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Abstract

A growing body of nutritional science highlights the complex mechanisms and pleiotropic 

pathways of cardiometabolic effects of different foods. Among these, some of the most exciting 

advances are occurring in the area of flavonoids, bioactive phytochemicals found in plant foods; 

and in the area of dairy, including milk, yogurt, and cheese. Many of the relevant ingredients and 

mechanistic pathways are now being clarified, shedding new light on both the ingredients and the 

pathways for how diet influences health and well-being. Flavonoids, for example, have effects on 

skeletal muscle, adipocytes, liver and pancreas, and myocardial, renal, and immune cells, for 

instance related to AMPK phosphorylation, eNOS activation, and suppression of NF-κB and 

TLR4. Effects of dairy are similarly complex and may be mediated by specific amino acids, 

medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, natural trans 
fats, probiotics, vitamin K1/K2, and calcium, as well as by processing such as fermentation and 

homogenization. These characteristics of dairy foods influence diverse pathways including related 

to mammalian target of rapamycin, silent information regulator transcript-1, angiotensin-

converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix glutamate 

protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and inflammation, 

and gut microbiome interactions such as intestinal integrity and endotoxemia. The complexity of 

these emerging pathways and corresponding biologic responses highlights the rapid advances in 

nutritional science and the continued need to generate robust empiric evidence on the mechanistic 

and clinical effects of specific foods.
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Introduction

Dietary habits are a major determinant of cardiometabolic diseases including heart disease, 

stroke, and type 2 diabetes.1 In the US, for example, poor diet contributes to nearly half of 

all cardiometabolic deaths, causing an estimated 1,000 deaths each day.2 The resulting 

global health and economic burdens are staggering.3

In recent years, nutritional science has been transformed by an explosion of evidence, 

shedding new light on key compounds and pathways for how diet influences health and 

well-being. Among these, some of the most exciting advances are occurring in the areas of 

flavonoids, bioactive phytochemicals found in a range of plant foods; and dairy foods, 

including milk, yogurt, and cheese.

For these factors, the emerging evidence on the relevant ingredients and biologic 

mechanisms highlights the importance of investigating the pleiotropic pathways of effects of 

foods. We performed a narrative review of the emerging science and innovative discoveries 

in the understanding of how flavonoids and dairy foods influence cardiometabolic health, 

with a focus on experimental studies and molecular mechanisms, as well as supportive 

clinical evidence.

Flavonoids

Flavonoids are polyphenolic phytochemicals that include flavonols (in onions, broccoli, tea, 

and various fruits), flavones (in parsley, celery, and chamomile tea), flavanones (in citrus 

fruits), flavanols (flavan-3-ols) such as catechins and procyanidins (in cocoa, apples, grapes, 

red wine, and tea), anthocyanidins (in colored berries and red wine), and isoflavones (in soy) 

(Table 1).4–7

The structural diversity of flavonoids contribute to differences in their ability to modulate 

specific molecular pathways. Differences in absorption, distribution, metabolism, and 

elimination following consumption further modify their bioavailability, site of action, and 

formation of bioactive metabolites.8 Whereas some flavonoids are well absorbed and 

distributed to multiple tissues, others have limited absorption – although such flavonoids 

could still have systemic effects via interaction with the microbiota.9 Isoflavones and 

catechins have in particular been extensively studied (and covered by recent reviews) with 

regards to their cardiometabolic effects.10–14 As reviewed below, compelling experimental 

evidence suggests that flavonoids influence multiple physiologic pathways related to 

cardiometabolic diseases (Figure 1).

Microbial-Generated Flavonoid Metabolites

Colonic microbiota can enzymatically convert flavonoids into small phenolic acids and 

aromatic metabolites.15, 16 Feeding studies that trace metabolic conversion suggest that such 

flavonoid catabolites are readily absorbed in the colon and often possess longer half-lives 

and reach substantially higher systemic concentrations than parent compounds.17–19 Such 

observations have increased interest in these microbiota-generated metabolites, including 

whether they mediate cardiometabolic effects of dietary flavonoids. In vitro studies provide 
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preliminary concordant evidence. At physiologically relevant doses, several microbiome-

derived phenolic metabolites suppressed production of pro-inflammatory cytokines and 

vascular adhesion molecules, compared with their parent flavonoids.20–22 Several microbial-

derived flavonoid metabolites also protected against pancreatic beta-cell dysfunction and 

death.23

Dietary flavonoids may also alter gut microbial composition, for example due to probiotic-

like properties and stimulation of growth of specific bacteria.24, 25 In animal models of 

obesity, feeding of flavonoids altered gut microbial community structure, including 

increased levels of Akkermansia muciniphila26–28 which appear to confer metabolic 

benefits.29, 30 Flavonoids may also influence the gut microbiota production of short-chain 

fatty acids (SCFA, up to 6 carbons in length).31 SCFA, predominantly acetic (2:0), propionic 

(3:0), and butyric (4:0) acids, are produced by large intestinal bacteria mainly from 

fermentation of non-digestible or poorly digestible carbohydrates (e.g., dietary fiber).32 In 

addition to being an energy source, experimental studies suggest that microbial-produced 

SCFA act as signaling molecules and can influence host energy metabolism, glucose-insulin 

homeostasis, production of endocrine hormones (e.g. GLP-1), and inflammatory pathways. 

In some studies in mice and rats, dietary SCFA protected against weight gain, improved 

glucose tolerance, and increased insulin sensitivity.33–36 However, conflicting results have 

also been observed: in mice fed a high-fat/calorie diet, oral or intravenous acetate reduced 

food intake and weight gain,36, 37 while intra-gastric infusion in rats fed a high-fat/calorie 

diet had the opposite effect.38 The reasons for these differences remain unclear, highlighting 

the need for further mechanistic studies including in humans. Experimental evidence 

suggests that physiologic effects of SCFA are partly mediated by specific G-protein coupled 

receptors (GPR) present in multiple cells and tissue types including colon, adipose, and the 

sympathetic nervous system.39 Specific SCFA may also act via different pathways: for 

example, in rats, metabolic benefits of dietary propionic acid required GPR activation 

whereas butyrate did not.34 GPR signaling40 or other mechanisms such as epigenetic 

modification41 may account for anti-hypertensive and anti-inflammatory effects of SCFA in 

some cellular and animal studies.42, 43 It remains unclear how much the variability of gut-

produced SCFAs depends on flavonoids, and the clinical relevance of microbiota-generated 

SCFA in humans is being elucidated.44 Yet, the overall emerging evidence supports bi-

directional interactions between flavonoid consumption and gut microbiota composition and 

function that alter physiologic pathways relevant to cardiometabolic health.

Glucose-insulin homeostasis

A large number of animal-experimental studies have tested the effects of purified flavonoid 

compounds or flavonoid-rich plant extracts on insulin-glucose homeostasis, with a 

substantial number suggesting possible benefits. Flavonoids may influence glucose 

metabolism in the small intestine, muscle, adipose, liver, and pancreas via a number of 

molecular mechanisms. In vitro studies suggest a variety of flavonoids inhibit key enzymes 

involved in the digestion and absorption of dietary carbohydrates including α-amylase, α-

glucosidase, and sodium-dependent glucose transporter, which may contribute to reduced 

post-prandial glycaemia.45 Flavonoids could also improve glucose-insulin homeostasis via 

multiple signaling pathways. Cell culture and animal studies have identified adenosine 5′-
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adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-

activated receptor-γ (PPAR-γ) as two of the key pathways via which some flavonoids 

enhance muscle glucose uptake and improve adipocyte function.46–50. Flavonoid treatment 

in animal models also led to reduced liver fat accumulation and improved hepatic insulin 

sensitivity, which were related to reductions in de novo lipogenesis and increase in fatty acid 

β-oxidation.51–54 Finally, cellular and animal studies suggest several types of flavonoids 

protected pancreatic β-cells against glucotoxicity and inflammation, and enhanced insulin 

secretion.55–57 Activation of AMPK has again been implicated in mediating the effects of 

flavonoids on insulin secretion, but other mechanisms including modulation of intra-cellular 

calcium through activation of membrane ion channels have also been identified for specific 

flavonoids.58, 59

Nitric oxide bioavailability, redox status, and vasoregulation

In animal experiments, administration of flavonoids exerted vasorelaxation effects and 

lowered blood pressure.60 There is strong evidence that a key pathway via which flavonoids 

regulate vascular health is through altered nitric oxide (NO) metabolism. Influence of 

flavonoids on NO could be further divided into direct and indirect mechanisms.7 Several 

flavonoids can directly increase endothelial nitric oxide synthase (eNOS) expression and 

activity (the main source of NO in the vasculature), leading to enhanced production of NO.
61–63 Effects on eNOS level could be mediated through activation of AMPK.64 Flavonoids 

could also indirectly enhance NO bioavailability through lowering the production or enhance 

removal of reactive oxygen species that are known to breakdown NO. Treatment with 

different subgroups of flavonoids increased the activity of endogenous anti-oxidant enzymes 

including sodium oxide dismutase and catalase, reduced superoxide radical generation by 

NADPH oxidase, and lowered protein and lipid biomarkers of oxidative stress.65–67 In 

addition to regulating vascular function through NO, other NO independent mechanisms 

have also been observed in in vitro studies for flavonoids such as direct stimulation or 

inhibition of vascular calcium ion channels.68

Weight maintenance

Supplementation with flavonoids prevented diet-induced weight gain in several animal 

models of obesity. In these investigations, flavonoids did not appear to influence energy 

intake,69–72 suggesting they may contribute to weight regulation by increasing energy 

expenditure. For example, luteolin (a flavonoid abundant in pepper, apple skins, and carrots) 

up-regulated AMPK and PPAR-γ coactivator 1-α (PGC-1α) signaling cascades, leading to 

elevated thermogenic gene expression in brown and subcutaneous adipose tissues, and 

enhanced energy expenditure in C57BL/6 mice fed low or high fat diets.72 Other flavonoids 

have also demonstrated an ability to induce brown fat-specific genes and proteins in cultured 

adipocytes.73 Additional mechanisms via which flavonoids could increase energy 

expenditure have been observed in animal feeding studies, including stimulation of the 

sympathetic nerve system,74 and increased skeletal muscle mitochondrial biogenesis and 

function.71, 75 Several types of flavonoids may also prevent fat accumulation via reduced 

lipogenesis, and increased β-oxidation of fatty acids as demonstrated in cultured adipocytes 

and mice.76–78
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Anti-inflammatory effects

Some flavonoids have demonstrated anti-inflammatory properties in adipose and myocardial 

tissues in animal studies following varied inflammatory stimuli including ischemia-

reperfusion, diabetes, medication use, and high-fat diet.79–85 In these models, oral 

supplementation with flavonoids led to reduced inflammatory cell infiltration, lowered levels 

of pro-inflammatory cytokines and tissue fibrosis, and improved cell survival and function. 

A central pathway that appeared to mediate the anti-inflammatory effect of several 

flavonoids was inhibition of signaling via nuclear factor-κB (NF-κB).82–84 However, other 

mechanisms are likely involved and have been identified for specific flavonoids – for 

example, hexameric procyanidins (present in high concentrations in cocoa, tea, and apples) 

inhibited the binding of tumor necrosis factor-α to its receptor and subsequent pro-

inflammatory activation in cultured cells.86

Clinical effects

A growing body of laboratory studies and randomized trials support cardiometabolic 

benefits of flavonoid-rich foods such as cocoa, tea, and berries. Flavonoid-rich cocoa 

produces small but measurable benefits on blood pressure (BP), endothelial function, insulin 

resistance, and blood lipids.87–89 In a systematic review and meta-analysis of 42 RCTs,88 

chocolate, cocoa, and flavan-3-ol significantly reduced mean arterial pressure (−1.64mm Hg, 

95% CI: −3.27, −0.01 mm Hg), improved flow-mediated dilatation (1.34%; 95% CI: 1%, 

1.68%), lowered HOMA-IR (−0.67, 95% CI, −0.98, −0.36), and marginally improved LDL-

C and HDL-C (−0.07 and +0.03mmol/L, respectively). BP-lowering has been seen with as 

little as 6.3 g/day of dark chocolate (~30 kcal/day, i.e. about 1.5% of total daily energy 

added to habitual diets without recommendations for other dietary calories).90 These 

benefits appear related to improved endothelial production of nitric oxide,90 a fundamental 

pathway for vascular and metabolic health that suggests the potential for benefits beyond 

lowering of BP alone. Accumulating data suggest green or black tea can also modestly 

reduce BP in pre-hypertensive and hypertensive individuals – a meta-analysis of 10 trials 

suggests reduction of SBP and DBP by 2.36 and 1.77 mm Hg, respectively – although risk 

of bias in most of these trials could not be fully evaluated due to insufficient reported 

information.91 A systematic review and meta-analysis of 22 RCTs of berries found moderate 

improvements in SBP (−2.72mm Hg; 95% CI, −5.32, −0.12), as well as small improvements 

in glycemic control (HbA1C, −0.20%), body mass index (−0.36kg/m2), LDL-C 

(−0.21mmol/L), and inflammatory biomarkers (tumor necrosis factor-α, −1pg/mL).92 Yet, 

most of these RCTs were small and of limited duration (<6 months).

Complementary to interventional evidence, observational studies evaluating dietary 

flavonoids or flavonoid-rich foods have observed lower risk of cardiometabolic events.93–99 

For example, among >90,000 middle-aged nurses followed for 18 years, those with in the 

highest vs. lowest quintile of estimated dietary anthocyanin intake had 32% lower risk of 

incident myocardial infarction (95% CI, 4%, 51%, P=0.03); however, other major subclasses 

of flavonoids (flavanones, flavan-3-ol, flavonols, flavones, and flavonoid polymers) and total 

flavonoids were not associated with myocardial infarction.94 Sub-class specific associations 

were also observed in other population-based cohort studies, including for flavanones and 

ischemic stroke,95, 96 and flavonols and type 2 diabetes.93 These findings suggest potential 
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heterogeneous effects of different types of flavonoids in relation to specific cardiometabolic 

outcomes. Estimation of dietary flavonoid intake has important limitations including errors 

in self-recall and inaccuracies in food composition databases.100 Assessment of urine or 

blood flavonoid biomarkers is therefore a complementary approach to examining exposure, 

but has only been utilized in a handful of long-term studies. These have predominantly 

focused on isoflavones and type 2 diabetes, and suggest moderate inverse associations for 

daidzein and genistein, major isoflavones in soy foods.101 Data for other flavonoid 

biomarkers and risk of cardiometabolic diseases are scarce and inconsistent.102–105 

Additional studies with larger sample sizes across population groups with diverse 

demographic and dietary habits are needed.

There is also evidence for cardiometabolic benefits of nuts and extra-virgin olive oil, rich in 

other types of phenolic compounds (e.g. phenolic acids and lignans). In the PREvencion con 

DIeta MEDiterranea (PREDIMED) trial, participants at high risk of cardiovascular disease 

were randomized to a Mediterranean dietary pattern and provided with daily extra-virgin 

olive oil or mixed nuts (walnuts, hazelnuts, and almonds). Compared to the control diet 

(advice to reduce dietary fat), the intervention diets significantly improved cardiovascular 

disease (CVD) risk factor profiles including LDL-cholesterol, blood pressure, and 

inflammatory biomarkers;106–108 and resulted in ~30% lower risk of death, myocardial 

infarction, or stroke.109 Participants in the intervention groups also demonstrated less gain in 

central adiposity and decreases in body weight after ~5 years of follow-up.110 Meta-analysis 

of prospective cohort studies provide further support of cardiometabolic benefits of higher 

nuts consumption: for each 1 oz (28 g) per day, about 30% lower risk of coronary heart 

disease (CHD) (n=11 studies, RR=0.71, 95% CI, 0.63, 0.80) and 39% lower risk of diabetes 

(n=4 studies, RR=0.61, 95% CI, 0.43, 0.88).111

Overall, growing evidence supports meaningful cardiometabolic benefits of foods rich in 

flavonoids and other phenolics. These findings support recommendations to increase dietary 

consumption of these foods and provide clear impetus for additional mechanistic trials, 

prospective cohorts, and clinical trials to better characterize the specific compounds of 

interest and their dose-response effects.

Dairy Foods

Dairy products contribute about 10% of all calories in the US diet.112 Yet, for such a major 

share of the food supply, relatively little research has evaluated the direct health impact of 

consuming dairy foods. Traditional dietary recommendations on dairy derive mostly from 

theoretical considerations about isolated nutrients (e.g., eat three daily servings to obtain 

calcium or vitamin D for bone health; eat low-fat products to reduce calories for weight gain 

and saturated fat for heart disease),113 rather than empiric evidence on actual mechanistic 

and clinical effects of milk, cheese, yogurt, butter, or other dairy foods. Growing evidence 

suggests that different dairy foods have complex cardiometabolic effects based on potential 

interrelated influences of a range of nutrients and other characteristics such as probiotics, 

fermentation, and possibly homogenization (Figure 2). We do not discuss the potential role 

of vitamin D here, which has been extensively reviewed elsewhere.114, 115
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Calcium

Cell culture and animal experiments have assessed calcium and cardiometabolic risk, alone 

or in conjunction with other dairy components. In several animal models of obesity, calcium 

supplementation inhibited weight gain, attenuated hepatic steatosis, and reduced 

hyperglycemia and insulin resistance.116–119 These effects were potentially mediated by 

correction of leptin and glucagon-like peptide 1 (GLP-1) signaling,118, 120 reduced levels of 

calcitriol (1,25-dihydroxyvitamin D3), suppression of hepatic and adipose lipogenesis,
121, 122 and alterations in gut microbiota composition.123, 124 However, other animal models 

have not demonstrated such benefits.125–127 For example, in a mouse model of diet-induced 

obesity, calcium supplementation caused weight gain relative to control.127 In a meta-

analysis of 20 trials including 2711 participants, calcium supplementation did not 

significantly lower body weight (−0.17 kg, 95%CI: −0.70, 0.37) or body fat (−0.19 kg, 

95%CI: −0.51, 0.13).128 In comparison, dairy foods increase lean mass and reduce body fat, 

compared to control, in the presence of energy restriction for weight loss (see Clinical 

Effects, below); suggesting that other components beyond calcium may be relevant.

In short-term trials in humans, calcium supplements modestly lower BP, with mean 

difference (95% CI) for SBP, −1.43 mmHg (−2.15, −0.72 mmHg, I2=0%); and for DBP, 

−0.98mmHg (−1.46, −0.50 mmHg, I2=49%).129 In some animal models of hypertension, 

reduction in BP following calcium supplementation were linked to improvement in both 

endothelial dependent and independent arterial relaxation, enhanced hyperpolarization of 

vascular smooth muscle, increased sodium excretion, and downregulation of renal 

angiotensin-converting enzyme.130–133 However, whether calcium intake has similar effects 

on these pathways in humans is not clear. Meta-analysis of long-term randomized trials 

found that calcium supplementation resulted in trends towards moderately elevated risk of 

myocardial infarction.134, 135 For example, in the study by Mao et al, the odds ratio (95% 

CI) for the calcium supplemented compared to the placebo group was 1.28 (0.97−1.68, 

P=0.08, I2=0%).135 Genetic variants related to higher serum calcium level also relates to 

elevated risk of myocardial infarction and coronary artery disease in Mendelian 

randomization studies.136 The potential for increased risk has been hypothesized to relate to 

postprandial hypercalcemia that occurs with supplements, in comparison to intake from 

foods, that may contribute to vascular calcification. Overall, calcium is not a convincing 

driver of cardiometabolic benefits of dairy foods, although effects could also depend on 

supplement vs. dietary sources.

Dairy protein

Bovine milk contains around 32–34g/l protein, largely casein (used to make curds during 

milk processing; ~80% of dairy protein) and also whey protein (~20%).137 Both casein and 

whey protein include several smaller protein fractions and differ in amino acid composition.
137 In some animal studies, enriching diets with casein, whey protein, or complete milk 

protein improved glucose-insulin and cardiometabolic risk factors.138–140 Such benefits 

might relate to specific dairy amino acids. For example, whey protein is rich in the 

branched-chain amino acids (BCAA) leucine, isoleucine, and valine, that activates important 

signaling pathways including mammalian target of rapamycin (mTOR), and silent 

information regulator transcript 1;141, 142 which could contribute to enhanced thermogenesis 
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and insulin secretion.143 However, BCAA supplementation in animal studies has shown 

mixed results related to metabolic outcomes.144–147 Relatively few controlled trials of intact 

milk protein isolates have been performed in humans.148 Several focused on casein-derived 

lactotripeptides, which significantly lowered systolic (men difference, −2.95mmHg, 95% CI, 

−4.17, −1.73mmHg) and diastolic BP (men difference, −1.51mmHg, 95% CI, −2.21, 

−0.8mmHg) based on pooled results across studies; although these findings should be 

interpreted cautiously due to substantial heterogeneity and potential for publication bias.149 

Other short-term clinical studies (up to 12 weeks) evaluated effects of milk protein on 

glucose-insulin homeostasis: overall favorable effects were observed, but long-term studies 

remain limited.137

Bioactive peptides derived from dairy protein may also contribute, generated during 

fermentation (e.g. in the production of cheese or kefir, sour milk) via action of bacterial 

proteolytic enzymes, or during gastrointestinal (including microbiota-related) digestion.150 

Several short peptides (3–4 amino acids in length) from casein and whey protein 

demonstrated inhibitory activity towards angiotensin-converting enzyme in vitro.151 Other 

dairy derived peptides have also been shown to moderately inhibit dipeptidyl 

peptidase-4,152, 153 which may contribute to increased half-live of incretin hormones (gastric 

inhibitory peptide and glucagon-like peptide-1) and improved glycemic control.143 On the 

other hand, the relevance of such dairy-derived bioactive peptides has been challenged based 

on their low bioavailability, which produces circulating levels in the pM to nM range.154

Overall, experimental and short-term human metabolic studies support potential 

cardiometabolic benefits of dairy protein, but the relative efficacy of casein vs. whey protein, 

effects of individual amino acids vs. peptide metabolites, and corresponding molecular 

mechanisms and relevant pathways remain understudied.

Dairy fats

Dietary guidelines generally recommend low/non-fat dairy based on LDL-raising effects of 

myristic (14:0) and stearic (16:0) saturated fatty acids, underemphasizing positive effects of 

these fatty acids on VLDL, chylomicron remnants, and HDL-cholesterol155 and paying even 

less attention to potential health effects of the many other fatty acids which comprise the 

majority of dairy fat (e.g. 14:0 plus 16:0 comprise ≤40% of total fatty acids in cow, sheep 

and goat’s milk).156 These include medium-chain saturated fats (MCSFA) (between 6 to 12 

carbons, i.e. 6:0 to 12:0), odd-chain saturated fats (OCSFA) (15:0, 17:0), monounsaturated 

and polyunsaturated fatty acids (18:1n-9, 18:2n-6 and 18:3n-3), branched-chain saturated 

fats, and trace amounts of natural (ruminant) trans fats (e.g., trans-palmitoleic acid, 

trans-16:1n-7).156–158 Dairy fat is also a source of phospholipids (milk fat globule 

membrane) and fat-soluble vitamins including D, K, and K2 (produced during fermentation; 

see below).

MCSFA, representing ~6-17% of dairy milk fatty acids, have different molecular and 

metabolic activities than longer chain fatty acids. For example, whereas longer chain SFA 

(16:0 and 18:0) activated NF-κB and decreased insulin sensitivity in cultured skeletal 

muscle cells, the MCSFA 8:0 and 12:0 did not.159 MCSFA also enhanced mitochondrial 

oxidative capacity and reduced lipid accumulation in cultured muscle cells relative to 
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16:0.160 These effects may account for observed reductions in body fat accumulation and 

insulin resistance in animals fed high MCSFA vs. longer chain SFA.160, 161 On the other 

hand, relative to a low-fat control diet, high fat feeding with MCSFA enhanced hepatic de 

novo lipogenesis and triglyceride accumulation, and reduced hepatic insulin sensitivity, in 

animal models.161, 162 Induction of hepatic lipogenesis could be due to MCSFA activation 

and signaling via liver X Receptor-α.163 Notably, many of the prior animal experiments 

examining MCSFA were obesity models and also focused on fruit (coconut) sources, and 

thus the metabolic effects of dairy-derived MCSFA under eucaloric conditions (e.g., 

substituting for other types of dietary fatty acids) remain unclear.

The biologic effects of trans-16:1n-7, branched-chain saturated fats, and OCSFA have 

received relatively little attention. It has been hypothesized164 that dietary trans-16:1n-7 

could exert similar effects as dietary cis-16:1n-7, which when consumed in the diet or 

produced outside the liver appears to act in a negative feedback loop to inhibit hepatic de 

novo lipogenesis, improve insulin sensitivity, and reduce inflammation;165–169 with 

corresponding risk factor improvements in one human trial.170 In cultured INS-1 β cells, 

treatment with trans-16:1n-7 activated PPAR-γ and the transcription factor pancreatic 

duodenal homeobox (PDX)-1.171 Yet, relevance of such effects on glucose-insulin 

homeostasis and other molecular effects of trans-16:1n-7 remain unknown. Potential 

mechanisms of branched chain saturated fats also remain little explored. A branched chain 

FA (15-methyl-hexadecanoic acid) exhibited similar effects on PPAR-γ and PDX-1 as 

trans-16:1n-7 in cultured INS-1 β cells under basal conditions, and additionally countered 

high glucose mediated suppression of PDX-1.171 Intake of branched-chain saturated fats is 

not insubstantial – with estimated average at ~500mg/day in the US (primarily from dairy 

and beef products),158 compared to between 125-160mg/day for seafood derived long-chain 

n-3 polyunsaturated fats.172 These findings highlight the potential quantitative importance of 

dietary intake of branched-chain saturated fats and the need to further assess their biologic 

functions. OCSFA from dairy fat are incorporated into a range of tissues including blood, 

liver, and adipose.173, 174 In addition to serving as an energy source via β-oxidation, other 

metabolic functions have been proposed such as enabling replenishment of the citric acid 

cycle and improving mitochondrial function,174 but such hypotheses remain to be tested in 

rigorous experimental investigations.

Milk fat globule membrane

Milk fat is naturally bound by milk fat globule membranes (MFGM), a tri-layered 

membrane rich in polar lipids (phospholipids and sphingolipids) and proteins, enclosing a 

triglyceride core (globule) of fatty acids.175 These polar lipids and proteins in MFGM 

appears to be bioactive. In mice, supplementation with sphingolipids and bovine milk 

phospholipids reduced serum cholesterol and hepatic lipid accumulation, attributed to 

reduced intestinal cholesterol uptake and changes in hepatic gene expression.176–178 

Possible anti-inflammatory properties have also been reported – mice fed a MFGM-enriched 

diet exhibited decreased inflammatory responses to a systemic lipopolysaccharide (LPS) 

challenge, possibly due to reduced gut permeability.179 Processing of dairy products can 

change the content and structure of MFGM – for instance, homogenization may destroy 

MFGM.180 A recent randomized trial among 57 overweight adults compared the effects on 
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blood lipids and genetic expression of consuming ~15% of calories from whipping cream 

(intact MFGM) vs. butter (little MFGM due to homogenization), otherwise equivalent in 

contents of dairy fat and saturated fat. After 8 weeks, those consuming butter had predictable 

increases in LDL-C and apolipoprotein B:A-I ratio, while those consuming whipping cream 

showed no changes in their lipid profile.180 The whipped cream group demonstrated 

significantly lower expression of 19 genes in peripheral blood mononuclear cells, including 

USP45, MDM2, SNRPN, and CAPZA1, supporting effects of MFGM on genetic 

expression. Similar blunted effects on total and LDL-C have been seen in cross-over trials 

comparing cheese to butter or non-dairy saturated fat (see Clinical Effects, below)181, 182. 

These findings suggest that MFGM and corresponding processing methods that preserve or 

destroy it may have important implications for cardiometabolic effects of dairy fat.

Probiotics

A growing body of evidence supports health effects of probiotics in foods, live 

microorganisms which can alter foods’ characteristics as well as host responses following 

consumption.183 Both yogurt and kefir (a fermented milk drink) often contain live bacteria 

(kefir can also contain yeasts). In several animal models of obesity and diabetes, dairy 

products with probiotics demonstrated cardiometabolic benefits compared to those without 

probiotics. For example, in C57BL/6 mice fed high-calorie/fat diets, animals given kefir had 

reduced weight gain, hepatic steatosis, LDL-C, and IL-6 levels compared to mice given 

unfermented milk.184 Such changes were accompanied by altered expression of hepatic and 

adipose tissues genes related to fatty acid oxidation (AOX, PPAR-α) and inflammation 

(MCP-1). Other studies suggest that efficacy is probiotic specific: e.g., compared to 

unfermented milk, milk fermented with different strains of Lactobacillus rhamnosus 
improved glucose tolerance and fasting glucose to varying extents in a diabetic rat model.185 

The molecular mechanisms for probiotics’ health effects appear to involve changes in both 

composition and function of host gut microbiota.186 For instance, microbiota composition in 

animals was altered by probiotic dairy products such as yoghurt and kefir.184, 187, 188 Such 

compositional changes may enhance intestinal epithelial integrity and reduce low grade 

inflammation due to endotoxemia (leakage of gut-microbiota derived LPS into systemic 

circulation), a putative contributor to obesity-related diseases.189 Probiotics also appear to 

influence host microbiota function, e.g. altering production of functional mediators such as 

SCFA that may exert local and systemic effects on host metabolism.190, 191 In sum, animal-

experimental studies and human trials support a role for probiotics and probiotic-

microbiome interactions in protective effects of yogurt for weight gain, obesity, and related 

metabolic conditions such as gestational diabetes.192–203

Cheese, fermentation, and vitamin K

There are two major forms of vitamin K: K1 (phylloquinone, rich in green-leafy vegetables 

and certain vegetable oils) and K2 (menaquinone, MK, differentiated by the number of 

isoprene residues, MKn). Several vitamin K2-producing bacteria species are commonly used 

in industrial dairy fermentation, and cheese is a major source of vitamin K2 (especially 

MK7, -8, and -9) in Europe and North America.204, 205
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All forms of vitamin K act as cofactors for post-translational carboxylation of protein 

glutamate residues into gamma-carboxy glutamate, required for vitamin K-dependent 

proteins (VKDP) to become active. While coagulation factors such as factors VII, IX, and X 

are well known VKDP, growing evidence suggests that additional VKDP influence 

cardiometabolic health.204 This includes osteocalcin (made in bone cells) and matrix 

glutamate protein (MGP, primarily made in vascular smooth muscle cells and cartilage). 

Animal studies support a role of osteocalcin in improving beta-cell proliferation, insulin 

expression, and upregulation of adiponectin in adipocytes.206 In several metabolic studies, 

vitamin K supplementation increased carboxylated osteocalcin concentrations and reduced 

insulin resistance.207, 208 However, results were not always consistent in human studies,209 

and opposing directions of associations between carboxylated/undercarboxylated forms of 

osteocalcin with insulin sensitivity have been observed in mice vs. human, suggesting 

possible species differences.210 Levels of dietary vitamin K and proportions of osteocalcin 

that must be γ-carboxylated to improve glucose-insulin homeostasis also remain unclear.211 

Similarly, while it has been hypothesized that vitamin K may reduce CVD risk by 

augmenting MGP, an inhibitor of vascular calcification, this has not yet been convincingly 

established. In several rats and mice studies, supplementation with vitamin K reduced 

arterial calcification, but whether such effects were mediated by MGP carboxylation or other 

mechanisms remains unclear.212–214

Human metabolic studies demonstrate that specific types of vitamin K2 have longer half-

lives and reach higher circulating levels than vitamin K1. For instance, compared to a half-

life of 1-2 hours for vitamin K1, MK-7 and MK-9 have estimated half-lives of 2–3 days,.
215, 216 These differences in bioavailability may have functional consequences – in one study 

among healthy adults, supplementation with MK-7 induced more complete carboxylation of 

osteocalcin.216 Such findings suggest that vitamin K2 moieties (representing ~15–20% of 

total dietary vitamin K in Western diets, with the rest as vitamin K1), may disproportionally 

contribute to vitamin K activity in vivo.205 Furthermore, recent cohort studies suggest that 

K2, but not K1, is linked to lower CVD risk.217–219 For example, in a prospective cohort 

study among 16,057 women aged 49–70 years, the hazard ratio for the risk of CHD per 

10μg/day (equivalent to ~1SD) of K2 intake was 0.91 (95% CI, 0.81, 1.00, P=0.04), but K1 

intake was not related to CHD risk.219 Given these findings as well as the specific links of 

cheese and fermented milk to clinical outcomes (see below), the potential role of 

fermentation and vitamin K2 in cardiometabolic risk represents a new area of promise for 

further research.

Clinical Effects

In short-term randomized trials, consumption of milk or overall dairy products increases 

lean mass and reduces body fat, especially in the setting of energy-restricted weight loss 

diets.128, 220, 221 Long-term effects are less clear and may vary by type of dairy. 

Observationally, several studies suggest that children who drink more low-fat milk gain 

more weight over time, while those who drink more whole-fat milk gain less weight.222–226 

Few long-term trials have been performed in children, other than multi-component dietary 

interventions that preclude inference on dairy per se.227, 228

Mozaffarian and Wu Page 11

Circ Res. Author manuscript; available in PMC 2019 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In longitudinal studies among adults, relationships between dairy intake and weight, CVD, 

and diabetes endpoints vary more by food type (e.g., cheese, yogurt, milk, butter) than fat 

content.229–235 For example, neither low-fat nor whole milk are appreciably related to long-

term weight gain,196, 236, 237 perhaps related to subtle caloric compensation: when people 

eat more low-fat dairy, they on average increase their consumption of carbohydrates, while 

people who eat more full-fat dairy on average decrease their carbohydrate intake.237 Cheese 

consumption similarly appears relatively neutral for long-term weight gain; although this 

might be modified by carbohydrate intake: weight gain is seen when cheese is accompanied 

by refined carbohydrates, and relative weight loss is seen when cheese replaces refined 

carbohydrates.237 Yogurt appears consistently protective against long-term weight gain,
196, 236, 237 even if sugar-sweetened (although in this case, only about half the benefit is 

seen, compared with unsweetened yogurt237).

While increased intake of saturated fat from dairy products would be expected to increase 

LDL-C,238 recent randomized controlled trials support heterogeneity in such effects 

depending on the type of dairy foods consumed. For instance, in a randomized cross-over 

trial among 49 men and women, consuming equivalent amounts of fat and saturated fat from 

cheese, as compared to butter, lowered total, LDL, and HDL cholesterol concentrations.181 

Similar blunted effects on total and LDL-C were seen in a randomized controlled cross-over 

trial comparing saturated fat from milk or cheese with saturated fat from non-dairy sources;
182 as well as comparing whipping cream to butter.180 Such heterogeneous responses may be 

explained by other components in dairy (e.g. calcium) or by specific processing methods 

(e.g., presence or absence of MFGM, see above).239 Such counterbalancing effects, as well 

as beneficial effects of saturated fat on levels of triglyceride-rich VLDL-C,238 could explain 

why meta-analyses of long-term cohort studies demonstrate no significant associations of 

total dairy consumption with CHD events and actually lower risk of stroke, without 

consistent differences comparing reduced vs. regular fat products.240

Associations of dairy foods with risk of type 2 diabetes also vary by food type: yogurt, but 

not milk, is consistently associated with lower risk; while consumption of cheese, which has 

highest calorie, fat, and saturated fat content, also associates with lower risk in several 

although not all studies.232, 234, 235, 241, 242 These differences may be partly elucidated by 

the divergent associations of total milk (generally unassociated with diabetes) vs. fermented 

milk (linked to lower risk),234, 241, 243 suggesting a potential role for metabolic benefits of 

fermented products such as cheese (see above).

Interestingly, dairy fat itself may promote cardiometabolic health. In cohorts utilizing 

objective biomarkers, higher blood levels of dairy fatty acids consistently associate with 

lower incidence of diabetes244–248 and perhaps CHD,249–251 with mixed findings for stroke.
252 As described above, mechanistic explanations for these observations remain unclear, 

which could include metabolic effects of fermented foods (especially cheese, a major source 

of dairy fat), links of such biomarkers to MFGM, specific fatty acids (e.g., branched-chain 

fatty acids, MCSFA, specific ruminant trans fats), other lipid-soluble factors, or unknown 

endogenous (non-dietary) determinants of these blood biomarkers.253
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Future Directions and Conclusions

Modern nutritional science is elucidating the diversity of ingredients and mechanisms by 

which foods influence health. Numerous in vitro and animal studies support pleiotropic 

effects of flavonoids on multiple risk factors and pathways relevant to cardiometabolic 

diseases. While molecular mechanisms continue to be clarified, identified signaling 

pathways include AMPK, PPAR-γ, PGC-1α, and NF-κB. Existing experimental studies also 

have methodologic limitations and the potential for publication bias, and the relevance of 

their findings to humans remain unclear. In addition, with more than 5,000 naturally 

occurring flavonoids identified to date,254 observed effects on molecular pathways for some 

flavonoids are unlikely to be generalizable to others. Many mechanistic studies to-date have 

focused on parent aglycone forms of flavonoids, and frequently at supra-physiological 

concentrations (e.g., 25 to 100μM, whereas systemic circulating concentrations in vivo are 

unlikely to reach ≥ 10μM).21, 255 While findings based on supra-physiologic doses may be 

relevant for the development of flavonoids as pharmacologic agents, they are less 

generalizable to cardiometabolic effects of flavonoids at usual dietary levels of intake. 

Further, prior experimental studies have generally not accounted for complexities in 

flavonoid bioavailability and metabolism. For instance, most dietary flavonoids (except for 

flavan-3-ol) are found as glycosides, bound to one or more sugar moieties,7 which generally 

require hydrolysis prior to intestinal absorption.8 Following absorption, flavonoids undergo 

phase-I and phase-II metabolism and are transformed into diverse glucuronidated, sulphated, 

and methylated metabolites.64 Unabsorbed flavonoids are also catabolized by colonic 

bacteria into a number of phenolic acids. Compared with their parent compounds, many 

flavonoid metabolites have longer half-lives and achieve much higher concentrations in 

circulation.22 Cardiometabolic effects of flavonoids observed in animal studies may 

therefore be largely attributable to their metabolites, rather than the pre-metabolized 

flavonoids. Yet, relatively few investigations have evaluated potential biologic effects of 

flavonoid metabolites, partly limited by lack of available synthetic standards.20, 22 Based on 

the promise of these compounds for physiologic health, future mechanistic, experimental, 

and clinical studies are needed that take into account the diversity of types, bioavailability, 

and metabolism of flavonoids and their metabolites to better understand the most appropriate 

form and pathways for clinical benefits.

Similarly, for dairy foods, a variety of ingredients and processing methods appear to 

influence cardiometabolic health. Potentially relevant ingredients include specific amino 

acids, medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, 

natural trans fats, probiotics, vitamin K1/K2, and calcium, as well as by processing 

techniques such as fermentation and homogenization. Corresponding pathways of effects 

include those related to mTOR, silent information regulator transcript-1, angiotensin-

converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix 

glutamate protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and 

inflammation, and gut microbiome interactions such as intestinal integrity and endotoxemia.

For both flavonoids and dairy foods, the complexity of the emerging mechanistic pathways 

and responses is remarkable. This new evidence highlights the tremendous growth in 

knowledge, as well as the extent of what remains to be learned, on how different dietary 
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factors influence health. Given the prime importance of nutrition for cardiovascular and 

metabolic health, these results support the need for vigorous further investigation on the 

relevant components, biologic pathways, and clinical effects of these and other foods.
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Abbreviations

AMPK 5’-monophosphate-activated protein kinase

BCAA branched-chain amino acids

BCSFA branched-chain saturated fats

BP blood pressure

CHD coronary heart disease

CVD cardiovascular disease

DBP diastolic blood pressure

eNOS endothelial nitric oxide synthase

ERK1/2 extracellular signal-regulated kinases 1 and 2

GLP-1 glucagon-like peptide 1

GPR G-protein coupled receptors

GLUT4 glucose transporter type 4

IRS2 insulin receptor substrate-2

LPS lipopolysaccharide

MAPK mitogen-activated protein kinase

MCSFA medium-chain saturated fatty acids

MFGM milk-fat globule membranes

MGP matrix glutamate protein

MK menaquinone

mTOR mammalian target of rapamycin

NF-κB nuclear factor-κB

NO nitric oxide

OCSFA odd chain saturated fatty acids
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PDX pancreatic duodenal homeobox

PGC-1α peroxisome proliferator-activated receptor-gamma coactivator-1α

PKA protein kinase-A

PPAR peroxisome proliferator-activated receptors

PREDIMEDPREvencion con DIeta MEDiterranea trial

RCT randomized controlled trial

SBP systolic blood pressure

SCFA short chain fatty acids

SREBP-1c sterol regulatory element binding protein-1c

TG triglycerides

TLR4 toll-like receptor 4

VKDP vitamin K-dependent proteins
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Figure 1. Selected cardiometabolic benefits of flavonoids and potential underlying molecular 
mechanisms
In vitro and animal studies support bioactivity of purified flavonoids or flavonoids-rich plant 

extracts across multiple tissues. Relevant molecular pathways appear to include: 1) 

Modulation of gene expression and signaling pathways. Enhancement of AMPK 

phosphorylation and activation appears to be a common mechanism affected by several 

types of flavonoids. Modulation of other signaling pathways have also been observed 

including increased expression of PPAR-γ and inhibition of NF- κB activation; 2) 

Interaction with gut-microbiota. Dietary flavonoids may alter gut-microbial composition due 

to probiotic-like properties and stimulate growth of specific bacteria (e.g. Akkermansia 

muciniphila) that may confer metabolic benefits. Conversely, metabolism of dietary 

flavonoids by gut bacteria generates downstream metabolites (e.g. phenolic acids) that may 

possess unique properties and/or reach higher circulating and tissue concentrations 

compared to parent flavonoids, thus enhance biologic activity of flavonoids; 3) Direct 

flavonoid-protein interactions. Growing evidence suggest flavonoids may stimulate and 

inhibit protein function, including ion channels in the vasculature and liver, and 

carbohydrate digestive enzymes (α-amylase and α-glucosidase) in the gastrointestinal tract. 

Such effects may partly contribute to regulation of vascular tone and glucose metabolism.

Abbreviations: AMPK, 5’-monophosphate-activated protein kinase; ERK1/2, extracellular 

signal-regulated kinases 1 and 2; GLUT4, glucose transporter type 4; IRS2, insulin receptor 

substrate-2; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PGC-1α, 

peroxisome proliferator-activated receptor-gamma coactivator-1α; PKA; protein kinase-A; 

PPAR, peroxisome proliferator-activated receptors; SREBP-1c, sterol regulatory element 

binding protein-1c; TG, triglycerides; TLR4, toll-like receptor 4,
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Figure 2. Relevant characteristics of dairy foods and selected molecular pathways potentially 
linked to cardiometabolic disease risk
Dairy foods are characterized by a complex mixture of nutrients and processing methods 

that may influence cardiovascular and metabolic pathways. Relevant constituents include 

specific fatty acids, calcium, and probiotics. Relevant processing methods may include 

animal breeding and feeding, fermentation, selection and cultivation of bacterial and yeast 

strains (e.g., as fermentation starters), and homogenization. Such modifications can alter the 

food’s composition (e.g., fermentation leads to production of vitamin K2 from vitamin K1) 

as well as its lipid structures (e.g., homogenization damages MFGM), each of which can 

affect downstream molecular and signaling pathways.

Abbreviations: BCSFA, branched-chain saturated fats; GLP-1, glucagon-like peptide 1; 

MCSFA, medium-chain saturated fats; MFGM, milk-fat globule membranes; MGP, matrix 

glutamate protein; mTOR, mammalian target of rapamycin; OCSFA, odd chain saturated 

fats.
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