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Abstract

Making intertemporal choices (choosing between rewards available at different points in time) 

requires determining and comparing the subjective values of available rewards. Several studies 

have found converging evidence identifying the neural systems that encode subjective value in 

intertemporal choice. However, the neural mechanisms responsible for the process that produces 

intertemporal decisions on the basis of subjective values have not been investigated. Using model-

based and connectivity analyses of functional magnetic resonance imaging data, we investigated 

the neural mechanisms underlying the value-accumulation process by which subjective value 

guides intertemporal decisions. Our results show that the dorsomedial frontal cortex, bilateral 

posterior parietal cortex, and bilateral lateral prefrontal cortex are all involved in the accumulation 

of subjective value for the purpose of action selection. Our findings establish a mechanistic 

framework for understanding frontoparietal contributions to intertemporal choice and suggest that 

value-accumulation processes in the frontoparietal cortex may be a general mechanism for value-

based choice.
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Introduction

Decisions involving tradeoffs between the magnitude of rewards and the delays at which 

they can be obtained are ubiquitous and often important in determining long-term well-

being. For example, our long-term financial stability is largely dependent on our ability to 

forgo the satisfaction of immediate consumption for the sake of accumulating greater wealth 

for the future in the form of savings. These decisions are known as intertemporal choices 

and have long been the focus of economic (Thaler & Shefrin, 1981; Hoch & Loewenstein, 

1991) and psychological (Mischel et al.,1989; Ainslie, 2001) theories of self-control. Recent 

neuroimaging studies have progressed toward a neurobiological understanding of 

intertemporal choice by identifying the neural systems that encode the subjective value of 

delayed rewards (McClure et al., 2004, 2007; Kable & Glimcher, 2007; Peters & Büchel, 

2009). It is now generally agreed that the ventromedial prefrontal cortex (vmPFC) and 
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ventral striatum play a key role in the valuation of future rewards (Kable & Glimcher, 2009; 

Peters & Büchel, 2011; van den Bos & McClure, 2013). However, the neural mechanisms 

that ultimately produce intertemporal decisions on the basis of subjective value remain 

poorly understood.

A proposal based on findings from the perceptual decision-making literature (Kable & 

Glimcher, 2009) and recent imaging studies dealing with simple value-based scenarios 

(Basten et al., 2010; Hare et al., 2011) suggests that frontoparietal regions, like the 

dorsomedial frontal (dmFC), posterior parietal (pPC) and lateral prefrontal (lPFC) cortex, 

guide intertemporal choice behavior by accumulating subjective value information encoded 

in the vmPFC and striatum (Kable & Glimcher, 2009). Recent computational modeling 

studies have shown that the mechanisms implied by this hypothesis can explain many 

features of intertemporal choice behavior (Dai & Busemeyer, 2014; Rodriguez et al., 2014), 

but the prediction that these mechanisms are localized in the frontoparietal cortex has not 

been tested.

We tested the hypothesis that frontoparietal regions accumulate subjective value information 

in intertemporal choice, using a combination of model-based and connectivity analyses of 

functional magnetic resonance imaging (fMRI) data. To this end, we designed an 

intertemporal choice task that systematically manipulated the value-accumulation process on 

an individual subject basis. The resulting neural activity was analysed to identify value-

related responses in the vmPFC and to test for functional connectivity related to the action 

selection process. We also developed a model of value accumulation to account for behavior 

at the level of individual trials and leveraged the model to generate predictions of trial-to-

trial variability in neural activity associated with value-accumulation mechanisms. Finally, 

we conducted additional tests of neural activity and functional connectivity within 

frontoparietal regions to test predictions derived from our value-accumulation model. Our 

findings suggest differential involvement of the dmFC, pPC and lPFC with value 

accumulation, revealing a mechanism by which frontoparietal regions guide intertemporal 

decisions.

Materials and methods

Based on prior literature from studies of evidence accumulation in other decision domains 

(Gold & Shadlen, 2007; Heekeren et al., 2008; Kable & Glimcher, 2009; Basten et al., 2010; 

Hare et al., 2011), we established four criteria for determining whether neural activity in the 

dmFC, pPC and lPFC may be interpreted as reflecting the accumulation of subjective value 

information for the purpose of action selection during intertemporal choice.

Criterion I

Regions implementing value accumulation during intertemporal choice must receive input 

from regions that encode the subjective value of delayed rewards. To test this criterion, we 

must identify brain regions associated with encoding subjective value and show evidence of 

functional connectivity between value-encoding and value-accumulation regions.
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Criterion II

Activity in value-accumulation regions should correlate with trial-to-trial variability in value 

accumulation. Specifically, this criterion requires that we predict trial-to-trial variability in 

the amplitude of blood oxygen level-dependent (BOLD) responses from brain regions that 

receive encoded value input. We can derive predictions of trial-to-trial variability in value-

accumulation activity using a computational model whose parameters have been estimated 

by fits to intertemporal choice behavior (Rodriguez et al., 2014).

Criterion III

Neural activity from value-accumulation regions should vary as a function of value input 

strength and as a function of response time (RT). These two features are critical signatures of 

evidence accumulation activity in single-neuron recordings during perceptual decision-

making (Gold & Shadlen, 2007).

Criterion IV

Value-accumulation regions must influence motor responses. To test this criterion, we 

should find evidence of functional connectivity between value-accumulation and motor 

regions expressing the outcome of a decision.

Subjects

Twenty-five healthy adults participated in this study (16 females, age 19–46 years, mean 

24.44 years). All participants gave written informed consent before completing the 

experiment. All procedures were approved by Stanford University’s Institutional Review 

Board and were in compliance with the 2013 World Medical Association Declaration of 

Helsinki for ethical research practices involving human subjects. One participant was 

excluded because the behavior did not allow us to estimate reliable temporal discounting 

parameters. Another participant was excluded because of data collection problems. Data 

from a total of 23 subjects were analysed (15 females, age 19–46 years, mean 24.52 years).

Discounting model and task design

Participants completed two intertemporal choice tasks. The first task used a staircase 

procedure to measure each individual’s discount rate k, assuming a hyperbolic discounting 

function

(1)

where VD is the subjective value of the delayed reward, r is the monetary amount offered, 

and t is the delay. Using a maximum likelihood procedure, parameters were estimated from 

the first task and used to generate stimuli for the second task that varied systematically in 

VD, which therefore also manipulated the relative value evidence (|VD−VI|) and the value-

accumulation process in a predictable manner.
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The staircase procedure used during the first task required participants to select between a 

delayed reward (of r dollars available at delay t) and a fixed immediate reward of $10 (VI). 

For any choice, indifference between the immediate and delayed options implies a discount 

rate of k = (r−VI)(VI t)−1. We refer to this implied equivalence point as keq; our procedure 

amounted to varying keq systematically until indifference was reached. Specifically, we 

began with keq = 0.02. If the subject chose the delayed reward, keq decreased by a step size 

of 0.01 for the next trial. Otherwise, keq increased by the same amount. Every time the 

subject chose both a delayed and an immediate offer within five consecutive trials, the step 

size was reduced by 5%. Participants completed 60 trials of this procedure. We placed no 

limits on the RT, and presented both offers on the screen, as ‘$10 now’ on the left side, and 

‘$r in t days’ on the right.

After completing the first task, we fit a softmax decision function to participants’ choices. 

We assumed that the likelihood of choosing the delayed reward was given by

(2)

where m accounts for sensitivity to changes in discounted value.

We collected fMRI data during the second task. In every trial, a delay t was randomly 

selected from a range of 15–45 days. We then calculated and offered an amount r that would 

give a PD of 0.1, 0.3, 0.5, 0.7, or 0.9 (Fig. 1A). Delays were presented first for 1000 ms. The 

amount information (r) was then shown and kept on screen for a maximum of 4000 ms. A 

fixed immediate option of $10 was always available but was never visually presented (Fig. 

1B).

We specifically selected a 1000 ms separation between the presentation of delay and amount 

information in order to maintain the experiment design as close as possible to the design that 

we used for another experiment where we collected electroencephalography data during the 

same task. In the context of the current dataset, the 1000 ms separation prevents us from 

distinguishing neural responses to delay and amount presentations. However, our sequential 

design allowed us to minimize the amount of time that subjects need to spend reading the 

screen before engaging in the decision process, eliminating a potential confound from our 

estimation of decision times. Moreover, our primary interest was on brain activity associated 

with the decision process, which was unaffected by this short interstimulus interval.

We measured the RT relative to the onset of the decision period. The duration of the decision 

period was fixed at 4000 ms. When subjects made choices in less than 4000 ms the amount 

information disappeared and the screen remained blank until 4000 ms elapsed. We discarded 

any trial in which a response was made in less than 200 ms or fell outside the decision 

period. We introduced an inter-trial interval of between 4 and 10 s to facilitate separability of 

the BOLD response between trials. In exchange for participation subjects received $40 cash 

and an additional amount, determined by their choice in a randomly selected trial, taken 

from the second task.
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Participants completed 40 trials at every PD level except at PD = 0.5, for which they 

completed 80 trials. This permitted us to study the effects of relative value evidence, |VD

−VI|, on fMRI measures with the same number of trials at each level. Trial types were 

randomized and counterbalanced over four blocks. We also counterbalanced the mapping 

between choices and button presses for every subject. During the first half of the second 

session, approximately half of the subjects (n = 11) indicated delayed reward choices by 

pressing a button with their left index finger and immediate choices by pressing a different 

button with their right index finger. The other subjects indicated their choices by the inverse 

left–right mapping. All subjects switched the initial response mapping during the second 

half of the session.

Analysis of behavioral data

Our first analyses of the data from this experiment were aimed at confirming that the task 

used during the second session manipulated behavior as intended. We first tested whether PD 

varied as a function of VD as predicted by Eqn 2. To test this, we ran a logistic mixed-effects 

regression on choice probabilities (observed during the second intertemporal choice task) as 

a function of VD, calculated from the parameters observed during the first intertemporal 

choice task. We also tested if RT varied as a function of |VD−VI|. To test for RT effects, we 

ran a linear mixed-effects regression on median RT, using |VD−VI| as the regressor. Both 

behavioral analyses were conducted using R (R Core Team, 2013) and the Linear Mixed-

Effects Models package (Pinheiro et al., 2013), and specified subjects as random effects.

To ensure that our behaviorally derived variables of interest for fMRI analyses reflected 

subjects’ preference during the fMRI session, we derived |VD−VI| and linear ballistic 

accumulator (LBA)-dependent measures based on the behavior observed during the second 

task, during which fMRI data was collected. We compared choice parameters obtained from 

both sessions beforehand and confirmed that these measures were not significantly different. 

However, using estimates derived from the fMRI session minimized measurement error as 

much as possible.

Single-trial linear ballistic accumulator parameters and value accumulation

In previous work, we evaluated the relative fits of several variants of the LBA model 

(Rodriguez et al., 2014). Here we used the previously found best-fitting LBA model variant 

to derive quantitative predictions of trial-to-trial variability in neural responses associated 

with value accumulation. Estimates for single-trial LBA parameters have been derived 

before (van Maanen et al., 2011), but our approach is slightly different because we estimates 

all parameters simultaneously, and we are interested in a total value of accumulation 

measure.

Our LBA model explains intertemporal decisions based on the accumulation of temporally 

discounted value. There are two accumulators in the model, one for immediate rewards and 

one for delayed rewards (Fig. 2). Trial-to-trial variability in choice and RT arises from 

independent variability in the rate of value accumulation (i.e. drift rate) and the starting point 

of each accumulator. A decision is made when the evidence in either the immediate or 

delayed reward accumulator reaches a threshold.
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For each trial, we determined the drift rate and starting point that most likely produced the 

observed choice and RT using a hierarchical Bayesian inference procedure (Turner et al., 
2013b) conditional on the previously established condition-specific and subject-specific 

parameters from Rodriguez et al. (2014).

The model had a total of four single-trial parameters that explain the choice and RT 

observed in a given trial, consisting of starting point (a) and drift rate (d) pairs for the chosen 

({aC,i, dC,i}) and unchosen ({aU,i, dU,i}) alternatives. We use the capitalized subscripts C 

and U to indicate that the corresponding parameters are taken from the chosen and unchosen 

rewards, respectively; i refers to the trial number. In addition to the single-trial parameters, 

our LBA model had other subject-specific parameters constrained across trials: the response 

threshold b, the upper bound of the starting point A, the standard deviation of the between-

trial variability in the drift rates, and the non-decision time τ, which also varied across 

conditions. The procedure that we used to find subject-specific parameters is described in 

detail elsewhere (Rodriguez et al., 2014).

Given a choice observed on trial i, the response time RTi in the LBA model is a deterministic 

function of the parameters corresponding to the chosen alternative. The likelihood of {aC,i, 

dC,i} is given by

(3)

where I(·) denotes an indicator function equaling 1 when the specified identity is satisfied 

and 0 otherwise. Importantly, because this likelihood function contains two unknown 

parameters and only one observed data point, there are an infinite number of pairs {aC,i, 

dC,i} that could satisfy Eqn 3. To find an unique solution, we first found a drift rate dC,i that 

satisfied the constraints in the data, and then determined the starting point aC,i, through the 

deterministic relationship implied by Eqn 3.

To estimate dC,i, we took 40 000 samples from the marginal distribution of dC,i, which is 

given by

where ϕ(·) denotes the standard normal density function. Given dC,i and RTi, aC,i is explicitly 

given by
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For the unchosen alternative, we imposed a lower bound constraint, namely, the pair {aU,i, 

dU,i} must produce an accumulation that reaches the threshold b after the observed RTi (i.e. 

RT* ∈ (RTi, ∞)). This restriction allowed us to derive the marginal distributions of {aU,i, 

dU,i} and produce 40 000 samples of aU,i and dU,i to obtain single-trial estimates through 

evaluation of the Metropolis–Hastings ratio (Gelman et al., 2004; Robert & Casella, 2004). 

The posterior distribution of aU,i given RTi, is given by

where Φ(·) is the standard normal cumulative density function of the drift rate for the 

unchosen alternative. Similarly, the posterior distribution for dU,i, conditioned on RTi, is 

given by

This procedure produced single-trial estimates that respect all of the assumptions of our 

best-fitting LBA model, in the sense that it recovers the normal and uniform distributions 

that the LBA model uses to account for data at the condition level.

To predict neural activity using our model, we obtained a measure of total value 

accumulation (TVA) in individual trials (Fig. 2; Eqn 4). TVA depends on three quantities: 

the decision time, the distance from the starting point to the accumulation threshold in the 

accumulator of the chosen alternative, and the drift rate of the unchosen alternative. Because 

the unchosen alternative does not reach its threshold, the value accumulation of the 

unchosen alternative does not depend on the distance from the starting point to the decision 

threshold. Instead, the accumulation contributed by the unchosen alternative is defined in 

terms of the total decision time, determined by the chosen alternative, and its projection onto 

the accumulation axis, determined by the drift rate of the unchosen alternative. Explicitly, 

TVA is defined as

(4)

where (b–aC,i)/dC,i is the decision time, (b–aC,i) is the distance from the starting point to the 

accumulation threshold and du,i is the drift rate for the unchosen alternative. Figure 2 shows 

the TVA for a hypothetical trial in which the immediate reward was chosen.
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Linear ballistic accumulator and drift diffusion model total value accumulation 
comparisons

To demonstrate the generalizability of our accumulation hypothesis, we compared TVA 

predictions derived from our LBA model with TVA predictions derived from an analogous 

drift diffusion model (DDM) (Ratcliff, 1978) of intertemporal choice. Although Donkin et 
al. (2011) have shown that the DDM and LBA models provide strikingly similar 

interpretations of data, because our results rely on our newly-developed TVA measure, we 

felt that an evaluation of model differences would be useful in corroborating our results. To 

this end, we first fit a DDM model that had an equivalent number of free parameters to our 

LBA model. Specifically, we fixed the accumulation bound, upper range of starting point 

distribution and standard deviation of drift rate distribution across conditions for every 

subject. Only the mean of the drift rate distribution and the non-decision time were allowed 

to vary by condition for each subject. Once we had obtained the best-fitting model 

parameters using the same fitting procedures that we used to fit the LBA (Turner et al., 
2013b; Rodriguez et al., 2014), we derived TVA predictions for each condition and every 

subject using a slightly simplified version of Eqn 4 for the DDM model. We then analysed 

the correlation between the LBA and DDM models.

Functional magnetic resonance imaging data collection and pre-processing

We collected fMRI data using a Discovery MR750 scanner (GE Healthcare). The fMRI 

analyses were conducted on gradient echo T2*-weighted echoplanar functional images with 

BOLD-sensitive contrast (42 transverse slices; TR, 2000 ms; TE, 30 ms; 2.9 mm isotropic 

voxels). Slices had no gap between them and were acquired in interleaved order. The slice 

plane was manually aligned to the anterior–posterior commissure line. The total number of 

volumes collected per subject varied depending on random intertrial intervals. The first 8 s 

(four volumes) of data contained no stimuli and were discarded to allow for T1 equilibration. 

In addition to functional data, we collected whole-brain, high-resolution T1-weighted 

anatomical structural scans (0.9 mm isotropic voxels). Image analyses were performed using 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). During pre-processing, we first performed slice-

timing correction and realigned functional volumes to the first volume. We then co-

registered the anatomical volume to the realigned functional scans and performed a 

segmentation of gray and white matter on the anatomical scan. Segmented images were then 

used to estimate non-linear Montreal Neurological Institute normalization parameters for 

each subject’s brain. Normalization parameters estimated from segmented images were used 

to normalize functional images into Montreal Neurological Institute space. Finally, 

normalized functional images were smoothed using a Gaussian kernel of 8 mm full-width at 

half-maximum.

Functional magnetic resonance imaging analyses

Our first goal was to test for regions encoding the subjective value driving the dynamics of 

our decision model. To this end, we built a general linear model (GLM) that predicted 

BOLD responses on the basis of |VD−VI|. For this and all other fMRI analyses based on | VD

−VI|, we relied on parameter estimates derived from the behavior observed during the fMRI 

part of the experiment. This allowed us to minimize any potential measurement error 
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introduced by behavioral changes between the first and second intertemporal choice tasks. 

This GLM specified the onsets of the delay presentation and decision periods, as well as the 

onsets of the subjects’ response in every trial. Events in all three onset regressors were 

modeled as impulse delta functions and convolved with the canonical hemodynamic 

response function. The model also included the |VD−VI| measure as a parametric modulator 

of (BOLD) responses during the decision period. In addition, the model also included six 

regressors corresponding to the motion parameters estimated during data preprocessing and 

constants to account for the mean activity within each of the four sessions over which the 

data were collected. All other GLM models that we ran also included six motion regressors 

and session constants as regressors of no interest. Only the |VD−VI| modulated regressor was 

treated as a regressor of interest in the first-level contrast of our first GLM.

The group-level contrast was calculated as a one-sample t-test on the beta coefficients 

obtained from the subject-specific |VD−VI| modulated regressor. To determine the 

appropriate whole-brain family-wise error (FWE) rate correction at the cluster level, we used 

the AlphaSim function in AFNI (http://afni.nimh.nih.gov/). The Alpha-Sim function 

determines the cluster size that would result in less than 5% cluster-level false positives by 

performing a Monte Carlo simulation of contiguous voxels exceeding a specified 

uncorrected P-value under the null hypothesis, given a specified smoothness level in the 

data. We used an uncorrected voxel-wise threshold of P < 0.005 and an empirical estimate of 

the smoothness of the data to perform the Monte Carlo simulation. The resulting cluster size 

for our data was 290 voxels.

To test if the vmPFC region that we identified with the |VD−VI| GLM corresponded with the 

value-encoding region previously identified in the literature, we masked our group-level 

results with the vmPFC mask published in a previous meta-analysis of value-encoding 

studies (Bartra et al., 2013) and performed a small volume correction test of the overlapping 

cluster within the larger vmPFC region of interest (ROI).

In order to rule out the possibility that vmPFC activity could be best explained by chosen 

value, we performed two additional GLM analyses. The first GLM was identical to our 

original |VD−VI| GLM, but replaced |VD−VI| with the value of the chosen reward as the 

regressor of interest. The results of this GLM were tested at the whole-brain level. The 

second GLM included two regressors, the value of the chosen reward and |VD−VI| 

orthogonalized with respect to the value of the chosen reward. The orthogonalization 

procedure assigned shared variance between the relative and chosen value to chosen value. 

Results from this analysis therefore provide an upper bound of the degree to which chosen 

value explains BOLD signals, and a lower bound of the degree to which relative value 

explains BOLD signals. To evaluate the results of this GLM, we performed t-tests on the 

average beta coefficients within the ROI initially identified by the |VD−VI| regressor from 

our original GLM analysis.

We performed a psychophysiological interaction (PPI) analysis to test for functional 

connectivity with the vmPFC. We first extracted the time course of activity from the vmPFC 

region identified by our | VD−VI| GLM. Only voxels that fell inside the mask vmPFC region 

from the published meta-analysis (Bartra et al., 2013) were used as seed. We removed all of 
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the variance in the vmPFC time series that was explained by the delay, response onset, 

motion regressors and session constants. Thus, the resulting time series only contained 

variance explained by the decision period onsets regressor. We then computed a spatial 

summary of the entire seed region by extracting the first eigenvariate from the ROI time 

series. Next, we constructed an interaction term by deconvolving the resulting eigenvariate 

with the canonical hemodynamic response function and multiplying the result by a delta 

function identifying the onsets of the decision period. Finally, we convolved the interaction 

term with the hemodynamic response function and included it in a GLM as our regressor of 

interest. The PPI GLM also included the convolved decision period onset regressor, the first 

vmPFC eigenvariate (without deconvolution) and an eigenvariate of the lateral ventricle 

(also without deconvolution) as regressors of no interest. The lateral ventricle eigenvariate 

was obtained using the same procedures used to obtain the vmPFC eigen-variate and was 

included in the model to control for an artifactual activation within the ventricles observed in 

a simpler GLM and to discard the possibility that the results observed within the cortex 

could also be explained by artifacts. The resulting effects from a contrast on the interaction 

term of the full PPI GLM just described represent a strengthening of the correlation with the 

vmPFC at around the time of the decision, over and above any inherent correlation with the 

vmPFC and any correlation due to the main effect of the decision period onset. Group-level 

inferences on this GLM were performed using the beta coefficients from the interaction term 

regressor.

To identify neural activity showing trial-to-trial variability associated with value 

accumulation, we ran a GLM that predicted BOLD responses on the basis of the TVA 

measure obtained from our LBA model. Again, we used the behavior observed during the 

fMRI task to estimate the LBA parameters from which we derived TVA. This GLM also 

included delay presentation, decision period and response onsets as regressors of no interest. 

The TVA measure was included as a parametric modulator of BOLD responses during the 

decision period. Group-level inferences were performed using the beta coefficients from the 

TVA parametric modulator.

We tested whether any frontoparietal regions showed joint effects in the vmPFC seeded PPI 

and the TVA GLMs. The test was performed by identifying regions in the conjunction of 

significant effects on both GLMs (P < 0.05, FWE corrected). All of our subsequent tests of 

frontoparietal activity and connectivity were performed by analysing average beta 

coefficients in the dmFC, pPC and lPFC ROIs identified in this conjunction. We tested for 

differences in beta coefficients between the dmFC, pPC and lPFC by performing repeated-

measures ANOVAsand post-hoc one-sample and paired-sample t-tests on all subsequent 

GLM results. We performed correlation tests of mean signal amplitudes and beta coefficients 

across regions to test whether any of the reported differences could be explained by overall 

signal differences across regions. There were no significant correlations for any of the 

reported cross-regional beta coefficient differences that we report.

We also tested whether activity in the dmFC, pPC and lPFC varied as a function of |VD−VI| 

and RT. To test for |VD−VI| effects, we extracted beta coefficients from our ROIs, using the 

results of the |VD−VI| GLM that we had already estimated to identify value-encoding 

responses in the vmPFC. To test RT effects, we ran another GLM with all of the same 
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regressors of no interest, but including RT as a parametric modulator of BOLD responses on 

the response onsets.

Finally, we ran two GLM analyses to test functional connectivity between our dmFC, pPC 

and lPFC ROIs and the motor cortex. We first identified left and right motor cortex regions 

by running a GLM that included separate response onset regressors for right and left 

responses in addition to delay and decision period onset regressors, and the other regressors 

of no interest. The contrast of interest on this GLM compared regions that were more active 

during left than right responses. We then defined two spherical ROIs inside the left and right 

motor cortex regions that were identified by this contrast. Subsequently, we constructed 

regressors from our motor cortex ROIs following the same procedure described above for 

the vmPFC PPI analysis. Finally, we ran separate GLMs that included motor cortex activity 

as the regressor of interest and the response onsets of the contralateral hand as a regressor of 

no interest, along with the motion regressors and session constants. Repeated-measures 

ANOVAs and t-tests were then used to analyse beta coefficients extracted from our dmFC, 

pPC and lPFC ROIs.

Results

Intertemporal choice behavior

We first determined whether our task manipulated behavior in a way that allowed us to test 

our four criteria (see Materials and methods). Discount rate (k) estimates derived from the 

first session were highly correlated with (r = 0.98, t21 = 23.83, P < 2 × 10−16) and did not 

differ significantly from (paired t-test: t22 = 0.97, P = 0.34) estimates derived from the 

behavior observed during the fMRI session. To confirm that our manipulation controlled for 

choice probabilities, we ran a mixed-effects logistic regression to predict choices, using VD 

as the predictor. VD was highly predictive of choices (β = 1.39, z = 29.71, P < 1 × 10−16), 

with observed choice probabilities closely matching the targeted probabilities (Fig. 3A). We 

also tested whether |VD−VI| had a systematic effect on RT. Based on model simulations, we 

expected that |VD−VI| would have a negative effect on RT because |VD−VI| is negatively 

correlated with drift rates and low drift rates result in longer decision times (Rodriguez et al., 
2014). To test this prediction, we ran a mixed-effects linear regression on median RT, using 

an ordinal regressor based on |VD−VI|. This regression analysis showed increased RT with 

decreased differences in value (Fig. 3A; β = −66.74, t22 = −4.46, P = 1 × 10−4), confirming 

that our task systematically manipulated choice probabilities and RT as intended.

Single-trial linear ballistic accumulator model of value accumulation

Next, we confirmed that our parameter estimation procedure for the single-trial LBA model 

provided valid fits to behavior. To validate single-trial parameter estimates of value 

accumulation obtained from our LBA model, we simulated intertemporal choice data based 

on estimated drift rates and starting points, and compared the simulated and observed 

datasets. We ran two mixed-effects linear regressions: the first compared the logit transforms 

of simulated and observed choice probabilities, and the second compared simulated and 

observed median RT. Both regressions confirmed that our procedure for estimating single-

Rodriguez et al. Page 11

Eur J Neurosci. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trial parameters accurately recovered choice probabilities (β = 1.00, t22 = 636.27, P = 1 × 

10−16) and median RT (β = 0.95, t22 = 45.42, P = 1 × 10−16; Fig. 3B).

Criterion I: Functional connectivity with value-encoding regions

Our first goal in analysing fMRI data was to test for regions encoding subjective value and 

to identify regions that may receive value-encoding outputs through functional connectivity. 

To localize brain regions potentially encoding the input to the accumulation process, we ran 

a whole-brain GLM using |VD−VI| as a parametric regressor of BOLD responses. We refer 

to this quantity, |VD−VI|, as relative value evidence, the primary input to the LBA value-

accumulation process (Rodriguez et al., 2014). The relative value evidence GLM identified a 

single significant region in the vmPFC (Fig. 4; P < 0.05 whole-brain FWE corrected at the 

cluster level). This vmPFC region remained significant when conjoined with the vmPFC 

value-encoding region identified in a recent meta-analysis (Bartra et al., 2013) (k = 67, P < 

0.05, small-volume FWE within ROI).

One limitation from the previous analysis is that the chosen value (i.e. the discounted value 

of the chosen option) is correlated with relative value in the experiment (r = 0.47; mean 

across subjects). To test whether the chosen value could provide an alternative explanation 

for our results, we performed two additional GLMs, one in which we tested for any effects 

of the chosen value at the whole-brain level and another in which the chosen and relative 

value were included as separate regressors (see Materials and methods for details). The 

whole-brain GLM based on chosen value revealed no significant voxels in the vmPFC, even 

at the liberal threshold of P < 0.05 (uncorrected). The second GLM analysis revealed a 

significant effect within the vmPFC for relative value evidence (t22 = 2.32, P = 0.03) but not 

for the chosen value (t22 = 1.58, P = 0.12).

To examine functional connectivity with the vmPFC, we performed a PPI analysis that used 

activity from the vmPFC to predict neural activity in putative value-accumulation regions 

during intertemporal decision-making. We expected that activity in the vmPFC and 

frontoparietal regions involved in value accumulation would be negatively correlated. This 

inverse relationship was expected from model simulations. In the model, easier decisions 

have larger drift rates, requiring less time for evidence accumulation to reach a constant 

decision threshold; therefore, greater relative value evidence correlates with less total neural 

activity during value accumulation. Consequently, our PPI analysis tested whether the 

magnitude of the expected negative correlation between the vmPFC and putative value-

accumulation regions increased at around the time when subjects could make a decision 

compared with other task time periods. Consistent with the hypothesis that frontoparietal 

regions integrate value in intertemporal choice, this analysis revealed statistically significant 

effects within the dmFC (superior frontal gyrus/supplementary motor area; [26, 6, 54]), 

bilateral pPC (inferior parietal lobule: left, [−12, −34, 26]; right, [48, −42, 52]) and bilateral 

lPFC (middle frontal gyrus: left, [−44, 44, 10]; right, [34, 42, 18]) (Fig. 5A; P < 0.05, FWE 

corrected at cluster level).

For illustrative purposes and to confirm that our PPI results reflect an increased negative 

correlation, which is independent of an expected negative correlation with the vmPFC, we 

analysed the average beta coefficients from frontoparietal regions that corresponded to the 
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vmPFC main effect and interaction terms in the PPI GLM. As expected, frontoparietal 

regions showed a negative correlation with the vmPFC (all P < 0.01, one-sample t-tests; Fig. 

5B); however, the beta coefficients from the interaction term, which are computed after 

taking into account the variance due to the vmPFC main effect, still identify significant 

negative effects in the dmFC, pPC and lPFC (Fig. 5A and B). Our beta coefficient analyses 

revealed inter-region differences in the strength of the main effect correlation with the 

vmPFC (F4,88 = 11.44, P = 1 × 10−6) and the increase in correlation strength (F4,88 = 7.58, P 
= 2.69 × 10−5). In particular, bilateral pPC regions showed more negative beta coefficients 

than the dmFC and bilateral lPFC regions (all P < 0.05, post-hoc paired sample t-tests; Fig. 

5A and B).

Criterion II: Trial-to-trial variability in value accumulation

Having identified the vmPFC as a value-encoding region and regions that may receive value 

input through functional connectivity with the vmPFC, we next tested for regions where 

activity correlated with trial-to-trial variability in value accumulation. To this end, we ran a 

whole-brain GLM using TVA (Eqn 4) as a modulator of BOLD responses. In support of our 

primary hypothesis, this analysis identified overlapping effects with the vmPFC seeded PPI 

in the dmFC (k = 146), bilateral pPC (left, k = 1259; right, k = 987) and bilateral lPFC (left, 

k = 539; right, k = 790; Fig. 5A; P < 0.05, FWE corrected at cluster level). Analysis of the 

average beta coefficients for the TVA effect revealed no inter-regional differences (F4,88 = 

2.23, P = 0.07).

To test for the generalizability of the above results, we also evaluated the TVA predictions 

derived from a DDM (Ratcliff, 1978) with an equivalent number of parameters to our LBA 

model (Rodriguez et al., 2014). Specifically, we fit a DDM model allowing drift rates and 

non-decision time to vary across PD conditions and derived TVA from the resulting best-

fitting parameters, relying on a slightly modified version of Eqn 4 for the DDM. We then 

compared LBA and DDM TVA predictions across conditions. This analysis revealed strong 

correlations across subjects within all of the PD conditions (min r = 0.84, t21 = 7.08, P < 5.5 

× 10−7; Fig. 6), showing that our value-accumulation results generalize beyond the specifics 

of the LBA model (also see Donkin et al., 2011).

Criterion III: Drift rate and response time variability

Our third criterion requires that we identify significant variability as a function of input 

strength and RT. Both forms of variability in neural activity have been identified in single-

cell recordings of perceptual evidence accumulation in monkeys (Gold & Shadlen, 2007), 

and can be inferred from model simulations. Systematic variability in the strength of the 

inputs received leads to differences in drift rates and this variability should be measurable as 

differences in neural activity. Moreover, because high input strength results in less overall 

accumulation activity, we expect a negative correlation between input strength and 

frontoparietal activity. Noise also accumulates as the accumulation process continues so that 

differential activity is also predicted by RT. Because RT is positively correlated with TVA, 

our model predicts a positive correlation between RT and neural activity in the dmFC, pPC 

and lPFC. We tested both of these predictions with analyses of average beta coefficients.
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To test for input strength effects, we analysed average beta coefficients within our 

frontoparietal ROIs. Beta coefficients for this analysis were obtained from the same |VD−VI| 

whole-brain GLM that we used to identify value-encoding regions. Consistent with our 

prediction, we found negative relative value evidence effects within the dmFC (t22 = −2.12, 

P = 0.02), pPC (left, t22 = −1.62, P = 0.06; right, t22 = −1.86, P = 0.04), and lPFC (left, t22 = 

−1.86, P = 0.04; right, t22 = −1.99, P = 0.03; one-sample t-tests, Fig. 7). There were no inter-

regional differences in the strength of the negative correlation between |VD−VI| and 

frontoparietal BOLD responses (F4,88 = 0.32, P = 0.86).

To test for RT effects, we first ran a GLM using RT as a modulator of BOLD responses 

locked to response onsets and then analysed average beta coefficients within our 

frontoparietal ROIs. Confirming our predictions, we found a significant positive effect 

within the dmFC, bilateral pPC, and bilateral lPFC (all P < 0.01; Fig. 7). The RT analysis 

revealed inter-regional differences (F4,88 = 7.53, P = 1 × 10−4). The right pPC region showed 

a weaker correlation with RT than the dmFC and bilateral lPFC regions (all P < 0.01, post-

hoc paired samples t-tests), whereas the left pPC showed a weaker correlation with RT than 

the dmFC (t22 = −1.8, P = 0.04) and left lPFC (t22 = −3.37, P < 0.01).

Criterion IV: Functional connectivity with the motor cortex

Finally, we tested for functional connectivity between frontoparietal regions implicated in 

value accumulation and the motor cortex. This analysis was based on the prediction that 

value-accumulation regions ought to influence the motor cortex if they are responsible for 

making decisions expressed through motor output. To test for response-related functional 

connectivity, we ran two GLMs that included motor cortex activity as regressors of interest 

and controlled for effects due to co-activation during responses (see Materials and methods).

We found strong positive effects in the dmFC, bilateral pPC and bilateral lPFC (all P < 0.04, 

one-sample t-tests; Fig. 8), indicating that all five frontoparietal regions satisfy our last 

criterion. There were inter-regional differences in the strength of the correlations with the 

motor cortex (left ROI, F4,88 = 14.28, P = 1 × 10−8; right ROI, F4,88 = 8.87, P = 1 × 10−5; 

Fig. 8). The dmFC showed greater connectivity with the motor cortex than any other region 

(all P < 0.02, post-hoc paired-samples t-tests).

Discussion

Our findings are consistent with the hypothesis that frontoparietal regions, including the 

dmFC, bilateral pPC, and bilateral lPFC, may accumulate encoded value evidence during 

intertemporal choice. Neural activity in these frontoparietal regions showed evidence of 

functional connectivity with the vmPFC, displayed a correlation with trial-to-trial variability 

in relative value-evidence accumulation, varied as a function of input strength and RT, and 

showed evidence of functional connectivity with the motor cortex. These findings are 

generally consistent with previous studies looking at value accumulation in domains other 

than intertemporal choice (Basten et al., 2010; Hare et al., 2011), and suggest that value 

accumulation in the frontoparietal cortex may be a general mechanism for value-based 

choice.
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Our findings contribute to at least three important problems in cognitive neuroscience. First, 

intertemporal choice has long been an important area of study in psychology and 

neuroscience, particularly in relation to concepts such as willpower and self-control. Our 

study establishes for the first time a mechanism by which value signals in the vmPFC are 

converted to actions in this important choice domain. This mechanism may be an important 

component of the self-control system in the brain. Previous studies suggest that the left lPFC 

serves as a self-control function via an indirect modulation of vmPFC value signals (Hare et 
al., 2009). Our findings suggest that a more direct route for left lPFC involvement in self-

control may be via action selection though value accumulation.

Second, several decision-making studies have suggested different encoding schemes for 

value signals (Padoa-Schioppa & Assad, 2006, 2007; Lim et al., 2011; Bartra et al., 2013). 

In particular, previous studies have argued that the vmPFC encodes the total value of the 

options under consideration (Bartra et al., 2013). This encoding scheme is inconsistent with 

our finding that vmPFC activity correlates with relative value evidence (|VD−VI|). Instead, 

our results support the existence of a relative value signal in the vmPFC. The existence of 

this relative value-encoding scheme in the vmPFC has led some authors to suggest that the 

vmPFC is not only encoding value, but also making value-based decisions (Padoa-Schioppa, 

2011). Such an interpretation is also at odds with our model, which suggests that decisions 

occur at a later stage of evidence accumulation in the frontoparietal cortex. In support of our 

model, we showed that the same sources of variability that explain choice probability and 

RT distributions also correlate with neural activity levels in the dmFC, pPC and lPFC.

Finally, there is a large amount of literature on and active debates about the computations 

mediated by the dmFC (including the anterior cingulate cortex). Alternative explanations for 

dmFC function include conflict detection (Botvinick et al., 2004), signaling error likelihood 

(Brown & Braver, 2005), or reflecting time on task (Grinband et al., 2011). Our results are 

consistent with the notion that the correlation between neural activity and RT reflects an 

accumulation process that coincides with some of these hypotheses but not others. In 

particular, our accumulation hypothesis is consistent with increases in dMFC activity co-

varying with decision difficulty but is also able to account for the fact that RT should 

provide a better proxy for dMFC activity than several other task-defined measures. Given 

that the dmFC seems to be involved in evidence accumulation, its activity is not only driven 

by task demands but also by the endogenous stochasticity in the evidence accumulation 

mechanism. The RT is the closest observable proxy for the total amount of evidence 

accumulation in a given trial.

The findings from our beta coefficient analyses suggest that the dmFC, pPC and lPFC may 

contribute to value accumulation through different activity dynamics. The pPC showed the 

strongest functional connectivity with the vmPFC, and the weakest correlation with RT at 

the response onset. Both of these findings suggest that the pPC might be differentially 

involved with the initiation of the decision. The dmFC and lPFC may become more 

important later on in the value-accumulation process. Consistent with this hypothesis, the 

dmFC showed the strongest correlation with the motor cortex. However, the temporal 

resolution afforded by fMRI does not allow us to make a conclusive interpretation of the 

differences that we found between frontoparietal regions. Future studies using high temporal 

Rodriguez et al. Page 15

Eur J Neurosci. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution methods, such as electroencephalography or magnetoencephalography, can play 

an important role in testing our predictions and further clarifying any differential 

contributions from the pPC, dmFC, and lPFC to intertemporal decision-making.

We used a computational model of behavior to construct a proxy for evidence accumulation. 

We chose the LBA because of its computational tractability (Rodriguez et al., 2014), which 

we exploited to derive predictions for neural activity on individual trials. Although 

alternative methods exist for linking model parameters to neural data (Turner et al., 2013a, 

2015), our findings illustrate a theoretically complete and novel approach to the prediction 

of trial-to-trial variability of neural activity, based on an evidence accumulation model. In 

comparison with previously utilized methods for predicting neural activity related to 

evidence accumulation (Basten et al., 2010; Hare et al., 2011), our approach allows us to 

exploit trial-to-trial variance while preserving all of the distributional assumptions of the 

LBA model. Previous methods (van Maanen et al., 2011) attempt to exploit the trial-to-trial 

variance in analyses of perceptual decision-making behavior, but do not obey the specific 

constraints on the single-trial parameters provided by the model’s architecture.

The LBA model is one of several evidence accumulation models with the ability to explain 

behavior and neural activity (cf. Ratcliff & Smith, 2004). It shares key features with many 

other evidence accumulation models, including noise terms to account for trial-to-trial 

variations in RT and choice. Consistent with the generality of the accumulation mechanism 

that we tested, we showed that the predictions derived from our LBA model are not 

systematically different from the predictions that can be derived from a DDM. Nonetheless, 

there are subtle differences between the LBA and other evidence accumulation models that 

have been used to study neural activity in value-based decision-making (cf. Basten et al., 
2010; Hare et al., 2011; Hunt et al., 2012; De Martino et al., 2013). We do not make any 

claims about the relative merits of the LBA over other value-accumulation models. Our 

analyses only aimed to test the hypothesis that frontoparietal regions may be involved in 

value accumulation in intertermporal choice. Model comparisons may be informative about 

which models may provide the best explanation for intertemporal choice data, but such 

conclusions are beyond our present scope.

In summary, our results support a quantitatively precise mechanism by which value drives 

intertemporal choices. Regions of the frontal and parietal cortex are critical in this action 

selection process. Our findings support a novel function for these cortical regions in 

intertemporal choice and could eventually provide a scaffold for understanding how these 

regions implement self-control during intertemporal decision-making.

Acknowledgments

Portions of this work were supported by NSF grant SES-1424481.

Abbreviations

BOLD blood oxygen level-dependent

DDM drift diffusion model

Rodriguez et al. Page 16

Eur J Neurosci. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dmFC dorsomedial frontal cortex

fMRI functional magnetic resonance imaging

FWE family-wise error

GLM general linear model

LBA linear ballistic accumulator

lPFC lateral prefrontal cortex

pPC posterior parietal

PPI psychophysiological interaction

ROI region of interest

RT response time

TVA total value accumulation

vmPFC ventromedial prefrontal cortex
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Fig. 1. 
Experimental design. (A) Discounted values of the delayed reward (VD) corresponded to 

one of five controlled choice probabilities for each subject. Delays of between 15 and 45 

days were combined with one of five different reward amounts to map varying delayed 

rewards to choice probabilities. (B) Within-trial sequential presentation of delay and amount 

information. ITI, intertrial interval.
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Fig. 2. 
LBA model of intertemporal choice. The choice and RT on a given trial depend on which of 

two accumulators, representing the immediate and delayed options, reaches an accumulation 

bound (b) first. Trial-to-trial variability in behavior depends on the drift rate (d) and starting 

point (a) on each accumulator. Trial-specific measures of value accumulation (VAC, VAU) 

depend on single-trial estimates of drift rates and starting points for the chosen (C) and 

unchosen (U) options.
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Fig. 3. 
Behavioral results. (A) Left: observed choice probabilities closely matched the targeted 

choice probabilities. Right: RTs were slowest at indifference and decreased as a function of 

relative value evidence (|VD−VI|). Both plots show the data as solid dots that are color-coded 

by levels of relative value evidence. The solid lines correspond to the best-fitting mixed-

effects regressions reported in the text. (B) Single-trial model parameters recover choice 

probabilities and median RT. Left: simulated and observed choice probabilities of the 

delayed reward for each of the five task conditions, labeled by their expected PD and color-

coded by |VD−VI| levels. Jitter was added to the plotted data to better reflect the total 

number of observations. Right: medians of the simulated and observed RTs, using the same 

color labels as on the left panel.
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Fig. 4. 
Value encoding in the vmPFC. Yellow, vmPFC region ([6, 62, 0], k = 356 voxels) in which 

neural activity correlated with |VD−VI| during the decision period; blue, vmPFC mask from 

a published meta-analysis of value-encoding studies (k = 448 voxels); green, overlap 

between vmPFC regions shown in yellow and blue (k = 67 voxels). The |VD−VI| contrast 

was thresholded at P < 0.005 at the voxel level (k > 290 voxels) and overlaid on the CH2 

Montreal Neurological Institute anatomical image, shown in neurological convention with 

the right hemisphere on the right side.
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Fig. 5. 
Functional connectivity with the vmPFC and value accumulation. (A) Red, regions showing 

evidence of increased connectivity with the vmPFC during the decision period; yellow, 

regions whose activity correlates with trial-to-trial variability in the TVA regressor derived 

from the LBA model; orange, overlap of regions shown in red and yellow. In particular, 

frontoparietal regions including the dmFC (k = 146 voxels), bilateral pPC (left, k = 1259 

voxels; right, k = 987 voxels) and bilateral lPFC (left, k = 539 voxels; right, k = 790 voxels) 

show considerable overlap between the two contrasts. These five overlapping regions were 

used as ROIs for all remaining analyses. (B) Average beta coefficients from the TVA GLM. 

No differences between frontoparietal regions are evident in the strength of the TVA effect. 

(C) Average beta coefficients from the PPI GLM analysis seeded in the vmPFC. Left: beta 

coefficients for the interaction term. Right: beta coefficients from the vmPFC ROI main 

effect term. There are significant negative correlations between the vmPFC and all 

frontoparietal regions (right), and an increase in the strength of the correlation during the 

decision period (left). Bilateral pPC regions show the strongest evidence of functional 

connectivity with the vmPFC. Error bars represent the SEM in (B) and (C).
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Fig. 6. 
Cross-model comparison of accumulation predictions. Left: mean TVAs across PD 

conditions for the LBA and DDM show no systematic differences. Right: total value-

accumulation predictions for the LBA and DDM models are highly correlated.
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Fig. 7. 
Relative value evidence and RT effects. Left: beta coefficients for the |VD−VI| GLM in all 

frontoparietal ROIs during the decision period. There are no differences in the strength of 

the |VD−VI| effect across regions. Right: beta coefficients from the RT GLM during the 

response. A stronger RT effect is evident in the dmFC and bilateral lPFC, relative to the 

effects in bilateral pPC. Error bars represent the SEM.
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Fig. 8. 
Functional connectivity with the motor cortex (M1). Top row: selected ROIs in the M1 to 

analyse functional connectivity with frontoparietal regions. Bottom row: beta coefficients for 

the left and right M1 GLMs. All frontoparietal regions showed evidence of a positive 

correlation with the M1 after controlling for co-activation effects due to the response. In 

particular, the dmFC shows the strongest correlation.
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