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Abstract

Plaque morphology and biomechanics are believed to be closely associated with plaque 

progression. In this paper, we test the hypothesis that integrating morphological and 

biomechanical risk factors would result in better predictive power for plaque progression 

prediction. A sample size of 374 intravascular ultrasound (IVUS) slices was obtained from 9 

patients with IVUS follow-up data. 3D fluid-structure interaction models were constructed to 

obtain both structural stress/strain and fluid biomechanical conditions. Data for eight 

morphological and biomechanical risk factors were extracted for each slice. Plaque area increase 

(PAI) and wall thickness increase (WTI) were chosen as two measures for plaque progression. 

Progression measure and risk factors were fed to generalized linear mixed models and linear 

mixed-effect models to perform prediction and correlation analysis, respectively. All combinations 

of eight risk factors were exhausted to identify the optimal predictor(s) with highest prediction 

accuracy defined as sum of sensitivity and specificity. When using a single risk factor, plaque wall 

stress (PWS) at baseline was the best predictor for plaque progression (PAI and WTI). The optimal 

predictor among all possible combinations for PAI was PWS + PWSn + Lipid percent + Min cap 

thickness + Plaque Area (PA) + Plaque Burden (PB) (prediction accuracy=1.5928) while Wall 

Thickness (WT) + Plaque Wall Strain (PWSn) + Plaque Area (PA) was the best for WTI (1.2589). 
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This indicated that PAI was a more predictable measure than WTI. The combination including 

both morphological and biomechanical parameters had improved prediction accuracy, compared to 

predictions using only morphological features.
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1. Introduction

Atherosclerotic plaque progression and rupture involve complex biological, biochemical, 

biomechanical and pathological processes, etc. (Stary et al., 1995; Virmani et al., 2000; Ku 

et al., 1985; Tang et al. 2009). The pioneering works of Fry, Caro, Ku, Giddens, Friedman 

and Malek, among others, showed that initiation of atherosclerosis process correlates 

positively with low and oscillating flow shear stress (Fry et al., 1968; Caro et al., 1971, Ku et 

al., 1985; Giddens et al., 1993; Friedman et al., 1987; Malek et al., 1999). However, the 

mechanism governing advanced plaque progression has not been fully understood (Tang et 

al., 2014). Loree et al., Ohayon et al., Gijsen et al., our group and other groups have 

conducted studies on assessing plaque vulnerability from both biomechanical and 

morphological perspectives for coronary and carotid arteries (Loree et al., 1992; Ohayon et 

al., 2008; Wang et al. 2015a; Gijsen et al., 2015). Glagov et al. investigated coronary vessel 

enlargement and lumen narrowing processes occurring in coronaries during plaque growth 

using histological human coronary sections from 136 hearts (Glagov et al., 1987). It should 

be noted that most of the earlier studies were based on one-time plaque data, while plaque 

progression needs to be quantified using patient follow-up data (at least two observations).

Several groups have made great effort to find the potential indicator to predict the plaque 

development over time. Results from the PROSPECT study (n=697) showed that nonculprit 

lesions associated with recurrent events were more likely to have plaque burden of 70% or 

greater than those not associated with recurrent events (p<0.001) (Stone GW et al., 2011). 

From the PREDICTION study, Stone PH et al. concluded that progressive plaque 

enlargement and lumen narrowing could be predicted independently by baseline large plaque 

burden and low endothelial shear stress (Stone PH et al., 2012). In an IVUS-based follow-up 

study with 20 patients recruited, Samady et al. divided IVUS slices into low, intermediate 

and high wall shear stress (WSS) groups. They reported that the low-WSS group developed 

significant progression in plaque area and necrotic core, whereas the high-WSS group had 

progression of necrotic core but regression of fibrous and fibro-fatty tissue (Samady et al., 

2011). Following a similar method, Corban et al. found that the group with baseline plaque 

burden >40% and WSS <10 dyn/cm2 had significantly greater change in plaque area at 

follow-up (0.68±1.05 mm2), compared to the group with plaque burden >40% and WSS 

>10dyn/cm2 (Corban et al., 2014). Using a multi-level modeling approach, Sakellarios et al. 

claimed endothelial shear stress and low-density lipoprotein had a significant correlation 

with the changes in plaque area, therefore these factors had the potential to predict the 

regions that are prone to plaque progression (Sakellarios et al., 2017). Most of the studies in 

the literature (with a few exceptions) focused on flow shear stress and did not take the effect 
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of structural mechanical conditions on plaque development into consideration (Maurice RL 

et al., 2004). For this reason, our group has published preliminary results on plaque 

progression using wall thickness and the mechanical conditions from the fluid-structure 

interaction (FSI) models (Wang et al, 2015b). Even though most existing studies focus on 

the relationship between plaque progression and morphological features, we conjecture that 

integrating all possible risk factors including morphological and biomechanical factors from 

plaque structure and blood flow would result in better predictive power for plaque 

progression prediction.

In this paper, follow-up intravascular ultrasound (IVUS) coronary plaque data were acquired 

from 9 patients and IVUS-based FSI models with cyclic bending were constructed to obtain 

data for eight selected key plaque morphological and biomechanical parameters including 

wall thickness (WT), plaque wall stress (PWS), plaque wall strain (PWSn), wall shear stress 

(WSS), lipid percent, min cap thickness, plaque area (PA) and plaque burden (PB). All 

possible combinations of these risk factors were fed into generalized linear mixed models 

(GLMM) to predict plaque progression in two measures: wall thickness increase (WTI), 

plaque area increase (PAI). All possible combinations were tested to identify the optimal 

predictor with highest prediction accuracy defined as the sum of prediction sensitivity and 

specificity for each measure. Correlation analyses were performed between plaque 

progression and risk factors using linear mixed-effect models (LME).

2. Data, Method and Model

2.1. Data acquisition and processing

IVUS with virtual histology (IVUS-VH) coronary plaque data were acquired from 9 patients 

(Mean age: 59, 7 males) with one-time follow-up (follow-up time span 6-12 months, median 

9 months) at Cardiovascular Research Foundation (New York, NY) with informed consent 

obtained (the PROSPECT study, Stone GW et at., 2011). Patient demographical information 

are provided by Table 1. Data acquisition procedures were described previously in (Wang et 

al. 2015a, 2015b). X-ray angiogram (Allura Xper FD10 System, Philips, Bothel, WA) was 

obtained at both scans to show the location of the coronary artery stenosis, vessel curvature 

and cyclic bending caused by heart contraction. VH-IVUS data provides maps of lipid, 

calcification, and fibrotic tissues. Fusion of IVUS data and X-ray angiography to reconstruct 

3D blood vessel geometry were performed after the segmentation and co-registration of the 

one-by-one paired slices at baseline and follow-up using information from angiography, 

location of myocardium, vessel bifurcation, stenosis and plaque components following 

established procedures (Wang et al, 2015b). Figure 1 gives one sample with selected 

registered IVUS-VH images and segmented contours at baseline and follow-up, 

angiography, and vessel sagittal view with maximum and minimum curvatures 

demonstrating cyclic bending.

2.2. The fluid-structure interaction (FSI) model

In vivo IVUS-based 3D FSI models with anisotropic material properties and pre-shrink-

stretch process were constructed for each coronary plaque to obtain plaque stress, strain and 

flow wall shear stress conditions. Blood flow was assumed to be laminar, Newtonian (Yang 
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et al., 2007; Kari et al., 2017), and incompressible. The Navier-Stokes equations with 

arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. The 

structure model included equilibrium equations (equation of motion), the nonlinear Cauchy-

Green strain-displacement relation and Mooney-Rivlin material properties. Pulsating 

pressure conditions were prescribed at the inlet and outlet of the vessel. No-slip boundary 

conditions were imposed on the fluid-vessel interface. Other boundary conditions were 

prescribed to the appropriate interfaces to recover the physiological conditions and cyclic 

bending movement of coronary (Yang et al., 2009).

2.3 The Mooney-Rivlin material model

The vessel tissue was assumed to be hyperelastic, anisotropic, nearly-incompressible and 

homogeneous. Plaque components (lipid core and calcification) were assumed to be 

hyperelasic, isotropic, nearly-incompressible. A modified Mooney-Rivlin material model 

was used to describe the material properties of vessel tissue with the strain energy density 

function given below (Holzapfel et al., 2000):

(1)

(2)

(3)

(4)

where I1 and I2 are the first and second invariants of right Cauchy-Green deformation tensor 

C defined as C=[Cij] = XTX, X=[Xij] = [∂xi/∂aj], (xi) is current position, (ai) is original 

position, I4 = Cij(nc)i(nc)j, nc is the unit vector in the circumferential direction of the vessel, 

c1, c2, D1, D2, and K1 and K2 are material constants determined by fitting the biaxial testing 

experimental data using a two-step square-least method. The parameters for the vessel 

(fibrous tissue) used in this paper were: c1= -1312.9 kPa, c2=114.7 kPa, D1=629.7 kPa, 

D2=2.0, K1=35.9 kPa, K2=23.5. The parameters used for lipid and calcification are: Lipid: 

c1= 0.5 kPa, c2=0 kPa, D1=0.5 kPa, D2=1.5; Ca: c1= 92 kPa, c2=0 kPa, D1=36 kPa, D2=2.0. 

Material parameters were used in our previous publications and are also consistent with data 

available in the literature (Holzapfel et al., 2000; Kural et al., 2012; Yang et al., 2009; Teng 

et al., 2014).
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2.4. Mesh construction and solution method

Patient-specific plaque models were constructed at both baseline and follow-up and solved 

by ADINA (Adina R&D, Watertown, MA) to obtain mechanical conditions including plaque 

wall stress (PWS), plaque wall strain (PWSn) and wall shear stress (WSS) (Bathe et al., 

2002). Details about our pre-shrink-stretch model construction process and component-

fitting mesh generation technique can be found in (Yang et al., 2009).

2.5 Data extraction for morphological and biomechanical factors

Three hundred and seventy-four IVUS slices from 9 patients (baseline and follow-up 

matched) were used to extract data for morphological and biomechanical factors for 

analyses. Each slice was divided into 4 quarters with each quarter containing 25 evenly-

spaced nodal points on the lumen, each lumen nodal point was connected to a corresponding 

point on vessel outer-boundary. The length of the connecting line is defined as the wall 

thickness at the nodal point. Cap thickness at a lumen point is the shortest distance between 

the lumen point and lipid contour the cap is covering. The minimum of the cap thickness 

(wall thickness if the connecting line does not pass lipid) among the 100 nodal points was 

denoted as the min cap thickness of the slice. Figure 2 gives a sketch of the definitions of 

these morphological features. The area of lipid within each slice was recorded as lipid area. 

Plaque area (PA) is defined as the area between lumen and out-boundary. Plaque burden 

(PB) is given by:

(5)

Lipid percent for each slice was also calculated:

(6)

Average values of PWS, PWSn and WSS over 100 nodal points for each slice were 

calculated and used in our analyses. Data for the eight morphological and biomechanical 

risk factors including WT, PWS, PWSn, WSS, Lipid percent, Min cap thickness, PA and PB 

were obtained for the 374 slices for statistical analysis.

2.6 Plaque Progression Measurement

Vessel wall thickness increase (WTI) and plaque area increase (PAI) from baseline to 

follow-up were chosen as two measures for plaque progression:

(7)
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(8)

2.7 Linear mixed-effect (LME) model for correlation analysis

A linear mixed-effect (LME) model was used to study the correlation between plaque 

progression (i.e., WTI/PAI) and each risk factor with data dependence structure taken into 

consideration (Wu et al., 2011). The LME model is given by:

(9)

where Yjk, xjk are the observational data of plaque progression and any risk factor at 

baseline on the jth slice in the kth patient. β0, β1 are the coefficients for the fixed-effect term, 

bk is the random effect term and εjk is the vector of random error term. LME considers a 

sophisticated dependence structure among the observational data since WTI/PAI or risk 

factors acquired from two slices within the same patient model are unlikely independent. 

Similar to Pearson's correlation coefficient, the dependence-adjusted correlation coefficient r 
was defined by:

(10)

where  and  are the sample variances of the risk factor and plaque progression.

2.8 Generalized linear mixed models (GLMM) for prediction analysis

Generalized linear mixed models (GLMM) for binary responses were used to select the best 

predictor(s) for each measure of plaque progression. We use WTI as an example to explain 

our GLMM model training and testing process. The same analysis could be applied to PAI. 

For a given slice, we set the binary response WTI=1 if WTI>0 or WTI=0 if WTI<=0. The 

GLMM model is given by (Wu et al., 2011):

(11)

(12)

where yjk is the binary response of WTI on the jth slice of the kth patient. The expectation of 

yjk is the probability: E(yjk|bk) = P(yjk = 1|bk) and the binomial link function is: 

. And x1, x2, etc. in GLMMs presents the combinations of risk factors 
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at baseline as predictor. The terms β0, β1, bk, εjk have the same meaning in LME models and 

were estimated by fitting GLMM using R function glmmPQL (Venables et al., 2002).

A 5-fold cross-validation procedure was performed as all 374 IVUS slices were randomly 

split into five subgroups with four training subgroups to fit the model and the remaining one 

as validation subgroup to evaluate the model. Prediction specificity and sensitivity are 

defined as the proportion of slices in the validation subgroup that correctly identified as 

WTI=1 class and WTI=0 class, respectively. All combinations of eight risk factors were 

tested to identify the optimal predictor with the highest prediction accuracy defined as the 

sum of specificity and sensitivity. The receiver operating characteristic curve (ROC curve) 

and the area under of the ROC curve (AUC) were reported to compare the prediction 

accuracy for each combination. It is worth noting that sensitivity and specificity reported for 

each predictor were determined from the point on the ROC curve that gives their highest 

sum.

3. Results

3.1. Correlation analysis between risk factors and WTI

Table 2 shows correlation results between the eight risk factors and plaque progression 

measured by WTI using 374 slices. Using the baseline data, WT showed the strongest 

significant correlation with WTI (r= - 0.7962, p=6.32E-33), followed by PA (r=-0.7399, 

p=1.22E-11). Except for these two risk factors, PB and WSS also correlated with WTI 

negatively. There are no significant correlations observed between WTI and the rest of 4 risk 

factors.

When fitting LME with follow-up data, most of the correlations changed sign from baseline. 

WT had the strongest positive correlation with WTI. PWS and PWSn at follow-up became 

negatively associated with WTI from no significant correlation at baseline.

3.2 Prediction of WTI by eight risk factors

There are altogether 255 (2̂8-1) combinations using the eight risk factors. Table 3 gives the 

prediction results for WTI using single risk factors at baseline, and the optimal combination 

predictor among all 255 combinations. It showed that PWS was the best single risk factor 

predictor for WT1 with highest sum of sensitivity and specificity (1.2205), followed by 

PWSn (1.1802). When comparing all possible combinations of the eight risk factors, the 

combination of WT, PWSn and PA gave the best prediction accuracy 1.2589. Figure 3 shows 

the ROC curve and AUC value for predicting WTI using the optimal predictor WT, PWSn 

and PA at baseline.

3.3. Correlation analysis between risk factors and PAI

According to Table 4, PA, WT and PB at baseline are the 3 morphological features that had 

strong negative correlations with PAI, with PA giving highest correlation coefficient r = - 

0.8330. For the other two morphological features at baseline, min cap thickness showed 

weak correlation while lipid percent had no significant correlation. All 3 mechanical 

conditions at baseline showed no statistically significant correlation with PAI.
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At follow-up, PA, WT and PB were still the risk factors giving strong correlation 

coefficients, but now they had positive significant correlation with PAI. For mechanical 

conditions, PWSn and WSS showed weak correlations with PAI while PWS showed no 

significant correlation.

3.4. Prediction of PAI by eight risk factors

Similar to WTI prediction, the prediction results for single risk factors at baseline, along 

with the optimal combination predictor are summarized by Table 5. PWS was the best single 

risk factor predictor for PAI with the highest sum of sensitivity and specificity (1.4856) with 

AUC=0.8116, followed by PB (1.4849) with AUC=0.7996. The combination of PWS, 

PWSn, Lipid percent, min cap thickness, PA and PB gave the best prediction accuracy 

(1.5928), with AUC=0.8452. The ROC curve and AUC value for best predictor are given in 

Figure 4.

4. Discussion

4.1 Combining morphological factors, structural stress/strain and flow shear stress for 
plaque progression prediction

Most prior and current plaque progression research focused on plaque morphological and 

fluid flow risk factors (Stone et al., 2012; Samady et al., 2011).Little attention has been paid 

to structural plaque stress and strain (PWS and PWSn), partially due to availability of plaque 

data with components and the time cost and modeling complexity in calculating these 

mechanical conditions. However, structural stress/strain should play an important role here. 

By using IVUS-VH data with follow-up, we were able to construct multi-component 

coronary plaque FSI models and perform progression prediction using five morphological 

and three mechanical risk factors. Our preliminary results indicate that combining 

morphological and mechanical factors could give better prediction accuracy for plaque 

progression. We also demonstrated that PWS was the best single risk factor among the eight 

morphological and mechanical factors for predicting PAI and WTI, the two chosen measures 

for plaque progression in this paper. These findings supports further effort and investigations 

in this direction.

4.2 PAI is more predictable than WTI as a measure for plaque progression

Plaque area (PA) and wall thickness (WT) are two commonly used measures to size 

atherosclerotic plaque prevalence in coronary or carotid artery. Naturally, we used PAI and 

WTI to assess plaque progression and compared their differences. Using the eight risk 

factors at baseline as predictors, our results indicate that PAI was more predictable than 

WTI, with the combinations of PWS + PWSn + Lipid percent + Min cap thickness + PA + 

PB achieving a prediction accuracy 1.5928 and AUC value (0.8452). A sensitivity of 0.8757 

and specificity of 0.7171 showed this predictor had reasonably good ability to indicate how 

PA would change. At least 71% of slices could get correct agreement between predicted and 

realistic plaque size change regardless of how it changes. In comparison, the optimal 

predictor for WTI can only achieve a prediction accuracy 1.2589. This may suggest that we 

may want to adopt PAI for plaque progression investigations in the future.
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4.3 Correlation between vessel enlargement and lumen area

Glagov et al. used histological coronary data from 136 human cadaver hearts to study 

correlation between vessel enlargement and plaque area. They reported that the internal 

elastic lamina area correlated with the area of the lesion (r=0.44, P< 0.001) (Glagov et al., 

1987). Using data from our 374 IVUS slices, it was found that the Pearson's correlation 

coefficients between plaque area and internal elastic lamina area were r=0.5777, p-

value<0.0001 at baseline and r=0.4769, p-value<0.0001 at follow-up. This is consistent with 

Glagov's finding.

4.4 Limitations on VH-IVUS data and modeling process

(a) IVUS has a limited resolution of 150-250 microns and cannot detect thin plaque cap with 

cap thickness around 65 microns.. Sometimes, the lipid-rich necrotic core (lipid core) from 

IVUS-VH even sits on the lumen. To our best effort, we made cap with thickness about 50 

microns (slightly smaller than 65 microns threshold value for thin cap) when IVUS-VH data 

had lipid-rich core on the lumen (Wang et al., 2015b). (b) Patient-specific vessel and plaque 

component material properties were not available for this study. Material parameter values in 

our models were chosen from our ex vivo biaxial test data and available literature (Guo et 

al., 2017); (c) One major limitation in the modeling procedure is the lack of biplane 

angiography to re-construct vessel curvature in 3D. Our patient data were acquired with only 

one angiography image data. Care was taken to find the angiography with maximum 

curvature variations of the vessel segment of interest. (d) Micro-calcifications were not 

included in the current FSI model due to limitations of imaging (Bluestein et al., 2008); (e) 

IVUS data do not contain the adventitial layer of the vessel. Our results should be 

understood and interpreted with that assumption; (f) Residual stress was not included as no 

patient-specific opening angle data were available (Fung et al., 1995; Ohayon et al., 2007); 

(g) Interaction between the heart and vessel were not considered (Ohayon et al., 2011). A 

model coupling heart motion and coronary bending would be desirable when required data 

become available.

4.5 Future directions for improvement

Future research and investigation could be done to address the following issues to make this 

work more complete, enhance the results or overcome the limitations: a) Efforts in more 

accurate calculation of the mechanical conditions should be made such as considering 

residual stress and biplane angiography into the computational FSI models; b) Another 

potential improvement is to combine IVUS-VH and OCT (resolution 15-20 microns) for 

more precise information on plaque morphology. OCT has a resolution 15-20 microns, 

therefore it can visualize thin cap thickness as complementary to IVUS; c) Attempts to 

automate FSI modeling procedures are called for to make large-scale studies feasible. Even 

though patient-specific FSI models are time-consuming and complicated, structural 

mechanical conditions are demonstrated to be essential risk factors for plaque progression 

and should be considered; d) This is a preliminary study and large-scale patient studies are 

needed for further improvements and validations
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5. Conclusion

This study performs prediction analysis on plaque progression using morphological and 

biomechanical factors at baseline scan. PWS was the optimal predictor for PAI and WTI 

among all single risk factors. Results from predictive models proved our hypothesis that 

morphological and biomechanical factors integrated together could provide higher 

prediction accuracy than any single risk factor alone.
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Figure 1. 
(a)-(d) Matched IVUS-VH and segmented contour plots of sliced from baseline scan and 

follow-up scan. (e) Sample frame from X-ray Angiography movie to show min curvature at 

baseline. (f)-(g) Max and min curvatures were extracted to reconstruct coronary segment in 

3D to mimic its cyclic bending movement due to heart contraction at Baseline.

Wang et al. Page 13

J Biomech. Author manuscript; available in PMC 2019 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Sketch explaining definitions of quarters, wall thickness, cap thickness, and lipid.
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Figure 3. 
Receiver operating characteristic (ROC) curve and area under curve (AUC) value using WT 

+ PWSn + PA to predict WTI.
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Figure 4. 
Receiver operating characteristic (ROC) curve and area of the curve from predicting PAI 

using PWS + PWSn + Lipid percent + Min cap thickness + PA + PB.
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Table 2
Correlation results between WTI and eight risk factors at baseline and follow-up. NS=No 
statistical significance

WTI vs.

Risk factor

baseline follow-up

r p r p

WT -0.7962 6.32E-33 0.9309 1.93E-50

PWS 0.0371 0.5853(NS) -0.1596 0.0020

PWSn 0.0552 0.3338(NS) -0.2023 9.49E-05

WSS -0.2639 0.0004 0.5784 2.67E- 12

Lipid percent 0.0007 0.9884(NS) 0.1009 0.1263(NS)

Min cap thickness 0.0437 0.1955(NS) 0.0433 0.2876(NS)

PA -0.7399 1.22E-11 0.9152 1.40E-31

PB -0.5985 1.08E-15 0.8176 1.01E-32
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Table 4
Correlation results between PAI and eight risk factors at baseline and follow-up

PAI vs.

Risk factor

baseline follow-up

r p r p

WT -0.5262 1.48E-13 0.9929 6.35E-36

PWS 0.0185 0.7338(NS) -0.0683 0.0890(NS)

PWSn 0.0377 0.4064(NS) -0.0894 0.0266

WSS -0.1128 0.0673(NS) 0.3179 1.76E-06

Lipid percent 0.0043 0.9031(NS) 0.0903 0.0826(NS)

Min cap thickness 0.0560 0.0320 0.0152 0.6253(NS)

PA -0.8330 6.89E-26 0.9890 4.58E-49

PB -0.4678 4.87E-13 0.9610 1.20E-28
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