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Abstract

Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated,
cataract can be part of many multisystem disorders, further complicating the diagnostic process. In
this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome
sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in
previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15
that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract,
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global developmental delay with or without renal involvement. We also highlight a recognizable
syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by
biallelic mutations in CYP51A1. A founder mutation in R/C1 (KIAA1432)was identified in
patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For
nonsyndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on
4p15.32 where exome sequencing revealed a homozygous truncating mutation in 7APT1. We
report two further candidates that are biallelically inactivated each in a single cataract family:
TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In
addition to positional mapping data, we use /Sy 7E developmental lens expression and gene-
network analysis to corroborate the proposed link between the novel candidate genes and cataract.
Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high
diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.

Introduction

Pediatric cataract is estimated to have a prevalence of 3—6 per 10,000 (Rahi and Dezateaux
2001; Foster et al. 1997; Stayte et al. 1993). Clinically, it is highly variable in its age of
onset, severity and distribution (unilateral vs. bilateral and syndromic vs. isolated). Delayed
intervention for this treatable disease can result in permanent blindness due to amblyopia.
Indeed, many children in low-income countries are blind because of untreated cataract
(Medsinge and Nischal 2015). The morbidity of pediatric cataract is also significant in
higher income countries despite better access to surgical treatment, mostly driven by cases
of delayed diagnosis (Zhang et al. 2012).

The etiology of pediatric cataract is heterogeneous but genetic factors account for 8-29% of
cases (Shiels and Hejtmancik 2007, 2013; Hejtmancik 2008). All modes of inheritance have
been reported, with autosomal dominant inheritance considered the most common form
worldwide and autosomal recessive inheritance more common in the Middle East (Khan
2012, 2013; Khan et al. 2015). The online tool Cat-Map currently lists more than 38 genes
that are mutated in isolated (non-syndromic) cataract (Shiels et al. 2010). Genes encoding
the crystalline family of proteins account for a substantial proportion of mutation-positive
pediatric cataract cases. Genes encoding transcription factors that control early lenticular
development such as £YAZand P/T.X3are also an important source of cataract linked
mutations. Interestingly, some genes are known to cause autosomal dominant as well as
recessive forms of pediatric cataract depending on the nature of the mutation, e.g., BFSP2,
TDRD7and CRYAB (Aldahmesh et al. 2011; Safieh et al. 2009; Lachke et al. 2011).
Similarly, genes known to be mutated in syndromic forms of cataract have also been
reported to cause apparently isolated cataract, e.g., AGK (Aldahmesh et al. 2012).

Identification of causal mutations in pediatric cataract can greatly improve our
understanding of the mechanisms that control normal lenticular development. Practical
benefits of mutation identification include improved diagnostic accuracy, refined recurrence
risk estimates as well as the possibility of prevention. Unfortunately, the remarkable clinical
and genetic heterogeneity described above makes it challenging to provide molecular
diagnosis for pediatric cataract patients. Fortunately, the advent of genomics tools enables
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the interrogation of a large number of genes simultaneously. The potential of this approach
to improve the diagnostic yield in pediatric cataract has already been demonstrated in a
number of studies (Gillespie et al. 2014, 2016; Ma et al. 2016; Musleh et al. 2016). The
unbiased nature of this approach has unraveled the full phenotypic potential of known
cataract genes and enabled the establishment of novel syndromic and isolated cataract genes
(Aldahmesh et al. 2012). In this study, we show the power of implementing genomics tools
in the diagnostic workup of pediatric cataract patients. In addition to broadening the allelic
spectrum of known cataract genes, we describe novel candidate genes. Further, we use eye
gene expression databases such as /Sy TE (mtegrated Systems 7ool for Eye gene discovery)
(Lachke et al. 2012) along with gene expression analysis in key mouse mutants that exhibit
lens defects to indicate the potential regulatory pathways in which these newly identified
cataract genes may function in the lens.

Materials and methods

Human subjects

All cataract patients seen in a pediatric ophthalmology clinic run by one of the authors
(AOK) were eligible, regardless of family history. We have also enrolled a family referred
from pediatric gastroenterology with unexplained lethal form of infantile liver disease and
cataract. Informed consent was obtained from parents, and venous blood was collected from
index and available family members as per an IRB-approved protocol (KFSHRC RAC#
2070023).

Multi-gene panel sequencing

A panel of 322 genes known to be mutated in various genetic eye conditions, including those
involving cataract was designed as described before (Group SM 2015). All index cases were
initially run on this panel as a first-tier test. Details of the bioinformatics analysis are
published elsewhere (Group SM 2015). Variants were called according to the ACMG
guidelines on variant interpretation.

Exome sequencing

All cases in which the multi-gene panel failed to identify a likely causal mutation were
exome sequenced as described before (Group SM 2015). The surviving variants were
analyzed based on zygosity (depending on family pedigree), predicted pathogenicity based
on SIFT, Polyphen and combined annotation-dependent depletion (CADD) scores (for
missense variants), prioritizing truncating variants, location within the autozygome (for AR
cases) and frequency below 0.01 within in-house (2200 exomes), and EXAC databases. All
variants reported here have been confirmed by Sanger sequencing and segregation analysis
was completed in all available family members.

Positional mapping

Positional mapping was carried out using autozygome analysis as described before
(Alkuraya 2010, 2012). Briefly, the Axiom SNP Chip platform was used for genome-wide
genotyping followed by mapping regions of homozygosity (ROH) that are >2 Mb as
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surrogates of autozygosity. Where applicable, exome variants were filtered by the
coordinates of the candidate autozygome as described before (Alkuraya 2013, 2016).

Mouse lens expression analysis by iSyTE tool

To gain insights into the significance of each of the cataract-linked candidate genes in this
study (TAPTL, RIC1, CYP51A1, GEMIN4, TAF1A and WDRE7) we applied our published
approach of using lens expression analysis (Lachke et al. 2012; Anand and Lachke 2016).
Mouse orthologs of these genes were investigated for their expression and enrichment in
mouse lens expression microarrays datasets using /Sy 7E database (Lachke et al. 2012) and
publicly available mouse lens microarray data. Expression intensities scores were computed
at different stages of lens development stages, namely, E10.5, E16.5, PO, P28 and P56. In
addition, lens-enrichment was estimated based on whole embryonic body (WB)-based in
silico subtraction approach. The “R” statistical environment (http://www.rproject.org) was
used to import raw microarray files, which were pre-processed and background corrected
using Affy package available at Bioconductor (http://www.bioconductor.org) (Gautier et al.
2004). Detailed analysis of microarrays is described elsewhere (Anand et al. 2015). Using
RNA-seq data from mouse stage PO (SRP040480) isolated lens epithelium (PO_epi) and
fiber cells (PO_FC) (Hoang et al. 2014), expression values in counts per million (CPM) were
obtained and plotted to test differential expression of candidate genes in these cell types.

Gene expression analysis in targeted gene knockout mouse mutant lens datasets

The expression of candidate genes ( 7apt1, Ricl, Cyp51al, Gemin4, Taflaand Wdr87) was
investigated in various targeted gene knockout mouse mutants that exhibit lens defects.
Mouse lens tissue gene expression microarray datasets from mutant animals for Pax6
conditional lens knockout (cKO) at E9.5 (GSE49227) and E10.5 (GSE49216); Brg!
(dominant negative dnBrgl mutant) at E15.5 (GSE22322), NotchZ2 conditional lens knockout
mutant at E19.5 (GSE31643), £2f1-E212:E213 (triple null conditional lens knockout mutant)
at PO (GSE16533), Hsf4null at PO (GSE22362), Sparcnull at P28 (isolated lens epithelium)
(GSE13402), Tdrd7null at P30 (GSE25776), K/f4 null at P56 (GSE47694), and Mafg—/
—-Mafk+/-compound mutants at P60 (GSE65500) were analyzed for differential expression
of candidate genes. Further, transgenic mice over-expressing Foxe3in fiber compartment at
P2 (GSE9711) were also analyzed. Mutant lens tissues that exhibited significant differential
expression of candidate genes (7aptl, Ricl, Cyp51al, Gemind, and Tafla) at pvalue < 0.05
were plotted.

Candidate gene—network analysis using protein—protein interaction (PPI) data and iSyTE

To derive molecular insights for the identified candidate genes ( 7apt1, Ric1, Cyp51al, and
Gemin4), we used an inhouse Python script to fetch out statistically significant PPI with
proteins that function in the lens as well as potential new lens-expressed candidates from the
String database (http://string-db.org). The obtained interactions were then subjected to lens
expression and enrichment analysis at E10.5 lens dataset in /Sy 7E dataset described above,
and visualized using Cytoscape.
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Clinical phenotypes

A total of 166 cataract patients comprising 74 families were enrolled in this study. The
demographics of the study cohort are detailed in Table 1. A positive family history was
observed in 67%, and non-syndromic cataract was the most common presentation (72%).
Both known and apparently novel forms of syndromic cataract were encountered (Table 1).
A few syndromic forms of cataract are worth highlighting. The first is related to what we
initially reported in 2015 in several families who all shared the same founder mutation in
GEMINA.

All patients shared global developmental delay and infantile cataract with or without renal
involvement. Patient 14DG2265 provided independent confirmation of this association
where his novel GEMIN4 mutation (NM_015721.2:¢.314C>T;p. (Pro105Leu)) was
associated with an identical phenotype (Table 1, Table S1). The mutation segregated within
the family, and both parents are carriers, is absent in our database and predicted to be
pathogenic by Polyphen, SIFT and CADD. Another recognizable syndrome was observed in
16DG0226 who was found at 1 week of age to have cholestatic jaundice and cataract, and
was referred to our center for further evaluation. His physical examination showed growth
parameters on the 5th percentile, icterus and bilateral cataract. His laboratory investigations
revealed elevated liver enzymes (ALT 143, AST 518, alkaline phosphatase 729, GGT 167),
AFP (>50,000), and ferritin (7994). Urine was negative for succinylacetone and reducing
substances, and blood had normal isoelectric focusing of transferring. A liver biopsy
revealed cholestasis with diffuse giant cell transformation and pseudorosettes. Parents are
consanguineous and there is history of one sister who died at age of 2 months with liver
failure.

There was also positive family history on the paternal side of neonatal deaths in twins due to
progressive cholestatic jaundice (see pedigree in Figure S1, Table S1). By combining the
index and his affected cousin, we were able to map this phenotype to a locus on Chr7:
80,350,364-105,103,372 where exome sequencing revealed a mutation in CYP51A1
(NM_000786.3:¢.695T>C;p.(Leu232Pro)). Finally, in two families with a syndromic form of
cataract consisting of global developmental delay, microcephaly, brain atrophy with or
without cleft lip and palate we were able to identify a candidate locus on
Chr9:5629029-5778014 where exome sequencing revealed a shared founder mutation in
RICI (NM_020829.3:¢.3794G>C;p.(Arg1265Pro). Surprisingly, we also observed isolated
cataract without aniridia in a patient with a novel de novo dominant PAX6 mutation
(10DG1895).

Expanding the allelic spectrum of pediatric cataract

The multi-gene panel and exome sequencing identified a likely causal mutation in 58% of
our cohort (not including candidate genes). The most commonly mutated group of genes
was the crystalline genes, and one founder mutation in CRYBBI was identified in 11
families (Table 1; Fig. 1). Table 1 lists all the mutations identified in known cataract genes,
including 15 that are novel (20%). Because the design of the multi-gene panel was in August
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2013, cataract genes published after that date were not included but mutations therein were
identified by exome sequencing, which we performed on all cases with a negative panel
result. Of particular interest is L ONPI, which we found to be mutated in five families, thus
representing the second most commonly mutated gene in our cohort after the crystalline
genes. Furthermore, we note that not all LONPI-related cataract cases were syndromic,
which suggests that L ONPI is yet another example of genes that can be mutated in both
syndromic and non-syndromic forms of cataract.

Expanding the genetic heterogeneity of pediatric cataract

In addition to revealing mutations in known cataract genes that postdate the design of the
multi-gene panel, exome sequencing of negative panel cases revealed, as expected,
mutations in candidate genes. Specifically, we confirmed GEM/N4 as a disease gene for the
syndrome of cataract and global developmental delay (Alazami et al. 2015). The same
founder mutation in GEMIN4 was identified in 10DG0703 who was previously reported to
have a missense variant in MFSD6L, thus disproving the link proposed between cataract and
MFSD6L, at least in that patient (Aldahmesh et al. 2012). Similarly, we have previously
published CYP51A1 as a novel candidate gene for nonsyndromic cataract based on a family
(10DG1249) with a pseudodominant inheritance of a novel missense variant in this gene
(Khan et al. 2015; Aldahmesh et al. 2012). Subsequently, another group reported a mutation
in this gene in a patient with cataract and liver disease (Gillespie et al. 2014). Thus, our
finding of an independent mutation in 16DG0226 (Figure S1) confirm CYP51A1as a
disease gene for the syndrome of cataract and cholestatic liver disease, although it can also
be mutated in patients with isolated cataract.

In family 12DG2657, we were also able to map isolated cataract phenotype to a single locus
(Chr4:13944470-16401420), in which exome sequencing revealed a splicing variant in the
novel candidate TAPT1 (NM_153365.2:¢.846 + 2insT). RTPCR confirmed the partially
truncating nature of this variant (NM_153365.2:r.712_846del), (Figure S2). Furthermore we
were able to identify the same mutation (NM_020829.3:¢.3794G>C;p.(Arg1265Pro)) in the
novel candidate R/C1 in two apparently unrelated patients (07DG-0035/10DG1320 and
15DG2427) who nonetheless shared one autozygous interval thus confirming the founder
nature of this mutation (Figure S3).

In addition to the above genes whose candidacy is supported by independent mutations
(GEMIN4 and CYP51AI) or linkage analysis (7APT1 and RICI), exome sequencing also
revealed homozygous truncating variants in two genes not previously linked to cataract. In
patient 11DG2176, who presented with global developmental delay, unexplained
hepatomegaly and cataract, we identified a homozygous frameshift deletion in 7AF1A
(NM_001201536.1:¢.40_41del;p.(Aspl4*)) (Figure S4). Patient 12DG2386, on the other
hand, and his sibling presented with isolated congenital cataract and both were found to have
a homozygous nonsense mutation in WDR87 (NM_031951.4:¢.856G>T;p.(Glu286*))
(Figure S5).
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The candidate cataract genes are expressed in lens development

We next sought to investigate the relevance of the newly identified cataract-linked genes to
lens biology. We first analyzed mouse lens microarray datasets at embryonic, early postnatal
and late postnatal stages to examine the expression of 7apt1, Ricl, Cyp51al, Gemind, Tafla
and War87 during lens development. 7aptl is expressed in lens tissue at E10.5, E16.5, PO,
and P56, and exhibits a trend toward high expression with developmental progression.
Further, its expression was found to be high in P28 isolated lens epithelium as well (Fig. 2a).
Ricl was expressed in the lens at all stages examined, albeit at low comparable levels,
except in isolated lens epithelial cells where it exhibited higher expression (Fig. 2a).
Cyp51alwas highly expressed in lens tissue at E10.5, E16.5, PO and P56, and while it was
also expressed in isolated lens epithelium, its levels are low in these cells compared to the
whole lens tissue (Fig. 2a). Gemin4 exhibited an expression trend that is high in early lens
development at E10.5 and became progressively low in subsequent stages (Fig. 2a). Lens
microarray indicates that 7afZais expressed in various stages of mouse lens development
(Fig. 2a). Finally, WDR8&7 mouse ortholog, 4932431P20Rik, is also expressed in the lens
albeit at lower levels (Fig. 2a).

Next, we investigated if these candidate genes exhibit enriched expression in the lens as
described (Lachke et al. 2012; Anand et al. 2015). 7apt? is significantly enriched in the lens
from embryonic stage E16.5 through P56, with highest lens-enrichment in the P28 lens
epithelium (Fig. 2b). Similarly, 7afZaexhibits enriched expression in several stages of lens
development, namely, at E10.5, PO, P56 as well as in P28 lens epithelium (Fig. 2b). Ric1 is
enriched only in the P28 lens epithelium, while Cyp51al and Gemin4 exhibit lens-
enrichment in embryonic stages E16.5 and E10.5, respectively (Fig. 2b).

We also examined RNA-seq data from newborn mouse lens epithelium and fiber cells to
investigate if these genes are expressed within specific lenticular cell types. We find that
while 7aptl is significantly expressed in both cell types in the lens, its expression in the
epithelium is significantly higher compared to that in fiber cells (Fig. 2c). In contrast,
Cypblal and Riclthat are also expressed in both lens cell types, exhibit significantly high
expression in fiber cells compared to epithelial cells (Fig. 2¢c). Gemin4 expression in both
lens cell types was low in newborn mouse lenses (Fig. 2c), in agreement with the trend of
low expression with lens development progression from embryonic to postnatal stages as
observed in the microarray analysis. While 7afZaexpression was found to be higher in fiber
cells compared to epithelial cells, 4932431P20Rik (WDRS&7) expression in both cell types
was found to be low and not significantly different (Fig. 2c).

The candidate cataract genes are mis—expressed in key gene knockout mice with lens

defects

We next sought to investigate whether 7apt1, Ricl, Cyp51al, Gemin4, Taflaand
4932431P20Rik (Wdr87) were affected in different gene knockout mouse mutants that
exhibited defects in lens development. 7aptI was significantly down-regulated in Pax6
conditional lens knockout (Pax6 cKO) mouse lenses at E9.5, NMotchZ2 conditional lens
knockout (Motch2 cKO) mouse lenses at E19.5 and £2f1—/-.E2f2-/-E2f3—/-triple
conditional lens knockout (£2f1/2/3 cKO) mouse lenses at PO (Fig. 3). RicI was down-
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regulated in Pax6 cKO lenses at E9.5 and E10.5, and up-regulated in Sparc null lens
epithelium (Fig. 3). Cyp51al exhibited mis-regulation in both directions in different gene
knockout mouse lenses. In BrgZ mutant (dnBrgl mutant) lenses at E15.5 and £2f1/2/3 cKO
mouse lenses at PO, Cyp51al exhibited significantly reduced expression (Fig. 3). Further, in
transgenic mice that overexpress the lens epithelial transcription factor Foxe3in lens fiber
cells, Cyp51al expression was significantly reduced as well (Fig. 3). However, in stage P30
Tdrd7 null mouse lenses, P56 K/f4 conditional lens knockout (K/f4 cKO) mouse lenses, as
well as P60 Mafg—/--Mafk+/—compound mouse mutant lenses Cyp51al was significantly
up-regulated (Fig. 3). Gemin4 was found to be significantly reduced in Cpb:p300
conditional lens knockout (Cpb.p300 cKO) mice at E10.5 (Fig. 3). Tafla was found to be
down-regulated in E15.5 dnBrg1 and PO Hsf4 null mouse mutants, both of which exhibit
lens defects (Fig. 3). Finally, 4932431P20Rik (WDR87) was not identified to be mis-
regulated in any of the mouse mutant datasets tested.

The candidates interact with proteins with known lens function or expression

To investigate if the new cataract associated candidates may potentially interact with
proteins that are known to function in the lens or exhibit lens expression, we performed an
integrated analysis with publically available protein-protein interaction (PPI) data and
overlay of /Sy TE lens gene expression data. Further, we investigated these networks for
functional gene-ontology (GO) categories. Together, these analyses led to insights into their
established connectivity with other candidates that are involved in lens defects or which may
be expressed in the lens. This approach led to the outlining of 22 direct interacting partners
of the nonsyndromic cataract candidate TAPT1 (Figure S6A, B). Further, from a total of 39
direct protein-protein level connections of the non-syndromic cataract candidate RIC1, 32
candidates were expressed in the lens, of which 14 were lens-enriched including GJAL,
which had been shown to interact with RIC1 and mutations of which cause microphthalmia
and cataract (Akiyama et al. 2005; Paznekas et al. 2003) (Figure S6C, D). This approach
also revealed that the syndromic cataract candidate GEMIN4 is connected to 53 partners, of
which 50 candidates exhibit lens expression and 37 exhibit lens-enrichment (Figure S7A, B).
Similarly, CYP51A1, which is known to be involved in the synthesis of cholesterol, steroids
and other lipids, is connected to 51 direct interactors, of which 35 candidates exhibit lens
expression and 22 exhibit lens-enrichment (Figure S7C, D). As expected, GO analysis of the
CYP51A1-PPI network reveals an enrichment for sterol biosynthetic process (GO:0016126)
categories that includes 15 protein-protein interaction candidates, namely, TM7SF2, MVD,
HMGCR, HSD3B7, HMGCS1, LSS, FDFT1, DHCR7, HSD17B7, NSDHL, DHCR24,
FDPS, SIGMARL, SQLE, MVK, that are expressed in the lens. Earlier studies on sterol
profiling of the affected individuals with cataract and other eye disorders with causal
mutation identified in CYP51A1, CYP27A1, SC5D, DHCR7 genes clearly suggest their role
in sterol biosynthetic process/pathways (Gillespie et al. 2016). Further, CYP51A1 is directly
connected to ALDH1A1 and MAFG, both of which are linked to cataracts (Agrawal et al.
2015; Lassen et al. 2007).
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Discussion

Molecular characterization of pediatric cataract has many practical applications. It provides
accurate diagnosis, ends an otherwise expensive and protracted diagnostic odyssey and
empowers families to make informed reproductive choices. Molecular diagnosis also has the
potential to alter patient management. One good example is patient 13DG2254 whose
cataract was found to be caused by a novel GALT mutation prompting urgent referral to the
metabolic specialist for close dietary management of galactosemia. The marked clinical and
genetic heterogeneity of pediatric cataract often complicates clinically-guided molecular
testing, although this is quickly changing with the advent of clinical genomics. In this study,
we show that a genomics approach can provide a likely molecular diagnosis in the majority
of pediatric cataract patients. Our data also show that the genetic heterogeneity of pediatric
cataract has not yet been fully captured, and we add to this genetic heterogeneity four loci
defined by mutations in GEMIN4, TAPT1, RICI1and CYP51A, as well as biallelic loss of
function mutations in TAF1A and WDRS?7.

GEMIN4 is an intron-less gene that encodes Gem (nuclear organelle)-associated protein 4, a
ubiquitously expressed component of the Gemin protein complex that also includes SMN1
and the core components Gemin proteins 2, 3, 5, 6, 7 and 8 as well as Unrip (Charroux et al.
2000; Lorson et al. 2008). The complex is known to associate with the spliceosomal
complex U snRNP (Fischer et al. 1997). The exact biological role of the complex is
unknown so it is unclear how deficiency of GEMIN4 can lead to the syndrome of global
developmental delay and congenital cataract, and whether or not this mediated through
perturbation of the complex. However, our finding of two independent homozygous
mutations in GEM/NA in patients with a similar phenotype strongly implicates GEMIN4 in
the etiology of this syndrome.

CYP51A1 encodes lanosterol 14a-demethylase, an enzyme that catalyzes a late step in
cholesterol synthesis (Acimovic and Rozman 2013). Complete deficiency of the murine
ortholog is embryonic lethal, which may explain why all the mutations, with the exception
of one heterozygous stop-gain, observed thus far in this gene are all missense, rather than
truncating (Keber et al. 2011). The hepatocyte-specific Cyp51 partial KO mice display poor
weight gain, increased liver/body size ratio as well as severe liver inflammation and fibrosis,
findings reminiscent of the phenotype we observe in patient 16DG0226, as well as the
family reported by Gillespie et al. (2014, 2016) (Lorbek et al. 2015). Further, other genes
such as CYP27A1, SC5D, DHCR?7, which encode enzymes involved in cholesterol and
sterol biosynthesis are also linked with syndromic cataract. Thus, accumulation of precursor
metabolites such as lanosterol in the lens and liver may be causative of tissuespecific defects
observed in the patient in the present study. The link between 7APT71 and cataract was
unexpected.

TAPT1 encodes transmembrane anterior posterior transformation 1 protein that was found
by Symoens et al. to be mutated in two families with osteogenesis imperfect alike skeletal
dysplasia (Symoens et al. 2015). On the other hand, the family we describe in which cataract
maps to a single locus in which a homozygous splicing TAPTI mutation was identified did
not have any evidence of skeletal involvement. It is possible that the apparent discrepancy in
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phenotype represents a genuine example of allelism especially since both our mutation and
that identified by Symoen cause in-frame truncations mediated by entire exon skipping
(exon 6 in this report and 10 in Symoen’s).

Future cataract patients with different mutations in TAPTZ will help clarify the true
phenotypic spectrum. Similar to 7APT1, we have identified //CZ1 as a novel cataract
candidate based on strong positional mapping data that point to a single locus. Significantly,
the connection in the PPI based network between R/C1 and the cataract-linked gene GJA1
was due to an established direct interaction between these proteins as shown by a previous
study (Akiyama et al. 2005). Further, that study also showed that knockdown of R/C1
resulted in defective localization of GJAL to gap junctions, affecting gap junction
conductivity, which may offer a potential explanation for the cataract associated with R/C1
mutations.

We have previously shown that the mutation spectrum of genetically heterogeneous diseases
is dominated by autosomal recessive mutations in our highly inbred populations (Patel et al.
2015; Anazi et al. 2016; Alazami et al. 2016). We show in this study that cataract displays a
similar trend with recessive mutations accounting for 87% of all identified mutations.
Interestingly, we show that some cataract genes that had only been reported to cause the
disease in a dominant fashion, can also cause autosomal recessive cataract, e.g., EPHAZin
patient 10DG0428. These examples are very helpful in shedding light on the molecular
pathogenesis of these genes since they can challenge the notion of haploinsufficiency of
dominant mutations when carriers of loss of function recessive mutations (parents) appear
normal.

It has been shown that enriched expression in developing lens tissue can be used as a
criterion to evaluate potential function in lens development (Lachke et al. 2011, 20124, b;
Anand and Lachke 2016; Anand et al. 2015; Agrawal et al. 2015; Kasaikina et al. 2011;
Wolf et al. 2013; Manthey et al. 2014; Dash et al. 2015; Audette et al. 2016). Consistent with
those data, we find that all six candidates are significantly expressed in mouse lens
development, and five exhibit lens-enrichment. We also examined microarray data from
several targeted gene mouse mutants lens/presumptive lens tissue for their expression of
these candidate genes, and performed PPI analysis. Several interesting observations emerged
from these analyses. For example, the downregulation of 7aptZ and RicIin Pax6 cKO
presumptive lens ectoderm suggests that these genes are expressed early in lens
development. Similarly, 7gpt! is down-regulated in AMotch2 cKO lens indicating that 7apt7 is
under Notch signaling pathway, which is essential for proper lens development. We note that
Cyp51alis abnormally expressed in Mafg—/-:Mafk+/-, which exhibit mis-regulation of
genes involved in the sterol synthesis pathway (Agrawal et al. 2015). PPI network analysis
for Cyp51al independently shows an enrichment for sterol biosynthetic process, which is
particularly significant because lanosterol synthase mutations can cause cataracts in humans
and rat (PMC1350995) and the sterol pathway is important for maintenance of lens
transparency by prevention of protein aggregation in the lens (Makley et al. 2015; Zhao et al.
2015). Thus, analysis of specific gene perturbation mouse mutants that exhibit lens defects
demonstrated mis-regulation of these newly identified cataract genes, and PPI analysis
revealed novel connections that is suggestive of function in lens development.

Hum Genet. Author manuscript; available in PMC 2018 February 01.
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In conclusion, we show the value of applying research and clinical genomics in the analysis
of pediatric cataract, which in turn will lead to improved diagnostic accuracy in the near
future. Our study confirms the candidacy of some previously reported novel genes as well as
adds a number of novel candidates whose potential role in lenticular development and
cataract should be verified by future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 2.
The mouse orthologs of the novel cataract candidate genes TAPT1, RIC1, CYP51A1,

GEMIN4, TAF1A, WDR87 (4932431P20Rik) are expressed and enriched in lens
development. (a) Lens expression of candidate genes Taptl, Ricl, Cyp5lal, Gemin4, Tafla,
and 4932431P20Rik (WDR87) was analyzed in whole lens microarray datasets at mouse
embryonic day (E) 10.5, E16.5 and postnatal day (P) 0, and P56, as well as isolated lens
epithelium (Epi.) dataset at P28. The red dotted line in “a” indicates expression cut-off score
of 100 fluorescence intensity units. (b) Lens-enrichment of candidate genes was evaluated
by comparing their fluorescence expression intensity scores in the lens against that in the
mouse whole embryonic body (WB) reference dataset. The color intensities in the heat map
indicate the fold-change differences between lens expression over WB. (c) RNA-seq
expression of newborn (PO) mouse isolated lens epithelium (epi) and fiber cells (FC). Error
bars represent standard error of mean (SEM). Asterisk represents significant difference
between comparisons in FC and Epi. expression (p < 0.05)
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Taptl, Ricl, Cyp5lal, Gemin4 and Tafla are mis-regulated in targeted gene deletion mouse
mutants with lens defects. Expression of candidate genes in various mouse mutants that
exhibit lens defects including Pax6 lens-conditional null (Pax6 cKO) at E9.5 and E10.5,
Notch2 cKO at E19.5, E2f1-/-:E2f2—/-:E2f3-/- triple cKO (E2f1/2/3 cKO) at PO, Sparc
null at P28 (isolated lens epithelium only), Tdrd7 null at P30, Mafg—/-:Mafk+/- compound
mutant at P60, KIf4 cKO at P56, Foxe3 lens overexpression mutant at P2, Cpb:p300 cKO
mutant at E9.5, dnBrgl mutant at E15.5 and Hsf4 null at PO. Differential expression in fold-

change of candidate genes between mutant and control is plotted. Error bars represent
standard error of mean (SEM). Asterisk represents significant expression differences

between mutant vs. control lens datasets (p < 0.05)
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