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Abstract

Parametric images for dynamic positron emission tomography (PET) are typically generated by an 

indirect method, i.e., reconstructing a time series of emission images, then fitting a kinetic model 

to each voxel time activity curve. Alternatively, “direct reconstruction,” incorporates the kinetic 

model into the reconstruction algorithm itself, directly producing parametric images from 

projection data. Direct reconstruction has been shown to achieve parametric images with lower 

standard error than the indirect method. Here, we present direct reconstruction for brain PET using 

event-by-event motion correction of list-mode data, applied to two tracers.

Event-by-event motion correction was implemented for direct reconstruction in the Parametric 

Motion-compensation OSEM List-mode Algorithm for Resolution-recovery reconstruction. The 

direct implementation was tested on simulated and human datasets with tracers [11C]AFM 

(serotonin transporter) and [11C]UCB-J (synaptic density), which follow the 1-tissue compartment 

model. Rigid head motion was tracked with the Vicra system. Parametric images of K1 and 

distribution volume (VT=K1/k2) were compared to those generated by the indirect method by 

regional coefficient of variation (CoV). Performance across count levels was assessed using sub-

sampled datasets.

For simulated and real datasets at high counts, the two methods estimated K1 and VT with 

comparable accuracy. At lower count levels, the direct method was substantially more robust to 

outliers than the indirect method. Compared to the indirect method, direct reconstruction reduced 

regional K1 CoV by 35–48% (simulated dataset), 39–43% ([11C]AFM dataset) and 30–36% 

([11C]UCB-J dataset) across count levels (averaged over regions at matched iteration); VT CoV 

was reduced by 51–58%, 54–60% and 30–46%, respectively. Motion correction played an 

important role in the dataset with larger motion: correction increased regional VT by 51% on 

average in the [11C]UCB-J dataset.
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Direct reconstruction of dynamic brain PET with event-by-event motion correction is achievable 

and dramatically more robust to noise in VT images than the indirect method.
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1. Introduction

Kinetic modeling of dynamic positron emission tomography (PET) can produce parametric 

images characterizing tracer uptake rates, useful in studying a wide variety of physiological 

functions such as metabolism and receptor pharmacology. Parametric images are typically 

obtained from dynamic PET data by reconstructing images at multiple time frames, then 

fitting a kinetic model to each voxel time activity curve (TAC). Often, due to high voxel 

noise, multiple methods are used to reduce voxel noise in order to produce parametric 

images with acceptable noise levels [1–4]. An alternative method, “direct reconstruction,” 

produces parametric images directly from raw data by incorporating the kinetic model into 

the reconstruction algorithm. Because the image-domain noise distribution is difficult to 

model, direct reconstruction, using the Poisson model, can achieve lower-variance parameter 

estimates than the indirect method. Direct reconstruction has been the focus of much recent 

attention, as computational power has grown to support this large estimation problem; please 

see recent reviews [5–8].

Motion correction is critical for dynamic brain PET of awake subjects [9, 10]. However, 

there are very few examples in the literature for which direct reconstruction of brain data has 

included motion correction. Gravel et al. [11] presented a method for correcting inter-frame 

motion in direct reconstruction, and evaluated their method in simulated data but not in real 

data. Jiao et al. [12] also developed a direct reconstruction algorithm to estimate inter-frame 

motion and kinetic parameters simultaneously from PET sinogram data. Neither of these 

methods addresses intra-frame motion or takes advantage of measurements from an external 

motion tracking device, which can be made accurately with high temporal resolution [9]. 

The work of Jin et al. [10] suggests that, while frame-based motion correction is sufficient 

for small intra-frame motions (< 5 mm), event-by-event motion correction has universally 

good performance.

Most published demonstrations of direct reconstruction use sinogram data (e.g., [13–15]), 

but list mode data is better suited for event-by-event motion correction since continuous 

motion information can be used [10]. When using list mode data, exact computation of the 

sensitivity image – the sum of the system matrix, including attenuation and normalization, 

over all possible lines-of-response (LOR) – is difficult since the locations of the lines-of-

response are continuously changing with motion. For the sake of computational feasibility, 

approximations must be made, particularly when correcting for motion [16, 17]. In this 

work, we extend the Parametric Motion-compensation OSEM List-mode Algorithm for 

Resolution-recovery reconstruction for the one-tissue model (PMOLAR-1T) [18–20] to 

include event-by-event motion for direct reconstruction; this requires a modified approach 
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for estimating the sensitivity image. In the previous initial evaluation of PMOLAR-1T on 

human data, this effect was ignored for simplicity.

The magnitude by which direct reconstruction outperforms the indirect method will depend 

on, among other factors, the kinetics of the PET tracer, noise level, kinetic model, and 

kinetic parameter of interest (see Figure 11 in [8]). Here, we evaluate the performance of this 

algorithm for two tracers whose kinetics can be modeled with the1-tissue compartment (1T) 

model, [11C]AFM and [11C]UCB-J. [11C]AFM [21] targets the serotonin (5HT) transporter 

protein (SERT) and has been applied to the study of psychiatric disorders such as depression 

and post-traumatic stress disorder. [11C]UCB-J is a new tracer targeting the synaptic vesicle 

glycoprotein 2A [22] and can be used to measure synaptic density, relevant to a wide range 

of diseases including epilepsy and Alzheimer’s disease. We quantify the benefit of direct 

reconstruction, as compared to the indirect method, for each tracer, over a range of count 

levels. Here we take advantage of list-mode data, which permits the generation of lower-

count noise realizations by selectively retaining varying fractions of the events during 

reconstruction.

2. Methods

2.1 Algorithm

2.1.1 Emission Image Reconstruction—For the indirect approach, an emission image 

for each frame of the dynamic PET data is independently reconstructed. The list mode EM 

update equation [23, 24] for the activity λ of each voxel j for a frame f of duration T as 

implemented in MOLAR [16, 25] is:

(1)

where variable definitions are given in Table 1; note that the list mode event index k maps to 

a particular LOR i and time t within frame f. The terms ckj and Ak are time-dependent to 

account for motion: each event’s LOR is transformed according to the measured motion at 

corresponding time index t. Each voxel of the global sensitivity image

(2)

is pre-computed using a large number of random LORs as described in [16, 25].

2.1.2 Direct Parametric Reconstruction—The 1T compartment model describing 

tissue activity concentration CT(t), parameterized by influx and efflux rate constants K1 and 

k2, is

(3)
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where CA(t) is the arterial input function (the time-varying tracer concentration in the 

plasma) and ⊗ is the convolution operator with integration beginning at t=0. The underlying 

kinetic model, i.e., the emission time course, is not represented as truly continuous, but 

rather per time epoch Δt. While Δt can be as small as the list mode resolution (1 ms), in this 

work we set Δt = 6s, which is more than sufficient for normal rates of tracer kinetics based 

on sampled input functions. PMOLAR-1T (previously described in [20] and reviewed here) 

is a direct reconstruction algorithm based on expectation maximization (EM), in which 

update equations are analytically derived for the 1T model. For mathematical clarity, we 

present the equations for sinogram-based reconstruction, which can be generalized to list 

mode (the results in this manuscript were generated by the list mode approach). The 

adaptation to list mode is most simply achieved by directly processing the list mode data of 

each time bin, where each event index k maps to a particular LOR i and time t, and the count 

yit=1. The EM complete data space is given by the random emissions detected along LOR i 
from voxel j at time index t, from tracer input delivered at time τ. Note that for list mode 

reconstruction, t has the time resolution of the list mode data (1 ms). This random variable 

Xijtτ describing the EM complete data space is assumed to be Poisson distributed

(4)

with rate parameter

(5)

(Refer to Table 1 for all variable definitions.) This complete data space decomposes the total 

counts along LOR i into its spatial components (as in the static EM algorithm) and into its 

temporal components (based on the convolution equation). The complete-data log likelihood 

for this Poisson random variable (omitting constant terms) is given by

(6)

and the expectation of the complete data at iteration n, including randoms rate Rit and scatter 

rate Sit, is

(7)

The EM surrogate function is the conditional expectation of the kinetic parameters in each 

voxel, given their current estimates:
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(8)

The update equation for K1 is found by maximizing the right-hand side of (8) with respect to 

K1, which gives:

(9)

To find the update equation for k2, the partial derivative of (8) with respect to k2 is set to 0 to 

obtain the intermediate result:

(10)

Substituting the result for K1,j from (9) into (10) yields the following:

(11)

Here, we define a function H(k2) as the right-hand side of (11):

(12)

Because the left-hand side of (11) is dependent only on the data and current parameter 

estimates, the update equation for k2 is:

(13)

As done previously [20], in the absence of motion, cijt and Ait are independent of time, so 

the update equation for K1 (9) can be simplified to:
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(14)

and H(k2) (12) can be simplified to:

(15)

The terms  and  can be pre-computed at a 

set of k2 values for computational efficiency (with the approximation of ignoring time-

varying live time correction). Note that H(k2,j) is a monotonically decreasing function; refer 

to Appendix A in the Supplemental File for the proof.

Here, we have extended the implementation to include motion. Specifically, when there is 

motion, the sums  and 

 from (9) and (12) are not factorable into a 

sensitivity term Qj and a kinetic model term which is a function of k2. Therefore, we 

incorporated the kinetic model term into the sensitivity image to produce a “kinetic-

sensitivity image” by computing the denominator and numerator terms:

(16)

and

(17)

at a set of G coarsely sampled k2 values (where subscript g denotes the index into this set), 

to get two sets of kinetic sensitivity images. This results in a spatially variant :

(18)
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The Q′ and Q″ images are pre-computed for G k2 values; then  is computed for these G 
k2 values (see Supplementary figure S13), and a linear interpolation between the two values 

of  nearest to  is used to solve the following update equation:

(19)

The inverse of H′ is implemented as piecewise linear between each pair of k2,g values. In 

principle, higher order interpolation could be used, but for this application, linear 

interpolation is likely sufficient (H′(k2) is well approximated by piecewise linear functions 

for the k2 spacing we selected). See Supplemental Figure S13, which gives an example of H
′(k2) for a representative voxel.

The K1 update equation in the presence of motion is then

(20)

where again interpolation within the table of G k2 values is used to find Q′ at the current k2 

estimate.

2.2 Data Simulation

A 4D simulation (3D + kinetics) was performed to validate the updated equations, 

specifically the inclusion of the kinetic term in the sensitivity image, in the presence of 

motion, and to characterize bias in parametric images generated by the indirect and direct 

methods. Note that nonlinear parameter estimation methods can produce bias simply due to 

noise. A list mode file was simulated for a 2-hour scan based on [11C]AFM kinetics and the 

HRRT scanner geometry. Template parametric K1 and k2 images were generated by 

intensity-based segmentation of parametric images from a real human [11C]AFM scan. 

These parametric images were used in conjunction with an input function from a human 

acquisition to calculate the activity image at 6-second intervals, according to the 1T model.

At each timestamp (in ms intervals), a random sampling of LORs was forward projected 

through the ground truth activity image. This forward projection step yielded an expected 

value for the counts of each LOR, consistent with the spatial and temporal distribution of 

activity. Since the LORs are undersampled, an adjustment must be made to the expected 

value. First, note that a Poisson random variable compounded with a Bernoulli random 

variable (i.e. an undersampling operator) results in another Poisson random variable. Thus, 

since the LOR selection process can be approximated as a Poisson random variable, a 

Bernoulli variate was then produced for each random LOR. The probability parameter of 
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each Bernoulli distribution was specified by the expected value of the counts along that 

LOR, scaled by the LOR undersampling rate. To improve efficiency, LORs were grouped by 

similar expected values (approximated from a coarse forward projection of the activity 

image at regular time intervals), and non-uniformly sampled such that groups with higher 

expected values were sampled more heavily. LOR sampling rates were set high enough such 

that the Bernoulli parameter never exceeded 1. Thus, the LOR sampling process varied in 

space and time to capture the tracer kinetics as well as motion, which was simulated based 

on Vicra measurements from a real human acquisition, and applied event-by-event. A more 

detailed description of the simulation methodology can be found in Appendix B presented in 

the Supplemental file. Randoms and scatter modeling were not included. Attenuation inside 

the brain was assumed to be uniform. The simulated list mode file contained 837 million 

true events, which was then downsampled to 5, 10, and 20% count levels as described below 

for the human datasets.

2.3 Human Data Acquisition

This study is a retrospective analysis of previously acquired datasets of two healthy male 

subjects, one using tracer [11C]AFM and the other with [11C]UCB-J (see Table 2). Both PET 

scans were acquired on the high-resolution research tomograph (HRRT) (Siemens Medical 

Solutions, Knoxville, TN, USA). Transmission scans were acquired for attenuation 

correction. Input functions were obtained by arterial blood sampling at the radial artery, 

continuously collected for the first 7 minutes of the PET acquisition at 4 mL/min (PBS-101, 

Veenstra Instruments, Joure, The Netherlands). Fifteen manual samples were collected over 

the remainder of the acquisition. Corrections were made for metabolites, decay, dispersion, 

and delay. The Polaris Vicra tracking system (NDI Systems, Waterloo, Ontario, Canada) 

[26] was used to measure rigid motion of the head throughout each scan at a frequency of 

~30 Hz. These measurements formed a priori knowledge of the motion field, which were 

provided as input to the reconstruction algorithm as previously described [10, 25]. During 

reconstruction (both indirect and direct methods), the endpoints of each line of response are 

corrected according to the most recent measurement from the external tracking device.”

Each list mode file was down-sampled to 5, 10, and 20% of the total counts by applying a 

repeating sequence of 50 ms gates for the 2-hour scan duration. Respectively, each 20th, 

10th, or 5th gate was kept per replicate. Five replicates were reconstructed for each case, as 

well as the original (full count) datasets.

Reconstruction and Kinetic Modeling—For the indirect method, each frame was 

initialized to the 1T model evaluated at the frame midpoint with k2=0.02 min−1, K1=0.5 

mL/min/cm3. For the direct method, reconstruction initial conditions were set to k2=0.02 

min−1, K1=0.5 mL/min/cm3. Both methods used 4 iterations of 20 subsets. Events were 

sequentially assigned to subsets in the order read in from the list mode file.

To estimate Q or Q′ and Q″ (Eq. 2 for indirect; Eq. 16 and 17 for direct) sensitivity images, 

random LORs were selected. The number of random LORs was chosen in proportion to the 

number of events included in the reconstruction (e.g., such that the 10% count level 

reconstructions used half the number of random LORs for Q estimation as the 20% count 
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level reconstructions). This approach, to scale the number of random LORs based on the 

number of actual events in the reconstruction, has been shown to balance the amount of 

noise added by the random Q process vs. computation time. For each real event in the list 

mode file, a random LOR was chosen, to achieve time-varying sampling according to count 

rate. To verify that this approach was appropriate, for the [11C]AFM dataset only, the 10% 

count level datasets were additionally reconstructed with Q generated using double the 

number of random LORs as list mode events, and the 5% count level datasets with quadruple 

the number of random LORs (i.e., the same number of random LORs as used in the 20% 

count level reconstructions). These reconstructions were used to evaluate the impact of the 

number of LORs used to estimate the sensitivity image on the noise of the parametric 

images.

For the direct method, Q′ and Q″ (Eqs. 16 and 17) were computed for 12 k2 values 

distributed linearly between 0.0001 min−1 and 0.078 min−1.

Randoms were estimated based on time-varying block singles rates. Scatter was estimated 

across coarsely sampled detector space at 10 time points using the single-scatter simulation 

(SSS) method [27], and iteratively updated at subsets 0, 4, and 10 of the first iteration. 

Global scatter scale factors for each time point were determined as the ratio between scatter 

measured outside the attenuation volume and calculated scatter estimate. To determine the 

scatter estimate for each event, linear interpolation among the 10 estimated timepoints was 

used [18, 19].

For each down-sampled replicate, dynamic PET sequences of 17 temporal frames (4×30s, 

1×1min, 2×2min, 2×5min, 1×7min, 3×10min, 3×15min, 1×20min) beginning one minute 

after scan start were reconstructed using MOLAR [16], for the indirect method. Post-

reconstruction of each iteration of 20 subsets, the 1T model was fit to each voxel using the 

basis function method [28, 29] with weights based on noise-equivalent counts. The minimal 

and maximal allowed values of k2 were 0.0001 min−1 and 0.078 min−1, respectively. In 

previous analyses of these tracers with a more lenient maximum k2 (1.0), fewer than 0.1% of 

voxels exceeded the maximum set here.

2.4 Quantitative Analysis

The parameters of interest in this study were K1 and volume of distribution, VT=K1/k2, 

which contains the receptor-related information [30]. Quantitative metrics were summarized 

regionally, for 8 regions (amygdala, caudate, cerebellum, frontal lobe, hippocampus, 

occipital lobe, putamen, and thalamus) from the automated anatomical labeling (AAL) 

template [31] in the Montreal Neurological Institute (MNI) space, which was transformed to 

the PET space independently for each subject based on co-registered MR images. Regions 

were eroded by one voxel, and all regions besides the subcortical regions (caudate, putamen, 

and thalamus) were masked to include only voxels corresponding to gray matter, as 

determined from the co-registered MRI. For simulated data, percent bias in K1 and VT with 

respect to the true values was calculated per voxel from the average of the 5 replicates, per 

count level. Mean parametric images were generated by averaging replicates for each count 

level, which was followed by averaging within region of interest. Voxelwise coefficient of 

variation (CoV) for VT could not be reliably estimated using the mean and standard 
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deviations across 5 replicates, due in part to large outliers. Instead, the voxelwise covariance 

matrix of K1 and k2 was estimated across replicates per count level, and voxelwise VT CoV 

was estimated by propagation of uncertainty, using the full-count images from direct 

reconstruction (due to high bias in lower count and indirect images) for the mean voxelwise 

values of K1 and k2:

(17)

where σ1 is the K1 standard deviation, σ2 is the k2 standard deviation, and σ1,2 is the 

covariance of K1 and k2. Standard deviation images were calculated as standard deviation 

across 5 replicates, per voxel. The covariance images were computed across 5 replicates, 

using a 3×3×3 neighborhood at each voxel (for a total of 135 values contributing to the 

covariance estimate at each voxel). To quantify the advantage of the direct method over the 

indirect method, we computed the percent reduction in regional VT CoV from indirect to 

direct, at matched iteration and count level:

(18)

3. Results

Changes in regional K1 and k2 means over the final two iterations at the 100% count level 

for both the indirect and direct methods were small (−1.9±1.5%, see Supplemental Tables S1 

and S2); accordingly, whenever results are not shown for all iterations, they are summarized 

at iteration 2. Most results are presented for a single representative brain region (frontal 

lobe), with additional regions presented in the Supplemental Data.

3.1 Simulated Data

Simulated and reconstructed images are shown in Fig. 1. The K1 image shows differences 

based on higher and lower blood flow in gray matter and white matter, respectively. The VT 

image shows the distribution of serotonin transporter binding which is lowest in the 

cerebellum and highest in subcortical and midbrain regions.

At the full count level, K1 and VT images (Fig. 1) are qualitatively similar between the direct 

and indirect methods, though indirect had slightly higher noise. The k2 image has notable 

differences in texture between indirect and direct, with the indirect k2 image showing much 

higher variability. At iteration 2, the mean regional biases of K1 and VT in the frontal lobe 

for the full-count dataset were <1% for both the indirect and direct methods (Tables 3 and 

4). Bias tended to increase with iteration, particularly for the indirect method. Several small 

regions (amygdala, caudate, putamen) exhibited significant bias in VT even for the full-count 

dataset, by the indirect method but not the direct method (Supplemental Tables S3–S5).
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Across all count levels, bias in frontal lobe K1 was relatively low by both methods across 

iterations (Table 3): even at iteration 4 at the 5% count level the bias from the indirect 

method was only 12%. Some other regions showed greater bias in K1 at low counts, even at 

iteration 2 (Supplemental Table S3).

Results were different for VT (K1/k2). At the subsampled count levels, extreme outliers 

cause large positive bias in VT images generated by the indirect method, which worsen with 

increasing iteration and decreasing count level (Fig. 2a, 3a; Table 4). These outliers are due 

to k2 values approaching the lower bound imposed in model fitting. At the 5% count level, 

the mean bias in VT in the frontal cortex is ~1000% by the indirect method at iteration 2, 

however the median VT bias is 15%, due to the asymmetric distribution of estimated values. 

Bias in VT is much better controlled by the direct method (Fig. 2b, Fig. 3b), and only the 5% 

count level has significant outliers (mean VT bias at iteration 2 is 35% and median is 4%). 

Mean and median VT bias for other regions are given in Supplemental Tables S4 and S5. 

The regions exhibiting greatest bias were primarily those with higher VT values (due to 

higher concentrations of transporter) and thus very low k2, where errors introduce large bias 

in VT.

Fig. 4a shows the regional CoV values for VT in the frontal lobe. Direct reconstruction 

shows much lower noise than the indirect method. For example, at iteration 2, VT CoV is 

lower for the 5% count level by direct reconstruction (21%) than that with quadruple the 

counts by the indirect method (25%) (Fig. 4a). At iteration 2, the percent reduction in 

regional VT CoV (in the frontal cortex) afforded by direct reconstruction compared to 

indirect is similar across count levels, ranging from 59% to 64% (Fig. 4b). Percent reduction 

in VT CoV was similar for other regions, 51–58% (averaged separately per count level, 

across regions). Percent reduction in K1 CoV was smaller, 35–48% averaged across regions.

3.2 Human Data

To demonstrate the importance of motion correction, one replicate at the 20% count level for 

each dataset was reconstructed by the direct method, both with and without motion 

correction (Fig. 5). Motion magnitude over the 2-hour scan duration was summarized 

quantitatively according to Equation 3 in [10] for each dataset; the average motion was 2.86 

mm for the [11C]AFM dataset and 20.1 mm for the [11C]UCB-J dataset. The large motion 

for the [11C]UCB-J dataset is primarily due to a shift that occurred in the 56th minute. Only 

subtle differences are present between the corrected and uncorrected images for the 

[11C]AFM dataset, consistent with the relatively small motion in this acquisition (Fig. 5a). 

The average VT in the frontal cortex at iteration 2 is 14.6 mL/cm3 without motion correction, 

and 15.9 mL/cm3 with motion correction. Motion correction had a more pronounced effect 

on the [11C]UCB-J parametric images when correction was not applied (Fig. 5b). A large 

vertical shift is evident in the k2 image, which was more greatly impacted by motion than 

the K1 image. When left uncorrected, the motion in the [11C]UCB-J study results in severe 

artifacts and widespread elevation in k2, which in turn lowers VT: at iteration 2, the average 

VT in the frontal lobe is 15.2 mL/cm3 without motion correction, and 25.5 mL/cm3 with 

motion correction. See Supplemental Table S6 and S7 for other regional values for K1, k2, 

and VT with and without motion correction.
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Parametric VT images of single replicates of the [11C]AFM and [11C]UCB-J datasets are 

shown, respectively in Figures 6 and 7, at each count level and iteration. See Supplemental 

Figures S2–S5 for K1 and k2 parametric images of each tracer. K1 images are similar 

between the [11C]AFM and [11C]UCB-J datasets, as they both reflect cerebral blood flow. 

The k2 image is more uniform across the brain in [11C]UCB-J due to uniformity of binding 

to synaptic vesicles in gray matter.

Full-count images by both methods are mostly free of outliers. Predictably, noise becomes 

systematically worse with increasing iteration and decreasing count level, and is always 

higher for the indirect method than the direct method at matched count level and iteration. 

For both tracers, the noise advantage of the direct method over the indirect method is more 

visibly apparent in the k2 images than K1.

Mean regional K1 and VT values at iteration 2 for the frontal lobe (averaged across replicates 

and within region) for the 2 tracers are given in Tables 5 and 6; see Supplemental Tables S8–

S11 for other regions. In both datasets, mean K1 values are similar between direct and 

indirect methods across all count levels, with only slightly greater differences between direct 

and indirect K1 at the 5% count level compared to the 100% count level. This is consistent 

with the simulation study, for which bias in K1 was low in all regions for both methods, 

increasing modestly with decreasing count level for the indirect method (Supplemental Table 

S3). However, mean VT values are similar between direct and indirect only for the full-count 

reconstructions. The mean VT is stable across count level for the direct method, with a slight 

increase at the lowest count levels for [11C-]UCB-J. Mean VT estimated by the indirect 

method becomes larger with decreasing count level, as a result of noise-induced bias: higher 

variance in k2 produces more k2 values approaching the lower bound for k2, and thus much 

higher VT values. Median VT values are less biased since they are less affected by these 

outliers.

Qualitative image assessments of noise from Figs. 6 and 7 show clear noise advantage of the 

direct method; this assessment is supported by the regional estimates of VT %CoV (across 

replicates) in the frontal lobe (Figs. 8a and 8b). K1 %CoV was lower than VT %CoV, but 

followed the same trends (Supplemental Figure S6a and b). VT %CoV was relatively 

uniform throughout most of the brain (see Supplemental Figures S7 and S8 for VT CoV 

images of each tracer across count levels and iterations), although subcortical VT %CoV 

appeared to be higher (since VT values there are higher). For [11C]AFM, the direct method 

at the 5% count level has similar regional VT CoV in the frontal lobe at iteration 2 (21%) as 

the indirect method at the 20% count level (19%), i.e., with quadruple the counts (Fig. 8a). 

This agreed well with the simulation results, for which the direct method gave VT CoV of 

21% at the 5% count level and the indirect method gave VT CoV of 24% at the 20% count 

level. For [11C]UCB-J (Fig. 8b), the direct method gives similar regional VT CoV at 

iteration 2 (23% for the 5% count level, 17% for the 10% count level) as the indirect method 

does with double the counts (27% for the 10% count level, 17% for the 20% count level).

For the [11C]AFM dataset, the advantage of direct reconstruction in terms of regional VT 

CoV reduction, compared to the indirect method, is similar across count levels, for matched 

iteration (Fig 8c). In the [11C]UCB-J dataset, the advantage of direct reconstruction is 
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consistently greatest for the lowest count level, across all iterations (Fig 8d). The reduction 

in K1 CoV of direct reconstruction compared to the indirect method followed similar trends 

(Supplemental Figure S6c,d). At iteration 2, the percent reduction in regional K1 CoV in the 

frontal lobe between direct and indirect was 43–46% for [11C]AFM and 30–36% for 

[11C]UCB-J; the percent reduction in regional VT CoV between direct and indirect ranged 

from 50% to 58% for [11C]AFM, and 30% to 47% for [11C]UCB-J. Similar results were 

obtained across other regions (Supplemental Figures S9 and S10).

4. Discussion

4.1 Summary

In this work, we demonstrate the application of direct reconstruction with event-by-event 

motion compensation to simulated and real brain PET data for two tracers with 1T kinetics, 

across multiple count levels. The primary outcome measure is distribution volume 

coefficient of variation, which is compared regionally between the direct and indirect 

methods. Both methods gave comparable regional estimates for K1 across all count levels. 

The direct method produced more stable estimates of VT across count levels. The direct 

method consistently gave parametric images with lower CoV than the indirect method.

4.2 Relative Advantage of Direct Reconstruction

While direct reconstruction yielded substantial improvements in CoV for both datasets, the 

benefit of direct over indirect was greater for the [11C]AFM dataset than for the [11C]UCB-J 

dataset. The [11C]UCB-J dataset had double the counts of the [11C]AFM dataset, which 

might contribute to the difference in performance. The weighted least squares fitting used in 

the indirect method assumes Gaussian noise in image space, which likely becomes a better 

approximation at higher counts, allowing the indirect method to achieve variance closer to 

the theoretical minimum.

The benefit of direct reconstruction over the indirect method in terms of parameter CoV, as 

determined in this study, falls within the range of those previously reported (e.g., see Figure 

11 of [8]). However, a more thorough comparison of these results to those in the literature is 

difficult due to the dependence on tracer, model, parameter of interest, and count level, as 

well as the inclusion of other factors, such as randoms, scatter, and motion.

4.3 Motion

In previous work using PMOLAR-1T, as well as most other published studies on direct 

reconstruction, motion has been avoided or ignored. In our data, the parametric images from 

one of the two evaluated human datasets were not greatly affected by motion (9% increase in 

frontal lobe VT with motion correction, compared to uncorrected), while those from the 

second were more severely affected (68% increase in frontal lobe VT with motion 

correction, compared to uncorrected). Motion can have variable impact on parametric 

images, depending on motion magnitude, frequency, and time of occurrence. For instance, 

motion towards the end of an acquisition might be more likely to affect k2 than K1, because 

the early data has a larger impact on K1 estimation, and the later data have greater sensitivity 
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to k2; this is consistent with the results from the [11C]UCB-J study, which had a large 

motion an hour into the scan.

4.4 Outlying VT Estimates

The primary outcome measure used here is VT (=K1/k2), a measure of total tracer binding to 

the target. Because VT is calculated as a ratio, it is prone to large outliers, and increasingly 

so at lower count levels. Note that in both indirect and direct methods, a fixed range for k2 is 

established in advance, thus, VT can be constrained by setting a relatively high lower bound 

for k2, which would result in more visually appealing images. The k2 images from direct 

reconstruction have much greater precision than those from the indirect method, so the 

distribution of k2 values did not extend as close to 0 as in the indirect method, despite 

sharing the same imposed lower bound on k2. Therefore, unlike the lower count indirect VT 

images, the direct VT images had very few outliers at any count level.

4.5 Stopping Iteration

To determine a stopping criterion for iterative reconstruction methods without regularization, 

it is common to estimate from simulations the iteration that, for instance, minimizes root-

mean-square error, combining the effects of bias and noise. Such an approach was not viable 

for this application, because both CoV and regional bias in VT increased with each iteration, 

for all count levels and methods. Moreover, biases at full counts were extremely small at 

iterations 1 and 2, suggesting that convergence had been reached, at least for the ROIs 

examined here. Also, we used subsets for computational practicality, so we cannot assess 

convergence with much granularity. While in some places we have used iteration 2 results as 

a reasonable stopping point, we do not present any formal stopping criterion for this work.

4.6 Sampling for Sensitivity Image Estimation

In routine reconstructions of HRRT data with MOLAR, in order to properly model 

continuous motion, the sensitivity image (Eqs. 2, 16, and 17) is determined by sampling 

LORs, and it is standard practice to use the same number of LORs for estimating the 

sensitivity image as events in the list mode file, in order to balance noise vs. computation 

time. Increasing LOR sampling affected indirect and direct VT CoV equally. Iteration 2 

regional VT CoV decreases by ~15% for both methods at the 5% count level when the 

number of sampled LORs is quadrupled; regional VT CoV decreases by 11% for both 

methods at the 10% count level when the number of sampled LORs is doubled 

(Supplemental Figure S11). Quadrupling (at the 5% count level) or doubling (at the 10% 

count level) the number of LORs sampled for estimation of the sensitivity image resulted in 

a ~20% decrease, in each case, in regional mean VT at iteration 2 for the indirect method, 

reflecting a reduction in the magnitude of outliers. For the direct method, which did not 

produce many outlying VT values, increasing the LOR sampling results in virtually no 

change in mean VT. While increasing the LOR sampling for sensitivity image estimation can 

indeed reduce noise, the effect is modest, and much smaller than that gained from using 

direct reconstruction over indirect for matched conditions.
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4.7 Limitations

One shortcoming of this work is the limited number of replicates reconstructed per 

condition. Because replicates were obtained by downsampling real list mode files, we were 

restricted to 5 (independent) replicates for the 20% count level. At the lower count levels, the 

decision to use only 5 replicates was driven by considerations for computational burden. The 

same approach was taken by Gravel and Reader [32] in a similar work evaluating direct 

reconstruction of binding potential images for raclopride PET. With so few replicates, 

voxelwise estimates of standard deviation will tend to be biased downwards (sample 

variances will be unbiased). However, comparing results generated by either 5 or 15 

replicates for the simulated data at the 5% count level, we find that regional averages of the 

voxelwise VT CoV estimates are not greatly affected by number of replicates (see 

Supplemental Fig. S12). At iteration 2, the VT CoV in the frontal lobe was 12% greater 

when estimated with 15 replicates versus 5 replicates for the indirect method, and 7% 

greater for the direct method. Moreover, the pattern of CoV with respect to count level or 

method was not affected by the small number of replicates.

Because the low count replicates in this study are sub-sampled from real list mode datasets, 

the randoms rates are still consistent with full count acquisitions. True low count 

acquisitions would be expected to have fewer random events. Therefore, this approach 

represents a conservative estimate of performance at low counts.

Inaccurate model specification can cause propagation of bias from regions where the model 

does not fit, to regions where it should, when parametric images are generated by direct 

reconstruction [33]. The 1T model has been validated for use in both [11C]AFM and 

[11C]UCB-J, though some lack of fit was observed for [11C]AFM in regions with relatively 

low binding [21]. If the regions with poor fits are indeed only those with low activity, the 

relative magnitude of the residuals due to lack of fit will also likely be low, and error 

propagation is expected to be minimal. For the full count datasets, there were no substantial 

differences in regional K1 and k2 values between the indirect and direct methods, suggesting 

that error propagation is unlikely to be significant.

The 1T compartment model is of course not suitable for modeling the kinetics of all tracers. 

In principle, the algorithm presented here can be easily extended to the two tissue 

compartment model by adding a dimension to the EM complete data space specifying 

compartment number (with an ordering constraint to enforce parameter identifiability), 

though convergence rate might suffer due to increased parameter correlations. This 

extension would be similar to what we have previously implemented for direct 

reconstruction of cardiac PET [34], for which two linear parameters were added to the 1T 

model to accommodate spillover from the right and left ventricles into myocardial tissue.

5. Conclusion

These results demonstrate the first use of event-by-event motion correction in the direct 

reconstruction of real PET data. The advantage of direct reconstruction over indirect was 

substantial at a given iteration and was similar or increased slightly with decreasing count 

level, as quantified by mean regional VT CoV. Additionally, the direct method was more 
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robust to outliers even at extremely low count levels, where the indirect method suffers from 

noise-induced bias. The advantage of direct reconstruction is substantial enough to permit 

greatly reduced doses, compared to what would be required for similar quality parametric 

images generated by the indirect method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulated parametric images. First column shows true images. Second and third columns 

show reconstructed parametric images by the indirect and direct methods, respectively, at 

Iteration 2 (20 subsets). These results use the full list mode file (100%-count level). No 

smoothing has been applied. For a comparison with and without motion correction, see 

Supplemental Figure S1.
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Figure 2. 
VT parametric maps of one replicate of simulated [11C]AFM dataset per count level (rows), 

across 4 iterations (columns). (a) Generated by the indirect method. (b) Generated by the 

direct method.
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Figure 3. 
Voxelwise percent bias in VT parametric images, computed from average across 5 replicates 

of simulated data (except for the 100% count level, which used 1 replicate), per count level 

(rows) and iteration (columns). (a) Generated by the indirect method. (b) Generated by the 

direct method.
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Figure 4. 
(a) Regional VT %CoV (in the frontal cortex) by iteration and count level for the indirect 

and direct methods, for the simulated dataset. (b) Percent reduction in regional VT CoV of 

the direct method relative to the indirect method, by iteration and count level, for the 

simulated dataset.
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Figure 5. 
Parametric images generated via direct reconstruction, without and with motion correction. 

Results are shown at iteration 2, for one replicate at the 20% count level. (a) [11C]AFM 

dataset (b) [11C]UCB-J dataset
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Figure 6. 
VT parametric maps of one replicate of human [11C]AFM dataset per count level (rows), 

across 4 iterations (columns). (a) Generated by the indirect method. (b) Generated by the 

direct method.
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Figure 7. 
VT parametric maps of one replicate of human [11C]UCB-J dataset per count level (rows), 

across 4 iterations (columns). (a) Generated by the indirect method. (b) Generated by the 

direct method.
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Figure 8. 
(a,b) Regional VT %CoV (in the frontal cortex) by iteration and count level for the indirect 

and direct methods, for (a) [11C]AFM and (b) [11C]UCB-J. (c,d) Percent reduction in 

regional VT CoV of the direct method relative to the indirect method, by iteration and count 

level, for (c) [11C]AFM and (d) [11C]UCB-J.
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Table 1

Variable definitions.

Variable Unit Description

Ait – Attenuation along LOR I at time index t

cijt mm Contribution of voxel j to LOR i at time index t (includes geometry, resolution, solid angle, and motion 
effects)

Δt s Duration of each time bin (for direct reconstruction; time interval for discretization of the kinetic 
model, which can theoretically be as small as 1 ms, the timing resolution of the list mode file)

f – Frame index (for indirect reconstruction)

G – Number of k2 values used to compute sensitivity images with motion correction (Eqs. 16 and 17)

i – LOR index

j – Voxel index

k – List mode event index

K1,j mL/min/cm3 Inflow rate constant of 1T model at voxel j

k2,j 1/min Outflow rate constant of 1T model at voxel j

Lt – Decay factor

λj Bq/mL Value of emission image at voxel j

counts Conditional expectation of complete data at iteration n

n – Iteration number

Ni (counts/s)/(Bq/mL·mm) Normalization factor for LOR i (in terms of absolute sensitivity)

Pτ Bq/mL Value of input function to 1T model at time index τ

Qj (counts/s)/(Bq/mL) Sensitivity of voxel j

Rit counts/s Randoms rate for LOR i at time index t

Sit counts/s Scatter rate for LOR i at time index t

t – Time bin index, relative to injection time

T s Duration of an emission time frame (for indirect reconstruction)

τ – Time bin index of tracer delivery (for discretization of convolution integral)

Xijtτ counts
Random variable representing counts detected on LOR i at time t, emitted from voxel j for tracer 

delivered at time index τ (xijtτ denotes a realization of this random variable)

ξijtτ 1/s Rate parameter of the Poisson distribution of Xijtτ

Yit counts
Random variable representing counts detected on LOR i at time index t (yit denotes a realization of this 

random variable)
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Table 2

Summary of human acquisitions.

Subject 1 Subject 2

Tracer [11C]AFM [11C]UCB-J

Dose (MBq) 832 650

Scan Duration (h) 2 2

Counts (×109) 1.2 2.3
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