and loss 

regions shared between any two patients. In all patients, the sCNV pattern in CTCs closely 

resembles the metastasis rather than the primary tumor. Gao et al. (2017) extended this type 

of study to examine CTCs from colon, breast, gastric, and prostate cancer patients. For one 

of the colon cancer patients, 28 individual primary tumor cells were analyzed as well. 

Phylogenetic analysis indicates that the sCNVs in the primary tumor cells converge to the 

sCNV pattern found in the five CTCs analyzed for this patient. The pattern in CTCs was 

similar to the sCNV patterns in three separated metastatic lymph nodes. Across all the 

cancers studied, CTCs from the same patient had a similar sCNV pattern. There was also 

some simililarity between patients with the same type of cancer. The exception was breast 

cancer where different patients had distinctive patterns, perhaps reflecting the subtype 

diversity of breast cancer. Overall, the findings suggest that certain sCNVs are selected for 

during the process of metastasis.

4.1.4. RNA analysis of CTCs—The first scRNA-seq analysis of CTCs was by Ramskold 

et al. (2012). They analyzed six CTCs from a patient with melanoma as well as normal 

single cells and identified distinct gene expression patterns specific for melanoma CTCs. 

Ting et al. (2014) compared the transcriptome of 93 single CTCs with matched primary 

tumors from a mouse model of pancreatic cancer. All the CTCs clustered separately from 

primary tumor and tumor-derived cell lines. Compared to primary tumor, CTCs showed 

reduced expression of epithelial markers, heterogeneous expression of mesenchymal 

markers, and increased expression of stem cell markers. The finding of increased expression 

of extracellular matrix (ECM) genes in CTCs was confirmed by scRNA-seq analysis of 

human CTCs from pancreatic, breast, and prostate cancer patients. Knockdown of the ECM 

gene SPARC in a human pancreatic cancer cell line suppressed cell migration, invasiveness, 

and the ability to from metastastes when injected in mice. Thus, this study revealed novel 

micro-environmental signals critical to the metastasis of pancreatic cancer.

In a RNA-seq study on CTCs from breast cancer patients, Aceto et al (2014) found higher 

expression of the cell junction component plakoglobin in CTC clusters compared to single 

CTCs. Knockdown of plakoglobin in a mouse xenograft model reduced the number of CTC 

clusters observed and reduced lung metastases by 80%. The authors concluded that CTC 

clusters, groupings of primary tumor cells held together by plakoglobin-dependent adhesion, 

are critical mediators of breast cancer metastasis.

Miyamoto et al. (2015) examined 77 CTCs isolated from 13 patients with castration-

resistant prostate cancer and could identify vast heterogeneity including androgen receptor 
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gene (AR) mutations and splice variants. The most enriched genes comparing expression in 

CTCs to primary tumor were the chaperone HSP90AA1 involved in the activation and 

stability of AR and MALAT1, which encodes a non-coding RNA implicated in alternative 

splicing. CTC profiles from patients progressing under treatment with an AR inhibitor 

showed activation of noncanonical Wnt signaling. Moreover, the authors demonstrated that 

ectopic expression of Wnt5a in prostate cancer cells reduced the antiproliferative effect of 

the AR inhibitor. Thus, scRNA-seq of CTCs revealed signaling pathway heterogeneity that 

likely contributes to treatment failure.

4.2. Blood malignancies

Assays using qPCR (e.g., Slack et al., 2001) or digital PCR (e.g., Oehler et al. 2009) have 

often been used to monitor MRD in bulk RNA samples isolated from blood. Burger et al. 

(2016) exploited droplet microfluidics to create what might be called digital cellular PCR. 

This enables directly enumerating cancer cells in a blood sample. The throughput of droplet 

microfluidics enables analysis of hundreds of thousands to millions of blood cells. Single 

white blood cells from CLL patients were encapsulated with reagents for lysis and one-step 

reverse transcriptase-qPCR. The assay performed was qPCR with an allele-specific primer to 

detect a mutation characteristic of the patient’s cancer. For three patients who developed 

therapeutic resistance to the B cell receptor pathway inhibitor ibrutinib, detection of 

mutations in PLCG2, RPS15, or DGKA transcripts in pre-treatment samples showed that 

resistant subclones were present at rare frequencies prior to the initiation of ibrutinib 

therapy, supporting the idea that the resistant populations were positively selected by 

prolonged exposure to the targeted inhibitor.

Zheng et al. (2017) used droplet-based scRNA-seq to analyze bone marrow samples from 

two AML patients before and after hematopoietic stem cell transplant therapy. An average of 

3100 single cells were analyzed per sample. After transplant, SNV analysis showed one 

patient (Patient 1) to have 86.2% host cells and 13.8% donor cells and a second patient 

(Patient 2) to have all donor cells. These results were confirmed by an independent clinical 

chimerism assay. The whole transcriptome data enabled cell type classification. In healthy 

controls, T cells dominate bone marrow mononuclear cell samples. This was also true for the 

donor cells in patient 1 after transplant. In the AML pretreatment samples, erythroid cells 

dominate. After transplant, the host cells in Patient 1 were predominantly blast cells and 

immature erythroid cells, consistent with the relapse diagnosis for this patient. In Patient 2, 

the donor cells were predominantly erythroid in nature, but there was broad distribution 

across the different stages of erythroid development. One unexpected finding was that 

monocytes were abundant in both patients before transplant, but were not detected after 

transplant.

5. Perspective

Deep sequencing of bulk samples remains the most effective approach for the unbiased and 

comprehensive discovery of sSNVs and sCNVs in cancer. However, high-dimension single-

cell analysis, despite this limitation, is rapidly becoming a necessary tool for the study of 

cancer. As depicted in Figure 1, its key uses have been to confirm and refine subclone 
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architecture, to detect and characterize less abundant cells, to enable in silico fractionation of 

cells, and to increase the power of correlation analysis. The ability of scRNA-seq to quantify 

numerous targets at single-cell resolution provides unprecedented power to distinguish 

different cell types and states. This is important for better classification of cancer subtypes 

and dissection of the complex interactions with immune cells, fibroblasts, and other cells in 

the tumor microenvironment. Future developments include increasing the scope of 

multiomic studies and greater adoption of high-dimension spatial analysis. Looking forward, 

we can envision the possibility of incorporating single cell analysis in clinical molecular 

diagnostics, in which sensitive detection of, for example, somatic mutations that confer 

therapeutic resistance could be detected far earlier than evidence of clinically apparent 

disease (Figure 4). This type of approach would be expected to facilitate efforts towards 

precision medicine, in which changes in the genetic content of the patient tumor would 

dictate how therapeutic choices are tailored.
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Figure 1. 
Key uses of high-dimension single-cell analysis in studying cancer.
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Figure 2. Workflow for high-dimension single-cell experiments
(A) The predominant methods currently used for isolation of single cells are flow sorting 

and microfluidics. Examples of microfluidic methods include inDrop (Klein et al., 2015), 

Drop-seq (Macosko et al., 2015), and Seq-Well (Gierahn et al., 2017). (B) The single-cell 

analysis of cancer proceeds from discovery of heterogeneity using unbiased, high-dimension 

methods on a relatively small number of patients to validation in a greater number of 

patients using targeted techniques.
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Figure 3. Single-cell multiomic analysis of cancer
The diagram indicates the different layers of information that could be obtained for the same 

set of single cells.
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Figure 4. Potential impact of single-cell analysis on cancer diagnostics
An example of how single-cell analysis (in this case, using high throughput droplet 

approaches) could inform clinical diagnostics for early disease detection, early detection of 

relapse and evaluation of the functional state of the relapsed cells.
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