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The dynamics of the diffuse interface between liquid
and solid states is analysed. The diffuse interface
is considered as an envelope of atomic density
amplitudes as predicted by the phase-field crystal
model (Elder et al. 2004 Phys. Rev. E 70, 051605
(doi:10.1103/PhysRevE.70.051605); Elder et al. 2007
Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.
064107)). The propagation of crystalline amplitudes
into metastable liquid is described by the hyperbolic
equation of an extended Allen–Cahn type (Galenko
& Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/
PhysRevE.71.046125)) for which the complete set of
analytical travelling-wave solutions is obtained by the
tanh method (Malfliet & Hereman 1996 Phys. Scr. 15,
563–568 (doi:10.1088/0031-8949/54/6/003); Wazwaz
2004 Appl. Math. Comput. 154, 713–723 (doi:10.1016/
S0096-3003(03)00745-8)). The general tanh solution
of travelling waves is based on the function of
hyperbolic tangent. Together with its set of particular
solutions, the general tanh solution is analysed within
an example of specific task about the crystal front
invading metastable liquid (Galenko et al. 2015 Phys.
D 308, 1–10 (doi:10.1016/j.physd.2015.06.002)). The
influence of the driving force on the phase-field
profile, amplitude velocity and correlation length
is investigated for various relaxation times of the
gradient flow.
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1. Introduction
The phase-field crystal (PFC) model has been used to examine the dynamics of liquid–solid
transformation, grain boundary migration and dislocation motion [1–3]. The PFC model is a
continuum model that describes processes on atomic length scales and pattern on the nano- and
micro-length scales [4]. This model is characterized by a free energy which is represented by a
functional of a conserved atomic density field that is periodic in the solid phase and uniform
in a liquid state. One of the simplest ways to analyse the PFC model is to use the amplitude
equations [5–7] which represent smooth profiles over peaks of the density field (see a short
discussion about obtaining the amplitude equation of the PFC equation in appendix A). Taking
into account slow and fast degrees of freedom for the crystal–liquid interface propagation, the
amplitude equation of the PFC model is described by the following partial differential equation
(PDE) [8]:

τ
∂2u
∂t2 + ∂u

∂t
= ∇2u − K0u + bu2 − u3. (1.1)

The following notations are introduced in equation (1.1): u(r, t) is the amplitude of atomic density
(order parameter), τ is the time for relaxation of the rate ∂u/∂t, i.e. the gradient flow (τ has a real
value smaller than the relaxation time of the amplitude u as defined in [8]), r is the radius vector,
t is the time, and the parameter b is given by

b = 2a√
15v|�B0|

, (1.2)

where the driving force �B0 describes

�B0 =
{

�B0 > 0, the transition from a metastable state with K0 = +1,

�B0 < 0, the transition from an unstable state with K0 = −1,
(1.3)

a and v are the coefficients in the free energy, which has the form of Landau–de Gennes potential:

f (u) = K0�B0

2
u2 − 2a

3
u3 + 15v

4
u4. (1.4)

As it follows from equation (1.4), the two states (liquid and solid) have equal energy in the
equilibrium with the parameter b = 8a2/135v and the crystalline front has zero velocity.

Equation (1.1) can be considered as an extended Cahn–Allen equation which transforms to its
standard form at b = 0 and τ = 0 [9], which was suggested for the anti-phase boundary motion
and then used in a wide spectrum of mathematical and physical applications [10], for instance,
in description of free-boundary problems by the phase-field method [4]. In its complete form,
equation (1.1) has been applied in the field of fast-phase transitions [11,12] whose validity has
been verified by comparison with experimental data [13], in molecular dynamics simulations [14]
and by coarse-graining derivations of the phase-field equations [15].

PDE can be analysed using an important class of travelling-wave solutions which, in their
particular form, include tanh functions [16,17]. Particular solutions of equation (1.1) have also
been found in the form of tanh function [8]. However, there exists no general set of travelling
waves for the hyperbolic equation of Allen–Cahn type (1.1). Therefore, the main purpose of the
present work is to find a complete set of travelling waves for equation (1.1). This set will be found
using the tanh method [16–19] representing one of the ways of searching for solutions of travelling
waves (as one of the applications of this method to physically relevant tasks, one can mention the
work of Kourakis et al. [20]). The complete set of solutions will be checked on the existence of tanh
functions.

2. Travelling waves by the tanh method
One of the important solutions for the analysis of phase transformations is related to travelling
waves [8,10,16–19,21]. To treat the nonlinear PDEs, the travelling waves are obtained by the
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first integral method [21–24] (which can be considered as one of particular cases of the direct
method [25], generalizing the use of equivalent methods of finding the exact solutions of PDE,
which were reduced to ODE [26]), and also using the G′/G-expansion method [27,28], the rank
analytical technique [29] and phase-plane analysis [30,31].

In this work, we use the tanh method as a useful tool for the computation of the exact travelling
waves by introducing a power series in tanh function (function of hyperbolic tangent). The
efficiency of the tanh method has been illustrated in [16–19] by applying it for a variety of selected
equations, such as nonlinear equations of the Fischer type and the generalized Korteveg–de-Vries
equation. Moreover, its modification, the tanh − coth method [19,32], is used to derive the solitons
and kink solutions for some of the well-known nonlinear parabolic partial differential equations
(the Newell–Whitehead, Fitz–Hugh–Nagumo and Burgers–Fisher equations). The tanh − coth
method extends a set of the possible solutions and provides abundant solitons and kink solutions
in addition to the existing ones. As a result, the power of the tanh method is confirmed as the
most direct and effective algebraic methods [32,33] for finding the exact solutions of nonlinear
differential equations.

Let us consider spatially one-dimensional equation (1.1) for the atomic density amplitude
u(x, t), which is evolving in time t along spatial coordinate x. Following Malfliet & Hereman [16]
as well as Wazwaz [19], we introduce a new independent variable

ξ = x − ct
δ

, (2.1)

which describes propagation of the amplitude with the velocity c and transforms the amplitude
u(x, t) → U(ξ ). This transformation rewrites the derivatives as follows:

∂

∂t
= − c

δ

d
dξ

,
∂2

∂t2 = c2

δ2
d2

dξ2 and
∂

∂x
=1

δ

d
dξ

,
∂2

∂x2 = 1
δ2

d2

dξ2 . (2.2)

Using derivatives from equation (2.2), spatially one-dimensional equation (1.1) in the new
variable looks like

c
δ

dU(ξ )
dξ

− τ
c2

δ2
d2U(ξ )

dξ2 + 1
δ2

d2U(ξ )
dξ2 − K0U(ξ )+bU2(ξ ) − U3(ξ ) = 0. (2.3)

To solve equation (2.3), we shall apply the tanh method [16,17], introducing the finite
expansion

U(ξ ) = S(Y)=
M∑

k=0

akYk+
M∑

k=1

bkY−k (2.4)

and

M ∈ Z, Y = tanh(ξ ). (2.5)

Using the new variable by equation (2.5) and taking into account the derivatives d/dξ = (1 −
Y2) d/dY, d2/dξ2 = (1 − Y2)[−2Y d/dY + (1 − Y2) d2/dY2], equation (2.3) is described by

c
δ

(1 − Y2)
dS
dY

+ 1
δ2 (1 − τc2)

{
(1 − Y2)

[
−2Y

dS
dY

+ (1 − Y2)
d2S
dY2

]}

− K0S + bS2 − S3 = 0. (2.6)

The parameter M from equation (2.4) can be determined using the analysis given in [16,17].
Indeed, balancing the linear terms of the highest order with the highest order nonlinear terms
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in equation (2.6), one can get 3M = 4 + M − 2; therefore, M = 1. Balancing the linear terms of the
highest order in equation (2.6), one obtains M = 1, so the expansion (2.4) becomes

S(Y) = a0 + a1Y, (2.7)

with the following derivatives:

S′(Y) =
M∑

k=0

(akYk)′ = a1 and S′′(Y) = 0. (2.8)

Now, using equations (2.7) and (2.8), we collect the coefficients of powers of Yn in equation (2.3)
as [

2
δ2 (1−τc2)a1 − a1

3
]

Y3 −
( c

δ
a1 + 3a0a1

2 − ba2
1

)
Y2

+
[

2
δ2 (1−τc2)a1 − 3a0

2a1−K0a1 + 2ba0a1

]
Y1

+
(

a1
c
δ

− a0
3 − a0K0 + ba0

2
)

Y0 = 0. (2.9)

Equation (2.9) has a solution if the braces ahead of Yk are placed to zero. As such, the following
system of equations regarding the parameters ak (k = 0...M), c and δ is obtained:

Y3 :
2
δ2 (1−τc2)a1 − a3

1 = 0, (2.10)

Y2 : − c
δ

a1 − 3a0a2
1 + ba2

1 = 0, (2.11)

Y1 : − 2
δ2 (1−τc2)a1−3a2

0a1 − K0a1 + 2a0a1b = 0 (2.12)

and Y0 : a1
c
δ

− a3
0 − a0K0 + ba2

0 = 0. (2.13)

The system of equations (2.10)–(2.13) has a trivial solution a1 = 0 and a0 = (b/2)(
1 ±

√
1 − 4K0/b2

)
with the arbitrary values of c and δ. In this case, the amplitude has constant

profile u(x, t) = a0. This homogeneous solution has no interest for us because we are looking
for the inhomogeneous amplitude’s profiles of atomic density, which are moving through the
metastable/unstable homogeneous state (liquid phase). In the case a1 �= 0, equations (2.10)–(2.13)
look like

a2
1 = 2

δ2 (1 − τc2), (2.14)

a1 = c
δ(b − 3a0)

, (2.15)

3a2
0 − 2a0b + 2

δ2 (1 − τc2) + K0 = 0 (2.16)

and a3
0 − ba2

0 + a0K0 − a1
c
δ

= 0. (2.17)

Equations (2.14)–(2.17) imply several analytical constraints. First, the reality of a1 in
equation (2.14) imposes the condition: 1 − τc2 > 0, which gives an upper bound in the absolute
value of the amplitude’s velocity c (i.e. |c| < 1/

√
τ = cmax and cmax → ∞ with τ → 0). Second,

recalling that the sign of a1 determines the polarity of the amplitudes, we may assume that,
for the propagation towards the positive direction on the x-axis, c > 0, one finds a1 > 0 for
a0 < b/3, and a1 < 0 for a0 > b/3. Respectively, if the amplitude’s profile moves in the direction
of negative values of x-axis, c < 0, one finds a1 > 0 for a0 > b/3 and a1 < 0. Furthermore, there
is no solution (at least using the tanh method) if a0 = b/3. And, third, recall that, for c < 0, one
has tanh(x − ct) = tanh(x + |c|t) = − tanh((−x) − |c|t). Hence a negative value of c is physically
tantamount to transformations: space reversal, x → −x; polarity reversal, a1 → −a1; and velocity
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reversal, c → −c = |c| > 0. In simple terms, propagation of the amplitude’s profile, tanh(x − ct)),
to the left is the same as propagation of the amplitude’s profile, − tanh(x − ct), to the right.

Determining the parameters a0, a1, δ and c from equations (2.14)–(2.17) leads to the amplitude
profiles (2.4) and (2.5) of the form

u(x, t) = a0 + a1 tanh
(

x − ct
δ

)
. (2.18)

Concrete values for a0, a1, δ and c present different types of solutions that are shown in the next
two sections.

3. General set of solutions
A complete set of solutions consists of 12 decisions for the parameters K0 and b which are
defined by equations (1.2) and (1.3). This number of decisions follows from the degrees of
equations (2.14)–(2.17), where equation (2.14) and equation (2.16) assume two roots for each
expression (four roots in total), multiplied by three decisions from the cubic equation (2.17). These
12 decisions can be divided into three sets, each one of which contains four similar by notation
type of solutions. All coefficients from equation (2.18) are obtained for the following far field
boundary conditions, ξ → ±∞: u ≡ const., namely for u = 0 or u = ±1.

(a) Set of solutions 1–4
The first set of solutions can be recognized by the signs of the parameters a1 and c. As a result,
solutions 1–4 are presented in table 1, two of which are shown in figure 1.

With b = 0 and K0 = −1, table 1 shows that a0 = 0, a1 = ±1, δ = ∓√
2 and c = 0. In this particular

case, equation (2.18) predicts stationary profiles:

u(x, t) = ± tanh
(

∓ x√
2

)
. (3.1)

This profile is consistent with the steady solution of the hyperbolic Allen–Cahn equation (τ �= 0)
and the parabolic Allen–Cahn equation (τ = 0), which are obtained from equation (1.1) for the
above accepted parameters b = 0 and K0 = −1.

(b) Set of solutions 5–8
The second set of solutions, consisting of solutions 5–8, has a similar structure to that of the set of
solutions 1–4. To simplify the representation, we shall introduce the following notations for these
solutions:

A5−8 =
[
−
(

10b2 + 6b
√

b2 − 4K0 + 162τK0
2 − 36K0 − 72b2τK0 + 8b4τ

)

×
(

8b2K0 − b4 − 6bK0

√
b2 − 4K0 + b3

√
b2 − 4K0 − 18K0

2
)]1/2

, (3.2)

B5−8 = 5b2 + 3b
√

b2 − 4K0 + 81τK0
2 − 18K0 − 36b2τK0 + 4b4τ (3.3)

and G5−8 =
√

2b2 + 2b
√

b2 − 4K0 − 4K0. (3.4)

Now, using equations (3.2)–(3.4), we rewrite solutions 5–8 in new designations:

a0 = 1
4

b + 1
4

√
b2 − 4K0, a1 = 1

4
G5−8, δ = 2A5−8

B5−8K0
,

c = −1
4

(
−1

2
b + 3

2

√
b2 − 4K0

)
G5−8

A5−8

B5−8K0
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.5)



6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170202

.........................................................

20

t

c

c

x x10

–10 –10

0 0 0

–10
–20

20

t
10

0
–10

–20

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

u u

(a) (b)

Figure 1. u-Profiles as functions of the spatial coordinate x and the time t calculated with the usage of solutions 3 and 4 from
table 1. Calculations were carried out for fixed relaxation time τ = 0.5 and for the values of a0, a1 and δ given by K0 = 1 and
under the condition of b2 ≥ 4K0 (table 1). (a) u-profile moves in the direction of the x-axis with constant positive velocity c.
(b) u-profile moves in the direction of the x-axis with constant negative velocity c.

Table 1. First set: solutions 1–4.

values solutions 1 and 2 solutions 3 and 4

a0 b/2 b/2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1 ± 1
2

√
b2 − 4K0

1
2

√
b2 − 4K0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ
4√

2b2 − 8K0 + b4τ − 4b2τ K0
− 4√

2b2 − 8K0 + b4τ − 4b2τ K0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
b
√
b2 − 4K0√

2b2 − 8K0 + b4τ − 4b2τ K0
± b

√
b2 − 4K0√

2b2 − 8K0 + b4τ − 4b2τ K0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 = 1
4

b + 1
4

√
b2 − 4K0, a1 = 1

4
G5−8, δ = − 2A5−8

B5−8K0
,

c = 1
4

(
−1

2
b + 3

2

√
b2 − 4K0

)
G5−8

A5−8

B5−8K0
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

a0 = 1
4

b + 1
4

√
b2 − 4K0, a1 = −1

4
G5−8, δ = 2A5−8

B5−8K0
,

c = 1
4

(
−1

2
b + 3

2

√
b2 − 4K0

)
G5−8

A5−8

B5−8K0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

and a0 = 1
4

b + 1
4

√
b2 − 4K0, a1 = −1

4
G5−8, δ = − 2A5−8

B5−8K0
,

c = −1
4

(
−1

2
b + 3

2

√
b2 − 4K0

)
G5−8

A5−8

B5−8K0
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)
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(c) Set of solutions 9–12
The third set, consisting of solutions 9–12, has a similar structure to that of the sets of solutions
1–4 and solutions 5–8. Introducing the parameters

A9−12 =
[
−
(

−10b2 + 6b
√

b2 − 4K0 − 162τK0
2 + 36K0 + 72b2τK0 − 8b4τ

)
(

−8b2K0 + b4 − 6bK0

√
b2 − 4K0 + b3

√
b2 − 4K0 + 18K0

2
)]1/2

, (3.9)

B9−12 = −5b2 + 3b
√

b2 − 4K0 − 81τK0
2 + 18K0 + 36b2τK0 − 4b4τ (3.10)

and G9−12 =
√

2b2 − 2b
√

b2 − 4K0 − 4K0, (3.11)

we finally rewrite parameters a0, a1, δ and c (given previously for solutions 5–8) as

a0 = 1
4

b − 1
4

√
b2 − 4K0, a1 = 1

4
G9−12, δ = −2A9−12

BK0
,

c = 1
4

(
−1

2
b − 3

2

√
b2 − 4K0

)
G9−12

A9−12

BK0
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

a0 = 1
4

b − 1
4

√
b2 − 4K0, a1 = 1

4
G9−12, δ = 2A9−12

BK0
,

c = −1
4

(
−1

2
b − 3

2

√
b2 − 4K0

)
G9−12

A9−12

BK0
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

a0 = 1
4

b − 1
4

√
b2 − 4K0, a1 = −1

4
G9−12, δ = −2A9−12

BK0
,

c = −1
4

(
−1

2
b − 3

2

√
b2 − 4K0

)
G9−12

A9−12

BK0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

and a0 = 1
4

b − 1
4

√
b2 − 4K0, a1 = −1

4
G9−12, δ = 2A9−12

BK0
,

c = 1
4

(
−1

2
b − 3

2

√
b2 − 4K0

)
G9−12

A9−12

BK0
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

4. Set of particular solutions
For the amplitude’s equation (2.3) the whole set of 12 solutions of the form of equation (2.18)
is presented by the coefficients summarized in table 1, equations (3.5)–(3.8) and equations (3.12)–
(3.15). Now, we compare special and particular cases of these solutions with corresponding results
obtained earlier.

Using the first integral method [21], travelling wave solutions have been obtained for the
hyperbolic Allen–Cahn equation [22]. This equation is consistent with equation (1.1) if b = 0 and
K0 = −1. Indeed, if we substitute these values for b and K0 into solutions (3.5)–(3.8), then solutions
of the form (2.18) correspond to those ones obtained in [22]. The graphical representation for this
particular case is shown in figure 1, which gives a view for the atomic density profile that invades
the homogeneous phase with positive and negative values of c. Another pair of solutions related
to this particular case could be obtained for a0 = a1 = ±0.5. Thus, in general, we have obtained
four bounded solutions, which correspond to four bounded solutions of Nizovtseva et al. [22].
It should be noted that in [22] other four unbounded solutions were obtained. These solutions
were extracted from the general set of solutions due to its physical and mathematical insolvency,
namely, due to the absence of their physical meaning and the violation of the initial statement of
the mathematical problem. In this work, we do not obtain the unbounded solutions because the
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tanh method states solutions (2.4)–(2.5) on the bounded set a priori: the solution (2.18) is always
mathematically bounded.

With zero relaxation time, τ = 0, the hyperbolic equation (1.1) transforms to the partial
differential equation of parabolic type whose travelling-wave solution has been previously found
by Wazwaz [19]. Indeed, as it follows from our solutions (3.12)–(3.15), if we use τ = 0 and take into
account (3.9)–(3.11), solutions of Wazwaz [19] are covered for the extended Allen–Cahn equation.

In general, we have obtained travelling wave solutions represented by hyperbolic tanh
functions (2.18), which confirms the correctness of the particular solutions for the dynamical
problem of fast diffuse interfaces [34].

5. Travelling waves in amplitudes of phase-field crystals
To demonstrate the applicability of the general solution (2.18) together with its set of concrete and
particular solutions summarized in §§3 and 4, let us consider the dynamics of the diffuse crystal–
liquid interface propagation as described by the PFC model [4]. In this model, investigation of the
dynamics of periodic pattern propagation plays an important role [4]. Figure 2 presents a scheme
for spatial distribution of the atomic density field near a solid–liquid interface, where peaks
correspond to average atomic positions. The envelope of these peaks is described by the PFC
amplitude’s equation and is consistent with the phase-field profile shown in figure 1. The interface
width W in figure 2 represents the transition region between the atomically homogeneous state
(liquid phase) and periodic states (crystal phase), i.e. the diffuse crystal–liquid interface.

(a) Analytical solution
The PFC amplitude’s equations were derived in [6–8]. In this work, we use the PFC amplitude’s
equation in accordance with the work of Humadi et al. [35]:

τ 2c2 d2u
dξ2 − c

du
dξ

= W2(n̂)
d2u
dξ2 − df

du
, (5.1)

where u is the amplitude’s profile, τ is the relaxation time of the rate ∂u/∂t of change of the
amplitude u (i.e. ∂u/∂t is the gradient flow) and W(n̂) = Bs

0
∑

i n̂ · Gi is the measure of the width of
the diffuse transitive layer having the local normal vector n̂ and the reciprocal lattice vector Ghkl
with Miller indexes h, k and l.

In equation (5.1), the free energy density f (u) is expressed by

f (�B0, u) = f0(�Beq
0 , u) + a

2
u2 − b

3
u3 + h

4
u4, (5.2)

where
a = 6(�B0 + Bl

2c2
c), b = 12r and h = 90ν̃. (5.3)

Here, cc is the concentration of a solute in a chemically binary system.1 Upper indexes l and s
are related to the liquid and solid phases, respectively. Lower indexes 0 and 2 are related to the
coefficients of the zero and second order; and r and ν̃ are the coefficients corresponding to u3 and
u4, respectively. The driving force, �B0 = Bl

0 − Bx
0, is the difference between the dimensionless

liquid compressibility Bl
0 and the dimensionless elastic module Bx

0. In equilibrium at �B0 = �Beq
0 ,

the elasticity compensates the compressibility, that is Bl
0 = Bx

0.
The free energy (5.2) has the form of the Landau–de Gennes potential, which has been used

in the theory of weak crystallization [36] as well as in the PFC model [4]. This potential describes
various states, which exist for possible transformations from metastable to stable or from unstable
to stable states. In the present derivation, we shall use the configuration of states consistently
with the transition from metastable liquid to stable crystal such that �B0 > 0 (see, for details, [8]).

1Humadi et al. [35] derived the amplitude’s equation for u together with an additional equation for the concentration cc. They
have solved this system of two equations under some approximations analytically and numerically. For the sake of simplicity,
in this work, we assume the constant concentration, cc ≡ const., and find an exact analytical solution of equation (5.1).
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homogeneous liquid

W

amplitude

periodic crystal

Figure 2. Diffuse front of a periodic crystal invading homogeneous liquid. Crystal and liquid are divided by the diffuse transitive
layer of the widthW. The amplitude represents the envelope of atomic density peaks.

Finally, the free energy (5.1) corresponds to equation (2.3), and the free energy density (5.2) of
Humadi et al. [35] is equivalent to equation (1.4) for our general derivation of the equation set.

Introducing normalized velocity c̃ = c/W and correlation length ξ̃ = ξ/W, equation (5.1)
transforms to

(1 − τ 2c̃2)
d2u

dξ̃2
+ c̃

du

dξ̃
− au + bu2 − hu3 = 0. (5.4)

We search for a solution of equation (5.4) for the condition τ 2c̃2 < 1 (i.e. for τ < c̃−1). This condition
means that the interface velocity c̃ cannot overcome and be larger than the maximum speed of
disturbance propagation in the field of order parameter u [11,34].

Using the general solution (2.18), we find the particular solution of (5.4) in the following form:

u(ξ̃ ) = A

[
1 − tanh

(
ξ̃

δ

)]
, (5.5)

with A the amplitude factor and δ the correlation length. In this case, the derivatives are

du

dξ̃
= u

δ

( u
A

− 2
)

,
d2u

dξ̃2
= 2u

δ2

( u
A

− 1
) ( u

A
− 2

)
. (5.6)

Then, equation (5.4) can be rewritten as

2u
δ2

( u
A

− 1
) ( u

A
− 2

)
(1 − τ 2c̃2) + uc̃

δ

( u
A

− 2
)

− au + bu2 − hu3 = 0. (5.7)

Equation (5.7) immediately gives the solution u = 0, which describes the homogeneous state in
a whole domain and has no interest for us. Then, opening the brackets and combining the u-terms
with the same degree in equation (5.7), we obtain the following system of three equations:

u2 :
2

A2δ2 (1 − τ 2c̃2) − h = 0,

u1 : − 6
Aδ2 (1 − τ 2c̃2) + c̃

Aδ
+ b = 0

and u0 :
4
δ2 (1 − τ 2c̃2) − 2c̃

δ
− a = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)

with three unknown parameters A, δ and c̃. As the result, the system of equations (5.8) gives

— the solution for the positive amplitude factor A,

A = 1
4h

(
b +

√
b2 − 4ah

)
; (5.9)
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— the solution for the diffuse interface velocity c̃,

c̃ = c̃m√
1 + τ 2c̃2

m

, (5.10)

with its maximum value c̃m,

c̃m =
√

2h
4

[
3
√

b2 − 4ah −
(

4
h

+ 3
)

b
]

; (5.11)

— the solution for the correlation length δ,

δ = 4
√

2h(1 − τ 2c̃2)

b +
√

b2 − 4ah
= 4

√
2h

(b +
√

b2 − 4ah)
√

1 + τ 2c̃2
m

. (5.12)

In equations (5.9)–(5.12) we have the condition |b| > 2
√

ah.
Finally, for the analysis of the dynamics of crystal front invading liquid by equations (5.5) and

(5.9)–(5.12), we obtain now the driving force �B0 relative to its equilibrium value �Beq
0 which

is chosen as a reference. From equation (5.2) it follows that the equilibrium state, having equal
energy states, is defined by the equality f (�B0, u) = f0(�Beq

0 , u) ≡ 0. From this immediately follows
the trivial solution u1 = 0, which again is of no interest to us as the homogeneous solution for a
whole domain. For the other solutions under the condition of equal energy states, one can find

u2,3 = 2b
3h

±
√

4b2

9h2 − 2a
h

. (5.13)

In the equilibrium, u2 = u3, the condition

4b2

9h2 = 2a
h

(5.14)

should be satisfied. Using the parameter a from equation (5.3), the equilibrium value for the
driving force is obtained as

�Beq
0 = b2

27h
− Bl

2c2. (5.15)

As the result, for the further analysis and graphical interpretation of equations (5.5) and (5.9)–
(5.12) we use the normalized driving force �B̃0:

�B̃0 = �Beq
0 − �B

�Beq
0

. (5.16)

(b) Numerical representation of analytical solutions
(i) Calculations

The amplitude front, i.e. the crystal–liquid boundary layer having a step-like profile, is a
crystallization front invading the metastable liquid (figure 2). The travelling wave (5.5) serves
to analyse the dynamics of the amplitude front. The profile of the amplitude front can be
determined by three variables: (i) the amplitude factor A from equation (5.9), (ii) the velocity c̃
from equations (5.10) and (5.11) with which the front moves, and (iii) the correlation length δ

from equation (5.12). These variables depend on the driving force �B̃0 given by equations (5.15)
and (5.16) through the parameter a given by equation (5.3). In addition, the velocity c̃ and
correlation length δ depend on the relaxation time τ of the gradient flow ∂u/∂t. Using calculation
results, we show how the driving force and the relaxation parameter τ influence the profile
of the amplitude density u, amplitude factor A, front velocity c̃ and correlation length δ. The
model parameters are used for the calculations as follows: Bl

2 = −1.8, cc = 0.1, r = 4.25 × 10−10,
ν̃ = 0.012 and τ 2 = 0.1. Note that the relaxation time τ has been taken as a constant value only
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Figure 3. Amplitude of the atomic density as a function of the moving coordinate system according to equations (5.5) and
(5.9)–(5.12).
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Figure 4. Amplitude’s velocity as a function of the driving force according to equations (5.10) and (5.11).

for calculations of the amplitude density u and amplitude factor A. The front velocity c̃ and
correlation length δ are shown for different values of τ (see next section).

(ii) Influence of driving force and relaxation time

The influence of the driving force �B̃0 on the phase-field profile is shown in figure 3, where the
solution equation (5.5) with equations (5.9)–(5.12) exhibits a dynamical step-like profile for the
atomic density amplitude. It is clearly seen from figure 3 that the increase of �B̃0 makes the step-
like profile within the diffuse interface between the crystal and the liquid steeper. Therefore, the
gradient of atomic density has maximal values at a higher driving force in the transition from the
diffuse to sharp interface.

Figure 4 shows nonlinear dependence of the velocity for the amplitude’s profile. Such
dependence is consistent with the data of numerical molecular dynamics simulation [37] and
recent advancements on kinetics of fast interfaces [38]. As also follows from figure 4, the
amplitude velocity c̃ depends on the values of relaxation time τ . The difference between velocities
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Figure 5. Correlation length as a function of the driving force according to equation (5.12).

for different τ occurs, however, at moderate and large values of driving forces, namely, at
�B̃0 > 0.2. At small �B̃0, the influence of relaxation time τ is negligible. Such dependence exists
due to the fact that the time τ influences the relaxation of fast variable—gradient flow, ∂u/∂t—
the variable which plays an essential role far from the equilibrium [11]. A general tendency is
that a longer relaxation time τ makes the velocity increase slower. Indeed, the dynamics by the
parabolic Allen–Cahn equation (see equation (1.1) with τ = 0) is defined by the relaxation of the
order parameter u only. The dynamics by the hyperbolic Allen–Cahn equation (1.1) is already
defined by the relaxation of the order parameter u and by the gradient flow ∂u/∂t. As a result,
in comparison with the parabolic dynamics, the additional relaxation in the hyperbolic dynamics
makes the velocity c̃ smaller with the increase in relaxation time τ for a given �B̃0.

Dependence of correlation length δ on the driving force and relaxation time is shown in
figure 5. The drastic change in δ occurs at smaller values of the driving force, namely, at �B̃0 < 0.2.
Gradual decrease of δ to its minimal values occurs at moderate and large values of driving forces,
i.e. at �B̃0 > 0, showing that far from the equilibrium the interface becomes steeper, which directly
follows from equation (5.12). It can also be seen from figure 5 that the larger relaxation time τ

reduces the correlation length of the atomic density amplitude for �B̃0 > 0.2. Therefore, longer
relaxation time τ at large driving force makes the interface steeper as a result of essential deviation
from the equilibrium.

6. Conclusion
The propagation of amplitudes of the atomic density of crystals which invade a homogeneous
liquid state has been analysed. Using the PFC model [4], amplitude equation (1.1) for the atomic
density has been solved by application of the tanh method [16–19,32,33].

A set of travelling wave solutions obtained on the basis of the general solution (2.18) are
described by tanh functions. This confirms the correctness of the previously used particular
solutions [34] used for fast transformations in materials. The set of solutions includes travelling
waves previously found for (i) the extended parabolic Allen–Cahn equation [17] and (ii) the
hyperbolic Allen–Cahn equation with a free energy of a double-well form which describes
transitions from an unstable state [22].

The general tanh solution is analysed within a specific task of a crystal front invading
metastable liquid. We have found spatial profiles of atomic density amplitude u, amplitude
velocity c̃ and correlation length δ as the functions in driving force �B̃0. We have shown that
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amplitude of atomic density decreases, velocity increases and correlation length drastically
decreases with the increase of the driving force. It is also shown that a longer relaxation of the
gradient flow makes the velocity increase with a slower driving force. Such results well agree
with the particular travelling-wave solutions [8] and, therefore, solutions (5.5) and (5.9)–(5.12),
which are graphically shown in figures 3–5, can be used as benchmarks for various numerical
solutions of the PFC equation. Because periodic density fields play a crucial role in the formation
of crystal lattices and dendrites [39], the present travelling-wave solutions can also be useful for
the estimations of interface dynamics of dendritic patterns.
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Appendix A. A couple remarks on amplitude equations
Amplitude equations (AEq) [7,8] of the regular PFC equation provide a description of envelopes
of maxima of atomic density distribution in crystals having different symmetry (triangular,
hexagonal, cubic symmetry, etc.). They appear as a result of a coarse-graining procedure
providing transition from the nano-length periodic pattern (described by the regular PFC
equation of the sixth order in space) to a monotonically smoothing mesoscale pattern (described
by the AEq which already has the second order in space). This procedure is based on the
renormalization group theory and was developed analytically by Goldenfeld et al. [5,6]. As a
result of this procedure, one can formulate a physical meaning of the classical phase field as a non-
conserved order parameter: the phase field is a smooth envelope of the atomic density maxima of
a given crystalline symmetry. In this sense, properties of the phase field can be measured (in the
form of its mobility, gradient factor and relaxation time) in natural or computational experiments.

Shiwa [40] established a discussion about the correctness of the Goldenfeld et al. analysis [5,6]
applied to the PFC equation for obtaining the respective AEq. First, Shiwa has found a small
analytical mistake in the AGD analysis, which does not influence the final result for AEq [41].
Second, Shiwa stressed the fact that the ADG analysis fails in the description of mode coupling.
More specifically, because the PFC equation describes conserved dynamics, the amplitude of slow
neutral modes at zero wavenumber should be coupled with the modes at the critical wavenumber
behind which a homogeneous state becomes unstable. This second issue of zeroth mode for
conserved dynamics has also been successfully resolved [42] in obtaining the AEq of the PFC
equation.

For practical use of AEqs, it is important to know what they are missing compared with the
regular PFC equation. In addition to losing mode coupling [40,42], the other problem is the lack
of barriers between boundaries [43]. AEqs are also missing instantaneous mechanical equilibrium
(as is the full PFC equation) [44]. To avoid these inconsistences arising in the transition from the
regular PFC equation to its AEqs, a more complete approach up to all orders of multiple scale
expansion can be used (see Sect. III of Huang et al. [45]).
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