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BACKGROUND: Humans are commonly exposed to multiple environmental chemicals, including tetrabromobisphenol A (TBBPA; a flame retardant),
triclosan (an antimicrobial agent), and bisphenol A (BPA; polycarbonate plastics). These chemicals are readily absorbed and may interact with each
other.

OBJECTIVES: We sought to determine whether TBBPA, given alone or in combination with triclosan, can modulate the concentrations of BPA and
17b-estradiol (E2).

METHODS: Female and male CF-1 mice were each given a subcutaneous injection of 0–27 mg TBBPA, with or without concurrent 0:33 mg triclosan,
followed by dietary administration of 50 lg=kg body weight 14C-BPA. Radioactivity was measured in blood serum and tissues through liquid scintil-
lation counting. In subsequent experiments, female and male CF-1 mice were each given a subcutaneous injection of 0 or 1 mg TBBPA and E2 was
measured in urine 2–12 h after injection.
RESULTS: Doses as low as 1 mg TBBPA significantly elevated 14C-BPA concentrations in the uterus and ovaries of females; in the testes, epididy-
mides, vesicular-coagulating glands, and preputial glands of males; and in blood serum, heart, lungs, and kidneys of both sexes; urinary E2 concentra-
tions were also elevated. Lower doses of TBBPA or triclosan that had no effects on their own elevated 14C-BPA concentrations when the two
substances were given concurrently.
CONCLUSION: These data indicate that TBBPA, triclosan, and BPA interact in vivo, consistent with evidence that TBBPA and triclosan inhibit
enzymes that are critical for BPA and E2 metabolism. https://doi.org/10.1289/EHP1329

Introduction
Tetrabromobisphenol A (TBBPA; CAS 79-94-7) is the most-
produced flame retardant, with global use over 170,000metric
tons=y (Environment Canada and Health Canada 2013).
Approximately 80% of TBBPA is used in reactive applications,
where it is covalently bound to the polymer of epoxy resins for
printed circuit boards in electronics equipment (Colnot et al.
2014; Shaw et al. 2014). The remaining 20% of TBBPA is used
in additive applications, where it is physically blended with rather
than chemically bound to the polymer, as in plastic housing for
electronics equipment (Colnot et al. 2014; Shaw et al. 2014).
Both reactive- and additive-treated products release TBBPA into
the environment (Malkoske et al. 2016; Shaw et al. 2014).
TBBPA has been detected in soil and sediment (Lee et al. 2015;
Wang J et al. 2015; Zhu et al. 2014), surface and waste water
(Kim et al. 2016; Xiong et al. 2015), and air and indoor dust (La
Guardia and Hale 2015; Ni and Zeng 2013; Wang W et al. 2015;
Wu et al. 2016b). Nonoccupational TBBPA exposure in humans
occurs via inhalation and ingestion of dust, as well as through
dermal contact with dust and free (unreacted) TBBPA in con-
sumer products (Abdallah 2016; Knudsen et al. 2015). TBBPA is
bioavailable in humans, as shown by its detection in human se-
rum (Cariou et al. 2008; Fujii et al. 2014), plasma (Ho et al.
2017), breast milk (Abdallah and Harrad 2011; Fujii et al. 2014;

Nakao et al. 2015), and adipose tissue (Cariou et al. 2008;
Johnson-Restrepo et al. 2008).

The potential for TBBPA to act as an endocrine-disrupting
chemical is not well understood. Mechanisms of endocrine dis-
ruption by TBBPA could include actions on estrogen, androgen,
glucocorticoid, or thyroid hormone receptors, or combinations of
any or all of these receptors (Beck et al. 2016; Hamers et al.
2006; Huang et al. 2013). Considering evidence of estrogenic
actions, some studies found that TBBPA binds to estrogen recep-
tor (ER) a in in vitro assays (Li et al. 2010; Olsen et al. 2003;
Suzuki et al. 2013), whereas other studies found that TBBPA
failed to bind ERa in in vitro assays (Dorosh et al. 2011; Hamers
et al. 2006; Lee et al. 2012; Meerts et al. 2001; Miller et al. 2001;
Molina-Molina et al. 2013; Riu et al. 2011a, 2011b) and in mo-
lecular modeling studies (Zhuang et al. 2014). More recent work
has examined indirect mechanisms of estrogenicity whereby
TBBPA disrupts estrogen homeostasis (Honkisz and Wójtowicz
2015; Lai et al. 2015; Sanders et al. 2016; Wikoff et al. 2016).
One proposed mechanism is that TBBPA inhibits the metabolism
of 17b-estradiol (E2), thus increasing its bioavailability, via inter-
actions with conjugating enzymes (Lai et al. 2015; Sanders et al.
2016; Wikoff et al. 2016). These enzymes include estrogen sulfo-
transferase (SULT), UDP-glucuronosyltransferase (UGT), cyto-
chrome p450 (CYP), and 17b-hydroxysteroid dehydrogenase
(17b-HSD) (Dumas and Diorio 2011; Wikoff et al. 2016).
Another proposed mechanism is that TBBPA enhances E2 secre-
tion via actions on aromatase (CYP19) expression (Honkisz and
Wójtowicz 2015).

We previously demonstrated in vivo interactions among
bisphenol A (BPA), E2, and triclosan (CAS 3,380-34-5), an anti-
microbial agent found in soaps and cosmetics. Compared with
vehicle-treated animals, male and female mice given a single
dose of 0:6–18 mg triclosan showed greater concentrations of
14C-BPA in blood serum and in reproductive and other tissues
(Pollock et al. 2014). Similarly, female mice given a single dose
of 1–2 mg triclosan showed greater concentrations of exogenous
3H-E2 in the uterus and natural E2 in urine than did vehicle-
treated animals (Pollock et al. 2016). Blastocyst implantation in
inseminated female mice can be disrupted by high doses of BPA
(Berger et al. 2007, 2008, 2010; Borman et al. 2015) and
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triclosan (Crawford and deCatanzaro 2012); lower doses of each
substance that were insufficient on their own disrupted implanta-
tion when combined (Crawford and deCatanzaro 2012). Whereas
triclosan alone was ineffective in a uterotrophic assay of weanling
rats, elevated uterine weight occurred following concurrent triclo-
san and ethinyl estradiol exposure (Stoker et al. 2010). These
findings are consistent with evidence that triclosan is conjugated
by SULT, UGT, and CYP (Wu et al. 2016a) and that it can in-
hibit the activity of SULT and UGT toward other substances,
including BPA and E2 (James et al. 2010, 2015; Wang et al.
2004).

Because humans are routinely exposed to multiple potential
endocrine-disrupting chemicals, it is important to investigate
these chemicals’ capacity to interact with each other and with en-
dogenous steroids in vivo. Here, we undertook to measure the
interactions of TBBPA, triclosan, and BPA. Whereas evidence of
direct ER activation by TBBPA and triclosan is weak, BPA is a
more established environmental estrogen (Rochester 2013;
Seachrist et al. 2016; Ziv-Gal and Flaws 2016). Based on the pro-
posed disruption of estrogen homeostasis via inhibitory actions
of TBBPA on conjugating enzyme activity (Lai et al. 2015;
Sanders et al. 2016; Wikoff et al. 2016), we hypothesized that
TBBPA would elevate BPA concentrations in female and male
mice and that this effect would be greatest in serum and in
estrogen-binding reproductive tissues. We hypothesized that the
actions of TBBPA would be additive with those of triclosan, con-
sistent with evidence that triclosan also inhibits activity of conju-
gating enzymes (James et al. 2010; Wang et al. 2004). We tested
these hypotheses by comparing the impact of TBBPA injection,
either alone or in combination with triclosan, on concentrations
of 14C-BPA in serum and tissues. We also hypothesized that
TBBPA could elevate endogenous levels of E2, the most potent
natural estrogen (Kuiper et al. 1997), and tested this hypothesis
by measuring the impact of TBBPA injection on urinary E2.

Methods

Animals and Housing
Female (30:5±2:5 g) and male (40:2± 3:6 g) CF-1 mice aged 3–
4 mo were obtained from Charles River. To standardize timing
within the estrous cycle at an easily detected point where estro-
gen levels are moderate and relatively stable (Miller and
Takahashi 2014), we selected diestrous females for use in experi-
ments. These females were identified from a colony of mice with
regular estrous cycles by vaginal cytology using published proce-
dures (Byers et al. 2012). Animals were housed in polypropylene
cages measuring 28 cm×16 cm×11 cm (l ×w× h) with ad libi-
tum access to food (Teklad 8640 Certified Rodent Chow; Harlan
Teklad) and water, except where otherwise stated. The colony
was maintained at 21°C with a reversed 14 h light:10 h darkness
cycle. All animals were treated humanely and with regard for
alleviation of suffering. All procedures adhered to the standards
of the Canadian Council on Animal Care and were approved by
the Animal Research Ethics Board of McMaster University
(Protocol 14-02-03).

Chemicals and Materials
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol, ≥97% pu-
rity], 3,30,5,50-TBBPA [4,40-isopropylidenebis(2,6-dibromophe-
nol), ≥97% purity], 17b-E2 (≥98% purity), and creatinine
standards were obtained from Sigma-Aldrich. 14C-BPA {½ring-
½14C�ðUÞ�-BPA, in ethanol, 0:1mCi=mL, 106mCi=mmol} was
obtained from Moravek Biochemicals. SOLVABLE solubiliza-
tion cocktail, Ultima Gold scintillation cocktail, and 8-mL midi-

vial scintillation vials were obtained from PerkinElmer. E2 anti-
bodies and horseradish peroxidase (HRP) conjugates were
obtained from the Department of Population Health and
Reproduction at the University of California, Davis, CA.

Experimental Design and Dosing
This research followed procedures previously published by this
laboratory (Pollock et al. 2014, 2016). In brief, mice were
weighed, individually housed, and each given a dietary supplement
of 1 g peanut butter. Approximately 14–16 h later at the onset of
darkness on the following day, animals were randomly assigned to
treatment conditions involving a single subcutaneous (sc) injection
of TBBPA and/or triclosan dissolved in 0:05 mL peanut oil. In
experiment 1, males and diestrous females received vehicle or 1, 3,
9, or 27 mg TBBPA (n=7per dose). In experiment 2, males
(n=6 per dose) and diestrous females (n=7 per dose) received a
single sc injection of vehicle, 0:33 mg TBBPA, 0:33 mg triclosan,
or 0:33 mgTBBPA+0:33 mg triclosan. Table 1 provides TBBPA
and triclosan doses in milligrams/kilogram for each treatment condi-
tion. At 30 min after injection, each animal was given a dietary sup-
plement of 50 lg=kg 14C-BPA in 0:2 g peanut butter. Food, water,
and bedding were removed to prevent contamination of the
14C-BPA treatment. At 1 h after 14C-BPA administration, each ani-
mal was anesthetized with isoflurane, and blood was collected via
cardiac puncture. Each animal was perfused with 20 mL phosphate-
buffered saline (PBS), and tissues were collected in preweighed
scintillation vials. Tissue samples taken included the heart, lung, su-
perficial adductor muscle from the hind leg, abdominal adipose,
liver, and a cross-section of the kidney encompassing both the me-
dulla and the cortex. Male reproductive tissues taken included one
testis, one epididymis, one vesicular-coagulating (VC) gland, and
one preputial gland. Female reproductive tissues taken included the
whole uterus and both ovaries. Vials were reweighed following tis-
sue collection to determine the sample wet mass; no significant
changes in tissue weights were observed (data not shown).

In experiment 3, mice were weighed and were individually placed in
a Plexiglas apparatus measuring 21 cm×15 cm×13 cm (l ×w× h)
with a wire-mesh grid floor raised approximately 1 cm above a
Teflon-coated stainless-steel surface covered with wax paper.
Animals acclimated to the novel cages for 3 d before the start of
the experiment. At the onset of darkness on the fourth day, males
and diestrous females received a sc injection of vehicle or 1 mg
TBBPA (corresponding to 33:8±3:7 mg TBBPA/kg for females
and 23:4± 2:4 mg TBBPA/kg for males) dissolved in 0:05 mL
peanut oil (n=15 per dose). Urine was collected noninvasively at
2, 4, 6, 8, 10, and 12 h postinjection. All urine samples were
placed into labeled vials and frozen at −20�C at the time of
collection.

We administered triclosan and TBBPA via sc injection to
mimic dermal absorption of triclosan from personal care products
(Fang et al. 2016; Queckenberg et al. 2010) and free (unreacted)
TBBPA from dust and consumer products (Abdallah 2016;
Knudsen et al. 2015). However, percutaneous penetration is
incomplete compared with sc injection; ≤70% of dermally applied
TBBPA is absorbed through rat skin (Knudsen et al. 2015), and
≤85% of dermally applied triclosan is absorbed through mouse
skin (Fang et al. 2016). We administered 14C-BPA in a dietary
supplement to mimic ingestion of BPA from dust, food, and bever-
ages, which accounts for approximately 85–95% of total exposure
in adults (EFSA Panel on Food Contact Materials, Enzymes,
Flavourings and Processing Aids 2015). Dietary BPA exposure
leads to less-efficient first-pass hepatic metabolism and to higher
serum BPA concentrations than oral bolus (Sieli et al. 2011). The
30-min latency between TBBPA and 14C-BPA administration and
the 1-h latency between 14C-BPA treatment and tissue collection
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were chosen based on an effective paradigm used in previous stud-
ies (Pollock et al. 2014, 2016). We selected 1–27 mg doses of
TBBPA in experiment 1 to establish the impact of a wide range of
TBBPA exposures on tissue concentrations of 14C-BPA. To investi-
gate potential additive effects of TBBPA and triclosan in experi-
ment 2, we selected doses of 0:33 mg so that the quantity of either
substance was below the lowest effective dose of triclosan (0:6 mg)
required to elevate 14C-BPA concentrations (Pollock et al. 2014).
When both substances were given concurrently, the combined quan-
tity (0:66 mg) was greater than the lowest effective dose of triclosan
used previously (Pollock et al. 2014). We selected 1 mg TBBPA
for experiment 3 because this dose was sufficient to modulate
14C-BPA concentrations in experiment 1. We measured urinary E2
because there are very low concentrations of estrogen conjugates in
mouse urine (Muir et al. 2001), whereas unconjugated E2 is abun-
dant in urine and reflects systemic trends (deCatanzaro et al. 2003,
2004; Muir et al. 2001; Thorpe et al. 2014).

Blood and Tissue Processing for Liquid Scintillation
Counting
Blood and tissue samples were processed for liquid scintillation
counting following previously published procedures (deCatanzaro
and Pollock 2016; Pollock et al. 2014, 2016; Pollock and
deCatanzaro 2014). Blood samples were centrifuged at 1,500 × g
for 10 min, and 10 lL serum was added to a scintillation vial
containing 5 mL Ultima Gold scintillation cocktail. Tissue sam-
ples were solubilized by adding 1 mL SOLVABLE tissue solubi-
lizer to each vial and placing the vials in a 50°C water bath for
4–5 h until completely dissolved. Following the addition of 5 mL
Ultima Gold, the vials were agitated to promote mixing of the
sample with the scintillation cocktail. Each vial was stored in the
darkness chamber of a Tri-Carb 2910TR Liquid Scintillation
Analyzer (PerkinElmer) for 5 min to eliminate noise in the form
of heat and luminescence. Radioactivity was then measured for 5
min per vial. The amount of radioactivity per sample, in disinte-
grations per minute (dpm), was automatically calculated via
QuantaSmart software by subtracting background radiation,
which is continually monitored by the scintillation counter.
Frequent cleaning and monitoring of all work surfaces and equip-
ment ensured that contamination of samples did not occur. The
final dpm measures were then normalized to the weight of the

sample wet mass and were reported as equivalent nanograms
BPA/gram tissue or nanograms BPA/milliliter serum.

Measurement of Urinary E2
Full procedures and validations for enzyme immunoassays for
mouse urine have been reported previously (Muir et al. 2001).
Cross-reactivities for anti-E2 are as follows: E2, 100%; estrone,
3.3%; progesterone, 0.8%; testosterone, 1.0%; androstenedione,
1.0%, and all other measured steroids, <0:1%. Urinary E2 levels
were considered with and without adjustment for urinary creatinine,
which corrects for differential hydration and urinary concentration
among animals, and were reported as nanograms E2/milligram cre-
atinine and nanograms E2/milliliter urine, respectively.

Statistical Analyses
All statistical analyses were performed using the R software envi-
ronment (R Core Team). A comparison-wise error rate of a<
0:05 was employed for all tests. Differences between treatments
in experiment 1 were analyzed using univariate analysis of variance
(ANOVA) for each tissue, with Holm-Bonferroni adjustments to
correct for the number of tissues (Holm 1979). Observation of sig-
nificant effects in ANOVA was followed by pairwise Newman-
Keuls multiple comparisons. Differences between treatments in
reproductive tissues and in serum of animals in experiment 2 were
analyzed using Student’s t-test. Differences between urinary E2 con-
centrations of animals in experiment 3 were analyzed by factorial
ANOVA comparing the effects of treatment and collection time
point (repeated measures). Significant main effects or interactions in
ANOVA were followed by pairwise Newman-Keuls multiple com-
parisons of treatment at each collection time point. Data from each
experiment for individual animals are provided in Tables S1–S6.

Results

Experiment 1: Measurement of 14C-BPA in Mice
Given TBBPA
This experiment was designed to determine the impact of
TBBPA on the distribution of BPA. Radioactivity was measured
in tissues and serum of diestrous females (Figure 1; see also
Table S1) and of males (Figure 2; see also Table S2) that
received a sc injection of TBBPA followed by a dietary supple-
ment of 14C-BPA. Concentrations of 14C-BPA in the liver and

Table 1.Mean (±SD) TBBPA and triclosan doses in milligrams/kilogram for each treatment condition.

n BPA dose (lg=kg) TBBPA dose (mg) TBBPA dose (mg/kg) Triclosan dose (mg) Triclosan dose (mg/kg)

Experiment 1
Females 7 50 0 0:0± 0:0

7 50 1 32:7± 2:2
7 50 3 95:5± 4:8
7 50 9 291:3± 22:2
7 50 27 860:8± 67:2

Males 7 50 0 0:0± 0:0
7 50 1 24:6± 1:4
7 50 3 76:7± 1:9
7 50 9 221:5± 9:6
7 50 27 686:4± 26:5

Experiment 2
Females 7 50 0 0:0± 0:0 0 0:0± 0:0

7 50 0 0:0± 0:0 0.33 11:4± 0:6
7 50 0.33 10:9± 0:6 0 0:0± 0:0
7 50 0.33 10:8± 0:8 0.33 10:8± 0:8

Males 6 50 0 0:0± 0:0 0 0:0± 0:0
6 50 0 0:0± 0:0 0.33 8:4± 0:6
6 50 0.33 9:6± 0:5 0 0:0± 0:0
6 50 0.33 8:0± 0:5 0.33 8:0± 0:5

Note: BPA, bisphenol A; n, number of animals; SD, standard deviation; TBBPA, tetrabromobisphenol A.
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kidney are reported in Table 2. Pretreatment with TBBPA
induced a dose-dependent increase in concentrations of 14C-BPA
in serum and in most tissues of both sexes.

Comparisons were made among the five treatments for each
of nine tissues in females. ANOVA followed by Holm-
Bonferroni correction produced significant effects of treatment
for the heart, Fð4,30Þ=12:47, p<0:001; lung, Fð4,30Þ=11:14,
p<0:001; muscle, Fð4,30Þ=4:23, p=0:024; uterus, Fð4,30Þ=
11:92, p<0:001; ovary, Fð4,30Þ=16:97, p<0:001; kidney,
Fð4,30Þ=8:19, p<0:001; and serum, Fð4,30Þ=20:41, p<
0:001. Multiple comparisons revealed that the vehicle-treated
group differed from the 3-, 9-, and 27-mg groups for the heart,
lung, uterus, ovaries, kidney, and serum. The vehicle-treated
group also differed from the 27-mg group for muscle.

Comparisons were made among the five treatments for each of
eleven tissues in males. ANOVA followed by Holm-Bonferroni
correction produced significant effects of treatment for the heart,

Fð4,30Þ=8:35, p<0:001; lung, Fð4,30Þ=7:31, p=0:002; testis,
Fð4,30Þ=11:13, p<0:001; epididymis, Fð4,30Þ=13:76, p<
0:001; VC gland, Fð4,30Þ=4:43, p=0:020; preputial gland,
Fð4,30Þ=6:98, p=0:002; liver, Fð4,30Þ=4:61, p=0:020; kid-
ney, Fð4,30Þ=8:06, p=0:001; and serum, Fð4,30Þ=18:32,
p<0:001. Multiple comparisons revealed that the vehicle-treated
group differed from the 1-, 3-, 9-, and 27-mg groups for the heart,
epididymis, VC gland, kidney, and serum. The vehicle-treated
group also differed from the 1-mg group for the liver; the 3-, 9-,
and 27-mg groups for the testis; the 9- and 27-mg groups for the
lung; and the 27-mg group for the preputial gland.

Experiment 2: Measurement of 14C-BPA in Mice Given
TBBPA and/or Triclosan
This experiment was designed to determine whether actions of
TBBPA or triclosan on the distribution of BPA would be additive

Figure 1.Mean ( +SE) concentration of 14C-bisphenol A (BPA) in the heart, lung, muscle, adipose, uterus, ovaries, and serum of diestrous females following
subcutaneous (sc) injection of vehicle, 1, 3, 9, or 27 mg tetrabromobisphenol A (TBBPA) and subsequent dietary administration of 50 lg=kg 14C-BPA
(n=7 per dose). Difference from vehicle treatment in the same tissue: **p<0:01; +p<0:001. See Table S1 for individual animal data.

Figure 2.Mean (+ SE) concentration of 14C-bisphenol A (BPA) in the heart, lung, muscle, adipose, testis, epididymis, vesicular-coagulating (VC) gland, pre-
putial gland, and serum of males following subcutaneous (sc) injection of vehicle, 1, 3, 9, or 27 mg tetrabromobisphenol A (TBBPA) and subsequent dietary
administration of 50 lg=kg 14C-BPA (n=7 per dose). Difference from vehicle treatment in the same tissue: *p<0:05; **p<0:01; +p<0:001. See Table S2
for individual animal data.
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when the two substances were given concurrently. Radioactivity
was measured in the tissues of diestrous females (Figure 3, Table
2; see also Table S3) and of males (Figure 4, Table 2; see also
Table S4) that received a sc injection of TBBPA, triclosan, or
both followed by a dietary supplement of 14C-BPA. Triclosan
and TBBPA showed a greater impact on 14C-BPA concentrations
in serum and reproductive tissues when administered concur-
rently. Tests between treatment conditions in females revealed
that the vehicle-treated group differed from the group given
0:33 mgTBBPA+0:33 mg triclosan for the uterus, tð12Þ=4:13,
p=0:001; ovaries, tð12Þ=2:66, p=0:021; and serum, tð12Þ=

4:02, p=0:002. Tests between treatment conditions in males
revealed that the vehicle-treated group differed from the group
given 0:33 mgTBBPA+0:33 mg triclosan for the testis, tð10Þ=
2:63, p=0:025; epididymis, tð10Þ=2:96, p=0:014; and serum,
tð10Þ=2:89, p=0:016.

Experiment 3: Measurement of Urinary E2 in Mice
Given TBBPA
This experiment was designed to determine the impact of TBBPA
on endogenous E2. Urinary E2 concentrations of diestrous females
(Figure 5; see also Table S5) and of males (Figure 6; see also Table
S6) were measured after a sc injection of vehicle or TBBPA.
Concentrations of E2 are reported for uncorrected (nanograms E2/
milliliter urine) and corrected (nanograms E2/milligram creatinine)
measures. In females, ANOVA on uncorrected measures showed a
significant main effect of collection time point, Fð5,100Þ=17:26,
p<0:001, and a significant interaction, Fð5,100Þ=2:62, p=0:029.
ANOVA on creatinine-corrected measures showed significant main
effects of treatment, Fð1,20Þ=17:12, p<0:001, and collection
time point, Fð5,100Þ=6:98, p<0:001, and a significant interac-
tion, Fð5,100Þ=4:04, p=0:002. Multiple comparisons revealed
that the vehicle-treated females differed from the TBBPA-treated
females at 8 h after injection for the corrected measures, as well
as at 10 and 12 h after injection for both the uncorrected and cor-
rected measures. In males, ANOVA on uncorrected measures
showed significant main effects of treatment, Fð1,12Þ=8:18,
p=0:014, and collection time point, Fð5,60Þ=2:87, p=0:022,
but no significant interaction. ANOVA on corrected measures
showed only a significant main effect of collection time point,
Fð5,60Þ=4:86, p<0:001. Multiple comparisons revealed that
the vehicle-treated males differed from the TBBPA-treated males
at 2 and 4 h after injection for both the uncorrected and corrected
measures, as well as at 10 h after injection for the uncorrected
measures.

Discussion
These data show that TBBPA greatly magnifies concentrations of
BPA in serum and tissues and that it elevates urinary concentra-
tions of E2. When animals received an oral dose of 14C-BPA,

Figure 3.Mean ( +SE) concentration of 14C-bisphenol A (BPA) in the heart, lung, muscle, adipose, uterus, ovaries, and serum of diestrous females following
subcutaneous (sc) injection of vehicle, 0:33 mg triclosan, 0:33 mg tetrabromobisphenol A (TBBPA), or 0:33 mg triclosan+ 0:33 mgTBBPA and subsequent di-
etary administration of 50 lg=kg 14C-BPA (n=7 per dose). Difference from vehicle treatment in the same tissue: *p<0:05; **p<0:01. See Table S3 for indi-
vidual animal data.

Table 2.Mean (±SE) concentration of 14C-BPA in the liver and kidney of
diestrous females and males following subcutaneous injection of TBBPA
and/or triclosan and subsequent dietary administration of 50 lg=kg
14C-BPA.

TBBPA
dose (mg)

Triclosan
dose (mg)

Liver
(ng BPA/g)

Kidney
(ng BPA/g)

Experiment 1
Females Vehicle 23:9± 4:0 17:6± 4:3

1 23:4± 5:1 38:5± 7:4
3 36:2± 5:7 70:4± 11:7‡

9 14:7± 2:4 48:2± 8:3*
27 16:7± 2:7 77:4± 8:9‡

Males Vehicle 39:8± 8:3 76:0± 6:9
1 70:2± 8:4* 184:5± 25:1†

3 51:3± 8:5 193:5± 21:5†

9 47:7± 6:8 265:3± 31:1‡

27 27:2± 3:7 164:0± 27:5*
Experiment 2
Females Vehicle 25:9± 2:3 15:3± 2:9

0 0.33 20:8± 2:9 14:0± 1:8
0.33 0 24:7± 2:4 16:7± 3:4
0.33 0.33 38:2± 5:3 19:5± 1:4

Males Vehicle 39:1± 4:4 86:2± 12:0
0 0.33 43:7± 2:7 114:6± 9:0
0.33 0 38:6± 3:8 106:1± 24:9
0.33 0.33 45:2± 4:2 119:6± 20:1

Note: Significance marks indicate differences from vehicle treatment in the same tissue.
BPA, bisphenol A; n, number of animals; SD, standard deviation; TBBPA, tetrabromo-
bisphenol A.
* p<0:05.
† p<0:01.
‡p<0:001.
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radioactivity was greater in serum, reproductive tissues, and else-
where in female and male mice that were pretreated with
1–27 mg TBBPA. Radioactivity was also greater in serum and
reproductive tissues of mice given 0:33 mgTBBPA+0:33 mg
triclosan. Urinary E2 concentrations were elevated in animals
given 1 mg TBBPA. Our novel findings that TBBPA modulates
E2 and BPA concentrations underscore a concern (Osimitz et al.
2014) that molecular modeling and in vitro studies may not
address biological activity in vivo.

There are several potential mechanisms through which
TBBPA, triclosan, BPA, and E2 could interact. These include
direct actions at ER, transport proteins in blood, and enzymes
involved in steroid synthesis and metabolism. There is conflicting
evidence regarding direct binding to ER of TBBPA (Lee et al.
2012; Li et al. 2010; Molina-Molina et al. 2013; Suzuki et al.
2013) and triclosan (Gee et al. 2008; Henry and Fair 2013; Stoker
et al. 2010). Insofar as there is such binding, actions of TBBPA or
triclosan would be competitive with binding of 14C-BPA,

producing an opposing effect to that observed in experiments 1
and 2. Similarly, competition for transport proteins in blood would
presumably reduce 14C-BPA concentrations in serum and tissues.
Our findings in experiments 1 and 2 are much more consistent
with competition among TBBPA, triclosan, and 14C-BPA for met-
abolic enzymes. Enzymes of particular interest are those involved
in phase II metabolism, including UGT and SULT (Dumas and
Diorio 2011; Wikoff et al. 2016). The major metabolite of BPA in
rodents is the monoglucuronide conjugate resulting from interac-
tion with hepatic UGT 2B1 and potentially other isoforms (Inoue
et al. 2001; Kurebayashi et al. 2010; Yokota et al. 1999; Zalko
et al. 2003). Other metabolites of BPA in rodents include the
monosulfate conjugate resulting from interaction with SULT 1A1
(Yalcin et al. 2016; Zalko et al. 2003), as well as the diglucuronide
(Zalko et al. 2003), disulfate (Yalcin et al. 2016), and glucuronide/
sulfate (Inoue et al. 2016) diconjugates.

Sulfate and glucuronide conjugates of TBBPA (Borghoff
et al. 2016) and triclosan (Fang et al. 2016) have also been

Figure 4.Mean (+ SE) concentration of 14C-bisphenol A (BPA) in the heart, lung, muscle, adipose, testis, epididymis, vesicular-coagulating (VC) gland, pre-
putial gland, and serum of males following sc injection of vehicle, 0:33 mg triclosan, 0:33 mg tetrabromobisphenol A (TBBPA), or 0:33 mg triclosan+
0:33 mgTBBPA and subsequent dietary administration of 50 lg=kg 14C-BPA (n=6 per dose). Difference from vehicle treatment in the same tissue:
*p<0:05. See Table S4 for individual animal data.

Figure 5.Mean ( +SE) concentration of urinary E2, expressed as nanograms 17b-estradiol (E2)/milliliter urine and nanograms E2/milligram creatinine, follow-
ing subcutaneous (sc) injection of vehicle or 1 mg tetrabromobisphenol A (TBBPA) in diestrous females (n=15 per dose). Significant difference from vehicle
treatment at the same time point: *p<0:05; **p<0:01; +p<0:001. See Table S5 for individual animal data.
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observed in rodents. TBBPA can inhibit the activity of SULT
1E1 and SULT 1A1 (Gosavi et al. 2013; Hamers et al. 2006;
Harju et al. 2007; Kester et al. 2002) and can reduce the expres-
sion of genes in the liver that encode SULT 1E1 and SULT 2A1
(Sanders et al. 2016). Triclosan can inhibit sulfonation and glu-
curonidation of BPA in human liver fractions (Wang et al.
2004).

Our findings in experiment 3 can be explained by competition
between TBBPA and E2 for metabolic enzymes. In addition to
phase II metabolism (described above), phase I metabolism
involving CYP and 17b-HSD is important for estrogen metabo-
lism (Dumas and Diorio 2011; Wikoff et al. 2016). TBBPA can
inhibit CYP 2C9 and CYP 3A4 activity (Ames 2013) and
17b-HSD4 activity (NIH/NCBI) in human liver fractions.
TBBPA can reduce expression of genes in the liver that encode
17b-HSD, but it can increase expression of genes that encode cer-
tain CYP isoforms (Sanders et al. 2016). Our findings in experi-
ment 3 can also be explained by actions of TBBPA on enzymes
involved in steroid synthesis. One study found that TBBPA up-
regulates aromatase expression and activity in human choriocar-
cinoma cells for up to 72 h in vitro (Honkisz and Wójtowicz
2015). The latency of TBBPA action on E2, up to 8–12 h in
females, could be attributed to increased E2 biosynthesis.

We found that TBBPA magnified concentrations of 14C-BPA
in the heart, lung, kidney, and blood serum of mice, as well as in
the uterus and ovary of females and in the testis, epididymis, VC
gland, and preputial gland of males. The impact of 1–27 mg
TBBPA on 14C-BPA concentrations in tissues and in serum is
consistent with that previously shown for 0:6–18 mg triclosan
(Pollock et al. 2014), except TBBPA appears to have larger
effects. This is particularly evident in males because pretreatment
with triclosan elevated 14C-BPA concentrations in only the epidi-
dymis and blood serum (Pollock et al. 2014). The greatest impact
of TBBPA on 14C-BPA concentrations was in the lung, reproduc-
tive tissues, kidney, and blood serum. The localization of
14C-BPA to the lung and reproductive tissues is consistent with
the high expression of ERa and ERb in these tissues (Couse et al.
1997; Kuiper et al. 1997). Of the tissue samples collected, the
highest concentrations of 14C-BPA were in the liver and in the
kidney. This observation is consistent with findings from previ-
ous studies of the distribution of BPA at doses ranging from 0.5
to 100,000 lg=kg (Kim et al. 2004; Kurebayashi et al. 2005;
Pollock and deCatanzaro 2014). These organs are involved in the
metabolism and excretion of ingested BPA, and radioactivity in
these tissues does not necessarily reflect tissue deposition of
14C-BPA. Concentrations of 14C-BPA were greater in males than
in females in most nonreproductive tissues and in blood serum.
In vehicle-treated animals in experiment 1, average 14C-BPA

concentrations in males were greater than those in females for the
heart (394%), lung (230%), muscle (294%), adipose tissue
(152%), serum (228%), liver (167%), and kidney (433%). These
findings are consistent with the distribution of 100 lg=kg BPA in
certain tissues of male and female rats (Kurebayashi et al. 2005)
and may be explained by differences in BPA metabolism, as
shown by sex- and tissue-specific expression of numerous UGT
isoforms (Buckley and Klaassen 2007).

Greater concentrations of urinary E2 following TBBPA
administration were most evident in females approximately 8–12
h postinjection but were also observed in males approximately 2–
4 h postinjection. This discrepancy in latency between males and
females may be influenced by differences in the metabolism of
TBBPA, differences in estrogen synthesis, or both. The rate of
TBBPA glucuronide production is faster in male rat liver frac-
tions (Zalko et al. 2006), whereas aromatase expression is greater
in the ovaries than in the testes (Golovine et al. 2003). Taken to-
gether, these processes may hasten the influence of TBBPA on
E2 concentrations in males but result in greater effects of TBBPA
on E2 concentrations in females. Slight but persistent elevations
in E2 can lead to adverse reproductive and health outcomes in
mammals. In mice, heightened E2 levels can prevent intrauterine
blastocyst implantation and cause pregnancy failure (Thorpe
et al. 2013). In humans, elevated E2 from hormone-replacement
therapy correlates with increased risk of breast, endometrial, and
ovarian cancer (Million Women Study Collaborators 2003, 2005,
Beral and Million Women Study Collaborators 2007).

Data from the 2011–2012 U.S. National Health and Nutrition
Examination Survey (NHANES) indicated that 72% of human
urine samples contain detectable triclosan concentrations ranging
from 2.3 to 3,830 lg=L (Han et al. 2016). Although NHANES did
not report TBBPA concentrations in urine, TBBPA was detected
in 93% of plasma samples and in 89% of urine samples in a study
of 140 healthy adults in China (Ho et al. 2017). Some published
reports have estimated daily TBBPA exposure levels in the range
of 3:2× 10−7 to 1:95× 10−4 mg=kg=day (Environment Canada
and Health Canada 2013; NTP 2014; Wikoff et al. 2015).
However, these exposure estimates are derived from concentra-
tions of TBBPA in environmental media and may not account for
all exposure pathways. Furthermore, interactions among chemicals
may influence their distribution, metabolism, and excretion, as
indicated by our data. One study suggested that disruption of
homeostatic control of TBBPA and estrogen conjugation is
unlikely in humans because the doses required to produce uterine
tumors in rodents are orders of magnitude greater than exposure
estimates in humans (Borghoff et al. 2016). However, our data
show clear in vivo interaction between TBBPA and triclosan,
indicating that it is not appropriate to consider only one chemical

Figure 6.Mean ( +SE) concentration of urinary 17b-estradiol (E2), expressed as nanograms E2/milliliter urine and nanograms E2/milligram creatinine, follow-
ing subcutaneous (sc) injection of vehicle or 1 mg tetrabromobisphenol A (TBBPA) in males (n=15 per dose). Significant difference from vehicle treatment at
the same time point: *p<0:05; **p<0:01; +p<0:001. See Table S6 for individual animal data.
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in isolation. Inhibition of enzymes involved in estrogen metabo-
lism has been shown for a number of environmental chemicals
and their metabolites, including parabens (Ozaki et al. 2016;
Prusakiewicz et al. 2007), phthalates (Ozaki et al. 2016), poly-
chlorinated biphenyls (Kester et al. 2000; Wang and James 2007),
and polyhalogenated aromatic hydrocarbons (Kester et al. 2002).
Given the potential adverse reproductive and carcinogenic out-
comes of persistently elevated estrogenic activity, these findings
demonstrate the importance of considering multiple toxicants
when determining regulatory exposure limits.

Conclusion
These data demonstrate that concurrent exposure to TBBPA ele-
vates concentrations of dietary BPA in reproductive and other tis-
sues. TBBPA and triclosan have additive effects in their capacity
to modulate concentrations of BPA. TBBPA also elevates meas-
ures of urinary E2 in mice. These effects are consistent with com-
petition among these synthetic chemicals and endogenous
steroids for conjugating enzymes. These results indicate that
TBBPA and triclosan, both of which have negligible direct
effects on ER, can have indirect estrogenic effects.
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