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Telomere length (TL) has become a biomarker of increasing interest within

ecology and evolutionary biology, and has been found to predict subsequent

survival in some recent avian studies but not others. Here, we undertake the

first formal meta-analysis to test whether there is an overall association

between TL and subsequent mortality risk in vertebrates other than humans

and model laboratory rodents. We identified 27 suitable studies and obtained

standardized estimates of the hazard ratio associated with TL from each.

We performed a meta-analysis on these estimates and found an overall signifi-

cant negative association implying that short telomeres are associated with

increased mortality risk, which was robust to evident publication bias.

While we found that heterogeneity in the hazard ratios was not explained

by sex, follow-up period, maximum lifespan or the age group of the study ani-

mals, the TL–mortality risk association was stronger in studies using qPCR

compared to terminal restriction fragment methodologies. Our results provide

support for a consistent association between short telomeres and increased

mortality risk in birds, but also highlight the need for more research into

non-avian vertebrates and the reasons why different telomere measurement

methods may yield different results.

This article is part of the theme issue ‘Understanding diversity in

telomere dynamics’.
1. Introduction
Telomeres are highly repetitive sections of DNA that cap the ends of chromosomes

in most eukaryote species, forming complexes with so-called ‘shelterin’ proteins

that are essential to the maintenance of genomic integrity of linear chromosomes

[1,2]. Telomeres shorten with each cell division due to the ‘end replication problem’

and in response to cellular stressors including oxidative stress, and induce cellular

senescence when they shorten below a critical threshold [1,3,4]. Telomeres can be

restored via several mechanisms, the most widely studied being the action of the

enzyme telomerase [1,3]. Telomerase expression appears to be suppressed in adult

somatic tissue in many large-bodied endothermic vertebrates, including humans

[5]. Telomere attrition has been identified as one of nine ‘hallmarks of ageing’

[6] and while the role of telomere shortening in cellular senescence is beyond

doubt, the evidence that it plays a causal role in senescence in otherwise healthy

animals is currently weak [7]. However, there is mounting evidence in humans

that average telomere length (TL), typically measured in blood cells, represents

an important biomarker of health and ageing [3]. Leucocyte TL declines with

age in humans [8] and meta-analyses have recently shown that in adult humans

shorter average TL is associated with increased risk of type 2 diabetes,

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2016.0447&domain=pdf&date_stamp=2018-01-15
http://dx.doi.org/10.1098/rstb/373/1741
http://dx.doi.org/10.1098/rstb/373/1741
mailto:dan.nussey@ed.ac.uk
mailto:jjboonekamp@gmail.com
https://dx.doi.org/10.6084/m9.figshare.c.3942523
https://dx.doi.org/10.6084/m9.figshare.c.3942523
http://orcid.org/
http://orcid.org/0000-0002-2085-0438
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160447

2
cardiovascular disease, cancer and follow-up mortality [9–12].

Although the majority of non-human research into telomere

biology has been performed in laboratory rodents, studies

beyond model organisms are crucial if we are to understand

the evolutionary and environmental factors responsible for

the diversity of TLs and levels of telomerase expression

observed among species [13,14].

There is a rapidly growing literature exploring telomere

dynamics and their significance for organismal function and

fitness in non-human vertebrates and, in particular, in wild

bird systems [15–17]. TL has been proposed as an important

biomarker within evolutionary ecology and animal welfare

because it may reflect an individual’s cumulative experience

of environmental stress and investment in growth or reproduc-

tion [17–19]. This leads to the expectation that shorter TL will

predict raised subsequent mortality risk, without telomeres

necessarily being causally involved in death, due to increased

somatic damage associated with environmental stress and

reduced investment in somatic repair [17,19]. In humans, evi-

dence is also emerging that TL is both highly repeatable over

time within individuals and highly heritable [20,21]. This

raises the further possibility that individual differences in TL

set at birth are maintained throughout life and are associated

with consistent differences in physiological function or state

and organismal lifespan. Although determining the relative

importance of TL at birth and TL shortening over life for

organismal health and fitness remains a major outstanding

challenging within telomere biology [17,20], a crucial first

step towards this goal is to establish whether an overall associ-

ation between TL and mortality risk is evident in non-human

species and how and why such an association might vary

across species.

Several studies have reported significant associations

between average blood cell TL and the risk of subsequent mor-

tality in both wild and captive populations [22–25]. However,

this emerging literature also contains numerous examples of

studies that test for but do not find evidence to support a relation-

ship between TL and mortality risk [26–28]. Thus, the generality

of the relationship between TL and mortality is currently unclear

outside of studies of humans and laboratory rodents. A number

of factors may contribute to the variation observed in the

relationship between TL and mortality in these non-model

organisms. First, studies invariably apply one of two method-

ologies—quantitative PCR (qPCR) or terminal restriction

fragment analysis (TRF)—which differ in accuracy and through-

put, with the former providing the average amount of telomeric

DNA within a sample on a relative and non-comparable scale

and the latter providing information on the range of TLs

within a sample in kilobase units [29,30]. The life history of the

species in question, in particular its life expectancy under natural

conditions, is also expected to play an important role in shaping

the evolution of telomere dynamics [13,14,19]. Ecological studies

of TL also vary considerably in the duration of the study follow-

up time, from weeks [31] to over a decade [22], and typically

involve investigating TL and survival in either young animals

or adults rather than both. Furthermore, while sex differences

in TL observed in humans and laboratory rodents have been pro-

posed to underpin sex differences in longevity, the effect of sex

on the relationships between TL and mortality has rarely been

investigated [32,33]. Here, we undertake the first formal litera-

ture search and meta-analysis to test whether there is a

consistent association between short TL and increased sub-

sequent mortality risk in vertebrates other than humans and
model laboratory rodents. In addition, we use meta-regression

analyses to investigate potential sources of variation in this

association across studies including methodology, life stage at

sampling, follow-up period and sex.
2. Methods
(a) Literature search
Data for our meta-analysis were collected using ISI Web of Science

and SCOPUS databases with the following search string: ‘telom*

AND surviv* OR longevity/lifespan/life span/life expectancy/

mortality/fitness’. Additional papers were identified in two

ways: (i) backward and forward searching was carried out on cita-

tions of the first paper showing an association between TL and

survival in a non-model vertebrate [23]; (ii) screening the authors’

own reference list, created from Google Scholar email alerts con-

taining the keyword ’telomere’, for relevant papers. The last

database search was carried out on 6 February 2017, although

Google Scholar alerts were continuously checked and papers pub-

lished up until May 2017 were included. We included studies

published as part of PhD theses that were available online, but

otherwise excluded studies that had not yet been published in

peer-reviewed journals. Overall, these searches identified 4152

papers for potential inclusion in our meta-analysis (figure 1).

Since our focus was on non-model vertebrate systems, we

excluded studies involving human subjects, genetically modified

or inbred laboratory strains of mice and non-vertebrate species.

We excluded studies that did not report original empirical data

(i.e. reviews or computer simulations) and those in which an

association between TL and mortality or longevity was not

reported. Our initial screening based on titles and abstracts of

papers in the database led to the exclusion of 4077 papers

(mostly studies of humans and model laboratory organisms),

with 75 papers retained for more detailed interrogation of eligi-

bility (figure 1; electronic supplementary material, table S1). The

full text of these papers were downloaded and a further 46

excluded. This left 29 studies that were suitable for inclusion in

our meta-analysis, and we were able to obtain data from 27 of

these studies (see electronic supplementary material, table S1 for

full details of reasons for exclusion). Although the majority of

papers read in full measured TL in blood cells, several did measure

TL in other tissues but none of those studies provided suitable data

or analyses of lifespan or survival for inclusion our meta-analyses.

Indeed, most studies read in full were excluded because suitable

data on survival of individuals were lacking, but we also excluded

three studies that reported an association between TL and survival

but in which fewer than five individuals died (,10% of study

population), as power to detect TL–mortality risk relationships

would be extremely limited in such cases (see electronic

supplementary material, table S1).

During our search, we noted a great deal of heterogeneity in

the manner in which analyses of TL–mortality risk relationships

were conducted and reported, as well as in the way TL was

measured (qPCR or TRF methodologies). To maximize our ability

to detect an overall association between TL and survival across

studies, and to identify the factors responsible for variation in

this association among studies, we decided to obtain raw data

for each study and analyse the TL–mortality relationship in a stan-

dardized way. For studies in which raw data were not available

online, we contacted the corresponding authors requesting either

that they provided us with the raw data used in the relevant ana-

lyses, or that they performed standardized analyses using an R

script that we provided (electronic supplementary material, file

S1). We were able to obtain raw data or standardized measures

of TL–mortality risk associations from 27 studies identified from

20 different species: 17 bird species, three reptiles and one

mammal (table 1).
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(b) Effect size extraction
For each of the 27 included studies, the following data were

available: individual identity, age at blood sampling, sex, TL

at sampling, sampling date, final date where survival was deter-

mined and survival status (survived ¼ 0, dead ¼ 1). Within each

study, TL was mean centred and standardized to unit standard

deviation prior to inclusion in analyses to create similarly

scaled TL distributions among studies. We then applied Cox pro-

portional hazard regression analysis in R using the package

survival [52] including TL as an explanatory variable. We defined

start time as the time of TL sampling and end time as the follow-

up time at which survival was determined. This information was

used to determine the hazard ratio of TL relative to baseline

mortality. Final effect sizes were expressed as the natural logar-

ithm of the hazard ratio for mortality (ln HR). As ln HR

provides a measure of risk of death, a negative effect indicates

that individuals with long TL on average are less likely to die

in comparison to individuals with short TL. Hazard ratio esti-

mates and associated standard errors were extracted, either by

ourselves or the authors (using the R script in electronic

supplementary material, file S1).
(c) Meta-analysis
We conducted our meta-analysis using the metafor package [53] in

R, to investigate the relationship between TL and survival. We used

a random-effects design fitted with restricted maximum log likeli-

hood and used 1/s.e.2 as weighting factor [54], where s.e. was the

standard error associated with the ln hazard ratio from the Cox

regression model. We tested for evidence of publication bias
using Kendall’s tau test-statistics and through visual inspection of

funnel plots. We used Q-tests to evaluate study heterogeneity.

We subsequently investigated potential sources of heterogen-

eity by including moderator variables in the meta-analysis. We

extracted the following moderator variables for each study: TL

measurement method (TRF or qPCR), the age group of the

study animals (categorized as ‘young’ if �1 year and ‘adult’ if

.1 year), the length of the follow-up period in years after TL

measurement, and the log transformation of each species’ maxi-

mum recorded lifespan (from the AnAge database: http://

genomics.senescence.info/species/). To crudely test for a phylo-

genetic signal, we tested class, order and species separately as

moderators (20 species, six orders, three classes; table 1). Two

of the studies reported separate associations between TL and sur-

vival in both age classes [40,50], while one reported associations

based on two different follow-up periods [22]. We generated and

included two estimates for each of these studies, resulting in a

total of 30 hazard ratio estimates in the meta-analysis (table 1).

Although we categorized studies based on wild or captive ani-

mals, only three were based on captive populations and so we

did not investigate this moderator further [25,27,46]. Although

not all papers specifically reported on sex differences in the

association between TL and survival, 25 out of 27 provided com-

plete data on the sex of individuals. Of these, three studies

included only females [23,31,40], two included only males

[34,49] and the remaining 20 included both sexes. To assess the

effect of sex on the association between TL and survival, we re-

ran Cox regression models for these latter 20 studies separately

for each sex. This generated a total of 46 sex-specific hazard

ratio estimates, allowing us to test sex as a moderator variable.

Individual moderator effects were evaluated using either

http://genomics.senescence.info/species/
http://genomics.senescence.info/species/
http://genomics.senescence.info/species/
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Q-tests for effects of class, order or species and z-tests for all other

moderator variables.
3. Results
Overall, the hazard ratio associated with TL was significantly

negative, supporting a decreased mortality risk with increasing

TL across studies (mean ln HR¼ 20.205+0.049 s.e., p , 0.001,

figure 2). However, there was evidence for publication bias

(Kendall’s tau ¼ 20.310; p ¼ 0.016; figure 3). Visual inspection

of a funnel plot relating effect size to s.e. (figure 3) revealed that

this bias was primarily driven by three qPCR-based studies

with small sample sizes with strongly negative hazard ratios

(ln HR . 21: [31,34,44]). To establish whether this bias influ-

enced the overall association between TL and mortality risk,

we re-ran the models without these three studies; the overall

association remained significant (20.162+0.044; p , 0.001)

and the Kendall’s tau statistic became non-significant (20.134;

p ¼ 0.341). We also applied the ‘trim and fill’ method [55] to
examine the sensitivity of the results to publication bias and

found that the overall association became substantially

weaker and remained marginally significant (20.108+0.062

s.e.; p ¼ 0.083).

There was significant heterogeneity among study effect

sizes (Q(d.f. ¼ 29) ¼ 77.77; p , 0.001) indicating substantial

variation in TL–mortality risk associations among studies.

We investigated the extent to which phylogeny, study follow-

up period, sex, TL measurement method and age group at

sampling reduced the observed study heterogeneity. We

tested species, order and class as phylogenetic moderators in

separate models and, although none was significant overall

(QM(d.f. ¼ 19) ¼ 20.88; p ¼ 0.405 and QM(5) ¼ 6.035; p ¼ 0.419

and QM(2) ¼ 3.89, p ¼ 0.143, respectively), post hoc compari-

sons within the class model suggested that the strength of the

association was marginally weaker in reptiles than birds

(difference bird–reptile: 0.255+0.139 s.e., p ¼ 0.066). The

fact that there were only three reptile studies in our meta-ana-

lyses meant there was limited power to dissect this trend

further, but visual inspection of figure 2 suggests it could be
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driven by a positive TL–mortality risk association from a TRF-

based study of water pythons (Liasis fuscus) [50]. We did not

detect a significant difference between the sexes (0.093+
0.076; p ¼ 0.22) and there was no significant relationship with

maximum lifespan (0.034+0.104; p ¼ 0.75), follow-up period

(0.010+0.006; p ¼ 0.118) or age at sampling (0.131+0.097;

p ¼ 0.177; figure 4). However, telomere measurement method

explained a significant portion of the observed study hetero-

geneity (11.2%). The negative association between TL and

mortality risk was significantly stronger in studies using

qPCR relative to TRF methods (difference TRF–qPCR:

20.260+0.090; p ¼ 0.004; figure 4).
To explore this further, we split the data by method and

ran separate models without moderators. Within the qPCR

studies, the TL–mortality risk association was highly signifi-

cantly negative with significant heterogeneity among studies

(20.331+0.068, p , 0.001; Q ¼ 52.41, p , 0.001), while there

was no significant overall association or evidence for hetero-

geneity in TRF studies (20.056+0.042, p ¼ 0.183, Q ¼ 16.62,

p ¼ 0.120). Since we detected a non-significant trend for a

weaker TL–mortality risk association in reptiles, but have

very limited power to differentiate effect sizes in non-avian

classes (table 1), we re-ran our analyses including only bird

studies. We found a similarly negative and significant overall

effect (20.224+0.050; p , 0.001), but the method moderator

effect became weaker and marginally non-significant in this

dataset (difference TRF–qPCR: 20.184+0.099; p ¼ 0.063),

suggesting that the strongly positive TL–mortality risk esti-

mate from the python study was at least in part responsible

for the method effect we observed.
4. Discussion
We found that short TL was associated with increased risk of

mortality, and that this result is robust to correction for evident

publication bias. While many recent papers have cited a handful

of salient examples as evidence for such a general pattern, here

we provide the first formal test to support a TL–mortality associ-

ation across studies of non-human vertebrates. While our results

provide important overarching support for the importance of TL

as a biomarker within ecological and evolutionary studies, they

also highlight several important issues for the rapidly emerging

literature on telomere dynamics in non-model vertebrate sys-

tems. First, the overall effect size was small and showed

considerable heterogeneity among studies. Evidence of publi-

cation bias in our analyses argues that particular effort should

be directed at supporting the unbiased publication of both

non-confirmative and confirmative findings in future research

in this area. Second, the lack of suitable studies in mammals

and ectothermic vertebrates means that we cannot currently

generalize the overall TL–mortality risk association beyond

birds, and more research effort into the links between TL and

fitness is clearly required in non-avian vertebrate species.

Finally, the presence of an unexpected effect of telomere

measurement method on the strength of the TL–mortality

risk association highlights the recurrent issue within this field

posed by the application of differing methodologies across

studies. More studies which apply both qPCR and TRF

methods side-by-side within single studies are required to

help understand the reasons for these method effects.

Our meta-analysis provides strong support for the prop-

osition that short TL predicts increased mortality risk in birds,

but the generality of this pattern across all vertebrate species

remains an important and open question. Although telomeres

perform a crucial conserved function across eukaryotes, telo-

mere dynamics and levels of expression of telomerase in

somatic tissues vary widely among taxa [5]. In ectothermic ver-

tebrates, telomerase expression is frequently observed in

somatic tissues and this is thought to be due to the indetermi-

nate growth of many of these taxa [5]. There is evidence for

complex telomere dynamics with age in ectotherms, with

studies of wild reptiles demonstrating increases in average

blood cell TL through early life followed by a plateau or decline

[50,51]. Recent studies of laboratory fish suggest that somatic
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telomerase expression can be detected throughout life, and that

TL and telomerase expression can increase during development

and adolescence before plateauing or declining in later adult-

hood [56,57]. In mammals, variation in telomerase expression

has been attributed to body size and cancer prevention: telo-

merase is repressed in somatic cells in larger-bodied species

but not in smaller ones [13,14]. In birds, although variation in

somatic telomerase expression has been observed [58], it

seems to be widely accepted that somatic telomerase expression

is limited and the situation resembles that in large-bodied mam-

mals [5]. These differences are further complicated by the fact

that mammals have enucleated red bloods cells and so blood

cell TL is measured in leucocytes, while in other vertebrate

classes it is measured very predominantly in erythrocytes. In

our analyses, we found a suggestive trend for weaker TL–

mortality risk associations in reptiles compared to birds that

may have been driven by a single outlying study. That study,

of water pythons, found that in adults long, rather than short,

TL was significantly associated with increased mortality risk

[50], suggesting that an inversion of the relationship we

observed more widely in birds may occur in some ectothermic

species. It is worth noting that the observed negative relation-

ship in pythons could be driven by age differences in TL

among recaptured and non-recaptured adults, if younger

adults have both longer telomeres and are less likely to survive

to recapture than older adults. However, a very recent study—

published after our literature search was completed—showed a

similar effect in wild Atlantic salmon: juveniles with short TL

were more likely to survive to recapture at return migration to

natal rivers in adults [59]. Studies from a wider range of mam-

malian and ectothermic vertebrate species relating TL to fitness

will help understand when and why such positive associations

might occur, and it may prove that null or positive association is

the norm in small mammals and ectotherms, in which somatic

telomerase expression may counteract any signal of cumulative

stress or past life history on TL shortening.

We found that studies using qPCR methods detected a stron-

ger overall association between TL and mortality risk, and

greater heterogeneity in this relationship compared to TRF

studies. This method difference in the overall association is sur-

prising given that the qPCR method has been demonstrated to

be less technically repeatable than TRF [60]. However, we note

that technical variation in telomere assays is likely to vary greatly

across laboratories and is rarely reported in a consistent enough

way to make accounting for it possible in meta-analysis. As in the

human literature, the qPCR methodology is progressively

becoming the dominant method in non-model vertebrate

studies, presumably because it is higher throughput and less

expensive [29,30]. One possible driver of the stronger overall

effect in qPCR studies could be differential publication bias

among studies using this method, which is suggested by the

presence of three qPCR-based studies outside the lower left

end of the funnel plot (figure 3). The risk of publication bias

could be expected to be stronger within qPCR studies, which

are generally easier to set up and quicker and cheaper to run,

compared to TRF studies [29,30]. TRF data are not just harder

won in the laboratory, but also more informative asthey measure

the variation in TL within a sample, allowing a wider range of

questions to be addressed [29,30]. Thus, researchers using

TRF may be more inclined and readily able to publish non-

confirmatory and opposing findings. However, it is also impor-

tant to keep in mind that the two methods measure slightly

different things: TRF quantifies the mean length of telomere
sequence in the sample, qPCR the total quantity of telomere

sequence present. It is possible that, because TL distributions

within samples may be highly skewed and this will affect TRF

measures more than qPCR measures, the latter method may pro-

vide estimates of TL that are better predictors of organismal

health and fitness. Finally, we found hints that the method

effect could be driven by taxonomic bias in our estimates. We

found suggestive evidence that the effect was in part driven by

a TRF-based reptile study that documented a significant positive

association between TL and mortality risk (figure 2). However,

without more studies of the TL–mortality risk association in

ectothermic vertebrates using different methods it is impossible

to dissect this suggestion further. The presence of an unexpected

methodological difference in the association between TL and

mortality risk highlights the need for more studies that apply

both qPCR and TRF techniques to the same samples to under-

stand how and why results might differ with methodology.

We found no evidence for effects of sex, age group or follow-

up time on the association between TL and mortality risk. In

humans and a handful of other mammals investigated to date,

a general trend of longer TL in females than males has been

observed and related to sex differences in lifespan commonly

documented in polygynous species [61–63] (although see

[64]). The vast majority of the studies included in our meta-

analysis came from bird species, which tend to be monogamous

and in which there remains limited evidence for sex differences

in TL and lifespan [32]. To our knowledge, only one study to

date has reported sex differences in the relationship between

TL and lifetime reproductive fitness in any wild vertebrate

and this study was in a polygynous reptile [33]. Although our

analyses support the lack of a sex effect on the TL–mortality

risk association in birds, further investigation of sex differences

in systems exhibiting polygynous mating systems and sexual

dimorphism is required before drawing any conclusions about

the phylogenetic generality of this pattern. A previous meta-

analysis found that the TL–mortality risk association declines

with age within studies of healthy adult humans [9]. This

result was interpreted as support for TL representing a better

marker of the failure of somatic redundancy mechanisms

rather than of biological ageing [9]. The fact that we found simi-

lar TL–mortality risk associations in both studies of juvenile and

adults would support the idea that TL is not necessarily a bio-

marker of biological ageing. Furthermore, the lack of any

association between TL–mortality risk association and species’

maximum recorded lifespan suggests the observed association

is not specific to particularly long- or short-lived bird species

in our sample. Finally, the lack of any effect of follow-up

period between TL measurement and assessment of mortality

or recapture in our selected studies implies that TL predicts mor-

tality just as well over short periods (e.g. to the subsequent year

or breeding season) as it does over multiple years.

Our results provide support for the prediction that shorter

TLs are associated with increased mortality risk in birds,

but an important further question raised by this is what pro-

cesses are responsible for this pattern. The association could be

the result of individual differences, associated with genetic, epi-

genetic or developmental variation, which generate consistent

differences in both TL and mortality risk across the lifetimes of

individuals. In addition, cumulative experience of envi-

ronmental stress or investment in growth and reproduction

could simultaneously drive telomere shortening and increase

mortality risk. The importance of among-individual differences

in TL versus telomere shortening as predictors of mortality risk,
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while not mutually exclusive, remains a major question for

researchers interested in telomere dynamics at the whole

organism level. The human literature reveals TL to be moder-

ately to highly heritable [21] and that self-reported experience

of stressful events is associated with shorter TL [65]. One longi-

tudinal study of different populations reported extremely high

repeatability of TL within individuals across a period of a

decade or so and argued that most of the variation in TL could

therefore be attributed to genetic or early life factors [20]. The lit-

erature on non-model vertebrates, again very predominantly

from birds, does offer evidence that rapid growth and physio-

logical stress are associated with shorter TL [44,66]. However,

estimates of the heritability of TL are very variable and often

associated with very large confidence intervals, suggesting

issues with power [67]. Furthermore, while some studies have

identified telomere shortening as a predictor of survival

[38,47], there is also evidence for associations between an indi-

vidual’s average TL and their lifespan [22,40,47]. Longitudinal

studies capable of testing the degree to which survival and long-

evityare predicted byan individual’s lifetime average TL or their

rate of telomere attrition are now required to address this impor-

tant question. Such studies can also help to establish whether TL

measured in early life represents a better predictorof subsequent

lifespan than later TL, as recently found in captive zebra finches

(Taeniopygia guttata) [25]. In due course, the application of meta-

analytic methods to the results of such longitudinal studies can

provide consensus regarding when and how variation in TL

predicts key components of organismal fitness.
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