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How can we acquire a grasp of cardinal numbers, even the first very small

positive cardinal numbers, given that they are abstract mathematical entities?

That problem of cognitive access is the main focus of this paper. All the major

rival views about the nature and existence of cardinal numbers face difficulties;

and the view most consonant with our normal thought and talk about

numbers, the view that cardinal numbers are sizes of sets, runs into the cogni-

tive access problem. The source of the problem is the plausible assumption that

cognitive access to something requires causal contact with it. It is argued

that this assumption is in fact wrong, and that in this and similar cases,

we should accept that a certain recognize-and-distinguish capacity is sufficient

for cognitive access. We can then go on to solve the cognitive access problem,

and thereby support the set-size view of cardinal numbers, by paying atten-

tion to empirical findings about basic number abilities. To this end, some

selected studies of infants, pre-school children and a trained chimpanzee are

briefly discussed.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
From tiny acorns, mighty oaks do grow. Every professional mathematician was

once an infant yet to grasp even small cardinal numbers. How is that initial step

even possible, given that cardinal numbers are abstract? That is the main philosophi-

cal problem about numbers to be dealt with here, the problem of cognitive access.

In this paper, ‘numbers’ refers exclusively to finite cardinal numbers. These

are typically answers to questions starting ‘How many’, followed by a descrip-

tion applicable to individuals, rather than to units of a non-discrete quantity.

So, the number of letters in the modern Greek alphabet is a cardinal number,

whereas the number of miles between the central stations of Liverpool and

Manchester is not a cardinal number but a ratio (of the inter-city distance to

the unit distance of a mile).

The paper is organized as follows. The first part is a rough and rapid tour of

major rival views of number proposed by mathematicians and philosophers.

None of these views escapes objection, and we seem to reach an impasse. To unblock

the way, a philosophical error needs to be exposed. That is the second part. The third

part presents a case for the claim that, by paying attention to findings of cognitive

science about basic number abilities, we can solve the problem of cognitive access

to numbers and justifiably settle on one of the views of number as correct.
2. Five major views
(a) The classical view
At the start of Book VII of Euclid’s Elements, a number (arithmos) is defined

thus:

A number is a multitude of units,
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where a unit is a single individual thing (Book VII, definitions 1

and 2) [1]. On this view, any pair of items is a 2 and so there are

many 2s; any trio is a 3 and so there are many 3s. In general,

any plurality of k things is a k and there are many ks. We

retain a corresponding use of the word ‘number’, as when

we say that a number of authors were late with their sub-

missions. While a unit is not a plurality, the number theory

of books VII to IX of the Elements includes theorems about

units (e.g. VII. 15 is the special case for units of VII. 9). So in

effect Euclid had 1s as well as plural numbers, but there was

no notion of zero.

The classical view of cardinal numbers has staying power. Its

best modern variant, put forward by the mathematical logician

John Mayberry, takes arithmetic and number theory to be gen-

eral truths about sets (including one-membered sets and the

emptyset), interpreting numerical equations in terms of 1–1 cor-

relations as is done in standard set theory [2]. For example, ‘3 þ
2 ¼ 5’ is taken to mean that there is a 1–1 correlation between the

union of any triple with any pair not overlapping the triple and

any quintet. In fact, thewhole of cardinal number theory, includ-

ing theorems about zero, can be interpreted along these lines in

set theory. An attractive feature of the classical view is that the

problem of cognitive access seems to melt away: we can have

access to some numbers by perception (those three eggs) or by

description (Jupiter’s moons).

But there is one major disadvantage. The classical approach

allows that there are many 1s, many 2s and in general many ks,

whereas modern number theory assumes that there is just one

number for each numeral. This can be seen from the use of

number-counting functions, the definitions of which make no

sense unless it is assumed that there is just one number per

numeral. A prominent example is Euler’s w-function, to be

found in any modern elementary text on number theory [3]:

w(1) ¼ 1; w(n) ¼ the number of positive integers less than and

co-prime to n, for n . 1. Number theory can be applied to

many systems and one of those is the system of finite cardinals.

So here is a serious problem for the classical view.

(b) Numeralism
‘Numeralism’ here denotes the view that cardinal numbers are

the numerals of a numeral system. Numeralism was held by

the philosopher Berkeley [4]; closely related views about the

natural numbers were proposed by the mathematician Hilbert

[5] and the logician Kripke (S. Kripke 1992, unpublished data).

Why think that numbers are numerals? Berkeley [4] noted that

large numbers within the range of performable calculations

defy precise sensory representation; so when we think of 201,

what introspective awareness reveals is not an image of 201

items but an image of the numeral. To conclude without

further argument that the number itself is the numeral ‘201’

is to confuse the representation with what is represented—a

quite common mistake. Berkeley did have further arguments,

but they are unsound.

Numeralism has the advantage that it appears to escape the

problem of cognitive access: people are satisfied with the fact

that we can see written numerals. But a serious disadvantage

is that a common core of basic arithmetical information can

be expressed using different numeral systems or natural

language number words:

12þ 9 ¼ 21 ðbase 10Þ:
1100þ 1001 ¼ 10101 ðbase 2Þ:
Twelve plus nine equals twenty-one.
Another disadvantage in the same vein is that many truths

about finite cardinals are independent of numeral systems.

An example is the truth that every finite cardinal number

greater than one is a prime or a product of primes. This is

due to the fact that there is no infinite decreasing sequence of

finite cardinal numbers [6].
(c) Mentalism
‘Mentalism’ here denotes the view that a cardinal number is

a mental representation or a mental (or intellectual) construc-

tion. The mathematician and founder of mathematical

intuitionism Luitzen Brouwer was the chief proponent of

a mentalist view in recent times [7]. The mathematician

Dedekind [8] also gave voice to mentalism when he wrote

of numbers as free creations of the mind, as did Cantor [9]

when he wrote that the cardinal number of a set has existence

in our mind as an intellectual image of the set. Mental and

intellectual entities are more puzzling to us than physical

entities but less so than abstract entities. At least, we might

have cognitive access to mental or intellectual entities by

inner awareness and reflection.

The big problem for any version of mentalism is that only

finitely many brain states have actually been (or could be)

realized; hence, there are only finitely many mental represen-

tations or intellectual constructions. So the idea that numbers

are mental entities conflicts with the fact that for any finite

number, there is a yet greater number. Here is one way

in which we can know this fact: any cardinal number n is the

number of preceding numbers, as we start with zero; so

the number of numbers up to and including n is greater than n
by one.
(d) The set-size view
This is the view that cardinal numbers are sizes of sets. Set size

is a discrete magnitude; in other respects, it is much like length,

duration and weight (which we tend to think of as dense

and continuous magnitudes). The set-size view takes our pre-

theoretical thought and talk literally: ‘class size’ in normal

parlance refers to the number of pupils in a class, and ‘family

size’ refers to the number of family members.

This view has advantages over each of the previous

views. It coheres with mathematical practice in taking each

numeral to denote a single cardinal number (unlike the clas-

sical view); it is consistent with the fact that there are

infinitely many finite cardinal numbers (unlike mentalism);

and it allows for facts about numbers which are independent

of any and all numeral systems.

However, the set-size view of cardinal numbers runs into

the cognitive access problem. I will put this in the form of

an argument.

If numbers were set sizes, they would lack space–time

location; they could not undergo any change; they could

neither emit nor reflect signals; they could leave no traces;

they could not affect the behaviour of other things.

So they could have no causal effect on us, even remotely.

So we could have no cognitive access to them.

This turns out to be a persuasive argument. This or some

very similar argument has contributed to the emergence over

the last 4 decades of a deeply sceptical view about arith-

metical truth [10]. This is the next and final view in this

ultra brief survey.
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(e) Fictionalism
There are no numbers; arithmetic is not literally true, but it is

useful to think and act as though it is. This is fictionalism, a

view that has been adopted or taken very seriously by some

recent philosophers [10]. It is mainly a response to the diffi-

culties faced by the other views, in particular the cognitive

access problem. That problem obviously disappears if there

are no numbers.

But fictionalism has a serious credibility problem. Opting

for one philosophical view over others may be fine if one is

denying nothing but a bunch of other philosophical views;

but it is not fine if one is denying not only rival philosophical

views but also non-philosophical propositions that are gener-

ally regarded by rational thinkers as among the most certain

things that we know. No philosophical doctrine has greater

rational credibility than basic arithmetic.
B
373:20160520
3. A philosophical error
All five major views of cardinal numbers face serious objec-

tions. But the set-size view can be defended. The only

objection to it is the argument that if numbers were set

sizes, we could have no cognitive access to them, and that

argument is unsound. The problem lies with the final infer-

ence: set sizes can have no causal effect on us; therefore, we

cannot have cognitive access to them. The aim of this short

section is to show that this step is invalid.

What underlies this step is a model of cognitive access to

something as the outcome of a causal chain which starts with

an event involving that thing and ends with an event of sensory

perception. This model may be appropriate for cognitive access

to physical objects; but it is not appropriate for more abstract

kinds of things. Some properties, for example, are cognitively

accessible via perception of their instances. Examples are sen-

sory forms. A melody is an aural form; its instances are

performances of it. An alphabetic letter type (upper case) is a

visual form; its instances are its actual inscriptions. For cogni-

tive access to a melody, it is enough that one can recognize

performances of it and distinguish them from performances

of other melodies. For cognitive access to a letter type, it is

enough that one can recognize inscriptions of it and tell them

apart from inscriptions of other letters.

Such a recognize-and-distinguish ability requires one to

have an enduring representation of the sensory form. Recog-
nizing something as an instance of the form requires an

interaction between (i) a representation produced by current

perceptual input and (ii) an enduring representation of the

form. We may think of the interaction loosely as a compari-

son process which, in the case of recognition, has a positive

outcome. Distinguishing between instances and non-instances

involves the ability, when presented with a non-instance of

the form, to perceive that it is not an instance. For this, a

necessary condition will be that the ‘comparison’ process

between the representation produced by current perceptual

input and the enduring representation of the form has a

negative outcome.

How does one get an enduring representation of a sensory

form? One can get an enduring representation of a melody by

attentively hearing performances of it many times; one can get

an enduring representation of a letter type by attentively seeing

inscriptions of it many times. The subject’s attention need not

be self-directed. Infants acquire enduring representations of
some sensory forms this way, for example, enduring represen-

tations of phonemes from hearing verbal output of parents

[11]. In this case, the infant can recognize an instance of a pho-

neme and distinguish it from sounds which are not instances of

the phoneme, without being aware of doing so.

These considerations allow us to answer the following

question. A sensory form itself can have no causal effect on

us; yet we can acquire cognitive access to it. How is this pos-

sible? The answer: we have cognitive access to a sensory

form if we can recognize instances of the form and distinguish

them from non-instances; that ability may be acquired by get-

ting an enduring mental representation of the form, and that

can result from repeated attentive perception of instances of

the form. So the argument against the set-size view is unsound,

as it depends on an inference which rests on the false assump-

tion that we can have cognitive access to only those things

which can have a causal effect on us.
4. Cognitive access to numbers
An unsound argument may have a true conclusion; so it

remains to be shown that if cardinal numbers are set sizes,

cognitive access to some of them is possible. My aim is to

show that empirical findings about basic cognitive abilities

provide good evidence that some children and some non-

humans actually have cognitive access to small set sizes.

Only a few illustrative empirical studies are mentioned, due

to the space limit.

Although set sizes are not sensory forms, we can use a

recognize-and-distinguish ability as a sufficient (but not necess-

ary) condition for cognitive access to small set sizes. A small set

is perceptible when it is non-empty and all its members are indi-

vidually perceptible and together perceptible as a single

collection. The chimes of a clock striking three or a pair of

dolls are examples. Restricted to perceptible sets, the following

is a sufficient condition for cognitive access to a set-size n:
One can recognise non-empty sets as n-membered (when they are)
and distinguish them from non-empty sets with fewer or more
than n members.
A natural first suggestion is that this kind of access is achiev-

able by means of our well-documented capacity for set-size

discrimination, sometimes called ‘the number sense’ [12].

This has features of other magnitude senses: it is rough and

fails when, in comparing sets of different sizes (S the smaller,

L the larger), the ratio S/(L–S) increases beyond some

threshold (which depends on age and training). In number

comparison, tasks performance takes longer and is more

error-prone with (i) increase in S (the ‘magnitude effect’)

and (ii) decrease in L–S (the ‘distance effect’). Empirical

studies of infant capacity for set-size discrimination when

S . 3 illustrate this table 1.

A similar capacity for rough number discrimination has

been found even in species which are phylogenetically quite

distant from humans, for example, frogs (Bombina orientalis)

and angelfish [15,16]. But we cannot rely on this capacity for

number discrimination alone, precisely because it is approxi-

mate (though the system enabling approximate number

discrimination together with links to representations of external

number symbols may provide for cognitive grasp of specific

numbers) [17]. Typically, however, the approximate system

will not enable us to distinguish n-membered sets from sets

which are close in size to n. This is the distance effect.



Table 1. Infant discrimination capacity [13,14].

age S/(L – S) pass/fail example

6 months 1 pass 8 versus 16

2 fail 8 versus 12

9 months 2 pass 8 versus 12

4 fail 8 versus 10
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However, for very small numbers, infants have exact dis-

crimination. Again this is not limited to humans. Newborn

chicks have a remarkably similar capacity [18]. Here, are

some of the findings for human infants. They can distinguish

between sets of size n and sets of size n þ 1 for n ¼ 1, 2.

Starkey & Cooper [19] found this capacity in infants with a

mean age of 22 weeks; Antell & Keating [20] found it in infants

with the mean age of 53 h. Strauss & Curtis [21] found that some
infants approaching 1 year could also distinguish between

three-membered and four-membered sets; so for each of one,

two and three, they could distinguish between those set sizes

and neighbouring set sizes. As discrimination generally

becomes easier when the difference increases, one might well

expect that for n ¼ 1, two infants can also discriminate between

n-membered sets and sets with more than n þ 1 members. But

there is evidence against this. Feigenson & Carey [22] found

that while infants discriminate between one object versus

two objects and between one versus three, they failed to dis-

criminate between one versus four. If this is typical, infants

do not fully satisfy the proposed condition for cognitive

access to cardinal numbers, even for one. It is notable, however,

that chicks can discriminate between one versus four (also one

versus five and two versus four) [23].
(a) Do infants respond to number?
Did the infants in these experiments respond to the number of

members of displayed sets, rather than to some other visually

detectable property not controlled for? The infants could

have been responding to the total area of the individual

items, a not implausible hypothesis if the displays present

what look like chocolate buttons. Another suggestion is that

they respond to the convex hull (roughly: the area within a

rubber band when stretched to go round all the individual

items without moving them). There are corresponding

aurally detectable features if presented sets are sequences of

sounds: the sum of the durations of the sounds, or the dur-

ation of the interval from the start of the first sound to the

end of the last sound. Why should we conclude that the

infants are responding to anything as abstract as number?

While it may be impossible to control for every conceiva-

ble alternative hypothesis to explain the infant data, the

range of alternatives may be narrowed down so much that

the hypothesis that the infants are responding to number

stands out as the most plausible. Certain violation-of-expec-

tation experiments involving auditory–visual matching go

a long way towards achieving this. In two studies, Koyabashi

et al. [24,25] adapted the landmark experiments of Wynn [26].

In the second study, infants saw one or more toy animals like

Mickey Mouse dropped from above falling onto a surface,

hearing a computer-generated sound at the moment of

impact, in the familiarization stage. In each test trial, infants
heard either two or three of those sounds, while the falling

toy animals were hidden behind an opaque screen. The

screen was then removed to reveal either two or three toy ani-

mals. The infants looked significantly longer at the toy

animals when the number of toy animals and the number

of sound bursts were unequal than when they were equal.

This study controlled for potential confounds with rate of

sound bursts and total duration of the sound sequence. The

earlier study, of a similar design, controlled for a combined

familiarity and complexity preference postulated by Cohen

& Marks [27]. So there is good evidence that infants do at

least sometimes respond to number.

(b) Do infants recognize numbers?
Even if infants do respond to numbers, they may not satisfy

the sufficient condition for access to a number n that we are

focusing on now, namely, the ability to recognize sets as

n-membered (when they are) and distinguish them from sets

with fewer or more than n members. One problem has

already been mentioned: for numbers n ¼ 1, 2, infants dis-

tinguish between n and its neighbours, but may fail to

distinguish between n and numbers beyond its neighbours.

Another problem relates to the ability to recognize numbers.

The problem is that relevant infant studies demonstrate mere

matching, not recognizing. The difference can be illustrated

as follows. Case 1: shown some photos of unfamiliar faces in

succession, you notice that the face in the current photo looks

very like a face in an earlier photo. That is mere matching.

Case 2: shown a photo of a face of someone you know but

have not seen (pictured or in life) for a long time, you quickly

recall whose face it is. That is recognizing. The relevant infant

studies are habituation studies and violation-of-expectation

studies. The subjects in the test trials compare something cur-

rently perceived with information retained in fairly short-term
memory from recent perception. For recognition, there has to

be a comparison of input from current perception with an

enduring representation. The relevant infant studies do not

provide evidence for this.

(c) Pre-schoolers
To summarize, there is good evidence that infants are respon-

sive to the number of items in very small sets and have

number-discrimination ability within a very limited range; but

we lack evidence that they have the recognize-and-distinguish

ability that we are looking for (though they may in fact have

it). For evidence of that, studies with pre-schoolers and chim-

panzees are more promising, as training and experience make

possible the formation of enduring number representations.

The results of two studies of pre-schoolers given several

numerical tasks suggest that number words are mapped onto

long-term representations of set sizes one to three and

sometimes also four. Benoit et al. [28] found that pre-school

children of 3–5 years old can name the number in a display

of one, two or three items. Sets of dots were presented under

two conditions: (i) simultaneous display for 800 ms, and

(ii) sequentially, one dot at a time for 800 ms each. Comparing

performance under these conditions, the authors concluded

that the children would subitize rather than count to get the

answers (where ‘counting’ refers to the explicit assignment of

number words to objects or events by the child). In a second

more extensive study [29], Le Corre & Carey confirmed that

children of 3–5 years could quite accurately estimate the size
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of sets of one, two, three or four circles on a card presented too

briefly for counting; but four was found to be the limit for this

task, even for those whose competence in the give-a-number

task went way beyond four. In these tasks, the children had

to name the number of items displayed. This does not involve

comparison of one currently or recently perceived set with

another; rather, it requires a comparison of input from a current

or recent perception with an enduring representation of a set

size. So, we may reasonably conclude that the most accurate

children could recognize the numbers one, two, three and

four. Assuming that these children, unlike infants, can dis-

tinguish these numbers not only from each other but also

from larger numbers—I know of no evidence to the con-

trary—they satisfy the recognize-and-distinguish test for

cognitive access to the small numbers.

A couple of warnings about the enduring representations

of small set sizes involved in these tasks are needed. First,

these representations probably do not belong to the system

underlying our capacity for quick but rough number dis-

crimination, known as the approximate number system.

Secondly, it is possible that these small number represen-

tations do not have set-size representation as their prime

function. Le Corre & Carey [29,30] argue that these represen-

tations are provided by a resource they call ‘the enriched

parallel individuation system’.
(d) Number naming by a chimpanzee
Among the non-humans who have been trained to associate

visual or aural symbols with numbers of visible things, one of

the best known is the female chimpanzee, Ai. At 5 years, Ai

was trained to name the number of items in a display (for

example, three red pencils) by pressing one of six keys

marked with an arabic numeral from 1 to 6. At the same

time, she was trained to associate particular visual symbols

with types of object (e.g. pencil, bowl, spoon) and colours

of objects (e.g. red, blue, yellow). At the start of training,

only two objects were displayed and only two numeral

keys were available; the number of objects and corresponding

numeral keys were increased successively. Training was con-

tinued on each number set until accuracy reached over 90% in

two consecutive sessions, ending with displays of five objects

(varying over object type and colour). Ai achieved over 98%

accuracy during the final two sessions of naming numbers

from one to five [31].

At 9 years, Ai was trained to name the number of one to

seven dots rather than ordinary objects, by pressing keys

with arabic numerals. Ai’s number naming was tested in

four experiments [32]. In the first, semi-random patterns

of one to six dots were displayed; then the range was

increased to seven dots and specific patterns were mixed

in with the semi-random patterns; then the size of dots

was changed between and within sessions; finally, red or

green objects (blocks, pencils or padlocks) were used in

place of dots. Ai’s accuracy in the final sessions was again

very high. The processes underlying Ai’s performance

were investigated by obtaining response times (RTs). The

RT function was flat for displays of up to three items,

then increased but fell for the final number (in each test

range). The author of the study took the RT data to suggest

that for numbers up to three, Ai was probably subitizing

and for numbers beyond three estimating rather using

non-verbal counting; and the estimation probably involved
a comparison of representations from an analogue magnitude

system [32].

Ai was later trained to name the number in computer dis-

plays of one to nine items. At 20 years, she was trained with

the aim of incorporating ‘0’ into her stock of numerals as a

symbol for absence of items [33]. She was then tested using

two cardinality tasks and a number ordering task. The cardin-

ality tasks were: (i) presented with two numerals and a square

containing zero to nine dots, she had to choose the numeral

naming the number of dots; (ii) presented with two squares

containing different numbers of dots (from zero to nine) and

a single numeral, she had to choose the square containing the

number of dots given by the numeral. Accuracy in the cardin-

ality tasks for numbers from zero to nine in the final 10 sessions

of testing was over 90%. Accuracy in a numeral ordering task

(comparing three numerals, sometimes non-consecutive) was

also very high. Persisting confusions of zero with one led the

authors to conclude that Ai’s grasp of zero was incomplete.

But Ai’s accuracy with positive numbers confirms the findings

of the earlier study. In particular, her performance constitutes

good evidence that she could recognize numbers at least

within the subitizing range and distinguish them from larger

or smaller positive numbers.

Taking numbers to be set sizes, studies with pre-schoolers

and chimpanzees provide evidence that they can fulfil the

recognize-and-distinguish condition for cognitive access to

one, two and three. Moreover, their ability to recognize

these numbers is explicit. An infant comes to recognize pho-

nemes of its mother’s language, such as ‘ ’ of UK English.

This is tacit recognition, as the infant cannot think or express

‘that’s ’. But pre-schoolers and trained chimpanzees can

think and express ‘that’s 3’.
(e) Cognitive access to larger numbers
The ability to recognize the number of a perceptible set of

things and to distinguish it from the number of smaller or

larger sets is a sufficient condition for cognitive access to a

number, but not a necessary condition: we surely have cogni-

tive access to the cardinal number 53, but most of us, when

presented with a set of 53 items in favourable viewing con-

ditions, cannot perceive it to have just that number of

members rather than 52 or 54.

A proper account of our cognitive access to larger num-

bers would exceed my space limit (and my remit, as the

account could not be supported by findings about basic

number abilities alone). But a brief indication is possible.

We have cognitive access to some larger numbers by means

of identifying descriptions in terms of smaller numbers.

With enough counting experience, we will know the order

of the numbers well beyond the subitizing range; once we

have acquired a concept for cardinal successor, we can

grasp four as the successor of three, and five as the successor

of four, and so on. With concepts for cardinal addition and

multiplication, other identifying descriptions in terms of

smaller numbers become available. For example, we know

28 not only as the successor of 27 but also as 20 þ 8 and as

4 � 7. The decimal place system of numerals provides identi-

fying descriptions of much larger numbers, as polynomials in

powers of 10: 9605, for example, is 9 � 103 þ 6 � 102 þ 5. The

cardinal number 0, like the empty set, is more puzzling; but,

with a grasp of subtraction, we can know it by an identifying

description in terms of an already known number.
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5. Conclusion
Taking cardinal numbers to be set sizes, the cognitive access

problem for cardinal numbers can be solved by paying atten-

tion to empirical findings about basic number abilities.

Studies with pre-schoolers, trained chimpanzees and other

non-humans [34] provide evidence that they can fulfil a

recognize-and-distinguish condition sufficient for cognitive

access to numbers one, two and three. We have access to
larger numbers by means of identifying descriptions in

terms of smaller numbers.
Data accessibility. This article has no additional data.

Competing interests. I declare I have no competing interests.

Funding. I received no funding for this study.

Acknowledgements. I thank Mario Santos-Sousa for very helpful com-
ments on earlier drafts.
g.org
Phil
References
.Trans.R.Soc.B
373:20160520
1. Euclid. 2002 Euclid’s elements: all thirteen books
complete in one volume. [Translated by T. Heath.]
Santa Fe, NM: Green Lion Press.

2. Mayberry J. 2000 The foundations of mathematics in
the theory of sets. Cambridge, UK: Cambridge
University Press.

3. Burton D. 2011 Elementary number theory, 7th edn.
New York, NY: McGraw-Hill.

4. Berkeley G. 1989 Philosophical Commentaries
(ed. G Thomas). London, UK: Garland. Notebook A,
761, 763.

5. Hilbert D. 1926 Über das Unendliche.
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