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Introduction

Respondent‐driven sampling (RDS) is a network‐based method for sampling populations for 

whom a sampling frame is not available (Heckathorn 1997). Information about these “hard‐
to‐reach” or “hidden” populations is critical for public health research with populations at 

high risk of acquiring HIV infection, including persons who inject drugs (PWID), men who 

have sex with men, and sex workers. RDS is widely used for public health surveillance of 

hidden populations by organizations such as the U.S. Centers for Disease Control and 

Prevention (CDC) (Gallagher et al. 2007), the Chinese Centers for Disease Control (Li et al. 

2014), and entities funded through the President’s Emergency Plan for AIDS Relief 

(PEPFAR) (Hladik et al. 2012).

RDS is primarily used to estimate the prevalences of traits such as diseases and risk factors. 

Unbiased point and variance estimates of such prevalences from survey samples classically 

require calculating each participant’s probability of being sampled (“inclusion probability”). 

Because a sampling frame is not available, hidden population members’ inclusion 

probabilities cannot be calculated using standard approaches. Therefore, statistical inference 

from samples collected via RDS relies on models approximating the sampling process that 

incorporate information about the sample members’ social networks and information 

observed during the recruitment process.
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Multiple evaluations of RDS point estimators and violations of RDS assumptions have been 

conducted, but significantly less work has examined RDS variance estimators (Wejnert 

2009, Gile and Handcock 2010, Goel and Salganik 2010, Gile 2011, Tomas and Gile 2011, 

Lu et al. 2012, McCreesh et al. 2012, Merli et al. 2014, Verdery et al. 2015). Variance 

estimates are an essential complement to point estimates. Without good variance estimators, 

one cannot assess the amount of information contained in a sample and may draw invalid 

conclusions. In particular, statistical significance tests and confidence intervals will be 

misleading when the variance is under (or over) estimated. Additionally, understanding the 

variance of RDS point estimates in populations to which RDS is typically applied is 

important for calculating appropriate sample sizes for future studies.

Past research on RDS variance estimation suggested that RDS confidence intervals provide 

unacceptably low coverage rates and that RDS may have extremely large design effects 

when applied to hidden populations of public health interest (Goel and Salganik 2010, Lu et 

al. 2012, Verdery et al. 2015). This study is the first systematic evaluation of the different 

RDS variance estimators. Our results indicate that confidence interval coverage rates are 

often acceptable although not perfect and design effects are in the range of other complex 

survey designs.

Background

RDS begins with researchers choosing a small number (usually 5 to 10) of “seed” 

population members. The seeds are interviewed and given a small number of uniquely 

numbered coupons with which they can recruit population members they know into the 

sample (usually 3‐5). Recruited population members are interviewed and given coupons, and 

the process is repeated until the target sample size is reached. Participants are remunerated 

both for completing the survey questionnaire and for each eligible population member they 

recruit.

RDS survey questionnaires and associated biological tests provide data on many 

characteristics of interest. For the purposes of this article, without loss of generality, we will 

represent these variables of interest by a two‐valued trait, with values “with trait” and 

“without trait.” Populations sampled via RDS are connected via social network ties; we will 

refer to the set of persons, or “nodes,” and ties connecting them as the “population network.” 

We will refer to the number of ties each person has to other members of the population as 

that person’s “degree.”

Most RDS point estimators currently used are design‐based, including the Salganik‐
Heckathorn (SH) (Salganik and Heckathorn 2004), Volz‐ Heckathorn (VH) (Volz and 

Heckathorn 2008), and Successive Sampling (SS) estimators (Gile 2011). The SH estimator 

models RDS as a Markov chain on the nodes in the population network; it is based on 

equating the number of network ties between population groups with different trait statuses 

(Salganik and Heckathorn 2004, Gile and Handcock 2010). The VH estimator uses the same 

Markov chain approximation to RDS, and applies a modified Hansen‐Hurwitz estimator 

calculated from respondent degrees and the trait statuses of sample members (Volz and 

Heckathorn 2008). The SS estimator models RDS as sampling population members 
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proportional to degree without replacement; it applies an algorithm to estimate the mapping 

between a person’s degree and his sampling probability and applies a form of the Horvitz‐
Thompson estimator (Gile 2011). More details on these estimators is available in the 

Supplementary Materials.

Commonly used RDS variance estimators employ a bootstrap resampling approach that 

approximates the RDS design (Davison and Hinkley 1997). The variance of the point 

estimates produced by these bootstrap resamples is computed and used to estimate the RDS 

variance. Two approximations that are currently used are the Salganik Bootstrap (“Sal‐BS”) 

(Salganik 2006) and the Successive Sampling Bootstrap (“SS‐BS”) (Gile 2011). The Sal‐BS 

is typically applied in conjunction with the SH or VH RDS point estimators (Salganik 2006), 

and the SS‐BS is applied in conjunction with the SS point estimator (Gile 2011). We refer to 

these point and variance estimator pairs as “SH/Sal‐BS”, “VH/Sal‐BS”, and “SS/SS‐BS”, 

respectively. Sal‐BS is based on ordered with‐replacement resampling draws from the 

sample, such that each subsequent node is selected from among the nodes whose recruiters 

have a trait status matching that of the previous node (Salganik 2006). SS‐BS takes a similar 

approach, but considers the without‐replacement structure of RDS by adjusting the set of 

available nodes at each resampling draw based on which nodes had been previously sampled 

(Gile 2011). This analysis evaluates each of these point and variance estimate pairs; for 

comparison, we also consider the case when the RDS data are naively treated as a simple 

random sample (SRS) and the sample mean point estimator is used. We refer this estimator 

pair as “Mean/SRS.”

The variability of estimators is typically presented as a standard error or confidence interval 

(CI), the latter often derived from the former. In RDS, CI’s are typically the metric of 

choice, as they provide an estimated range of values deemed plausible for the trait of 

interest. A properly‐calibrated method for computing level- α CIs produces intervals that 

capture the true population value for an estimand with probability at least (1 – α) (e.g., an α 
of .05 corresponds to a CI that includes the true population value in 95% of samples). CIs 

can be calculated from bootstrap variance estimates using a number of methods; the 

percentile and studentized bootstrap CI methods are most commonly used for RDS data 

(Efron and Tibshirani 1986). The lower and upper bounds of the CI under the percentile 

bootstrap method are the  and  percentiles, respectively, of the 

bootstrap resamples. In contrast, the studentized bootstrap CI method calculates the standard 

deviation (SD) of the bootstrap resample estimates and the t‐value (t) associated with the 

sample’s degrees of freedom; it then calculates the CI as the point estimate plus or minus t * 

SD for the upper and lower bounds, respectively. The percentile method can generate CIs 

that are asymmetric about the point estimate, whereas the studentized method always 

produces symmetric CIs. The SH/Sal‐BS and VH/Sal‐BS RDS estimator pairs have 

traditionally calculated CIs using the percentile method (Salganik 2006), while the SS/SS‐
BS estimator pair has traditionally used the studentized bootstrap method (Gile 2011). The 

Mean/SRS estimator pair calculates a CI based on a normal approximation to the sampling 

distribution.
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Framework for Assessing RDS

Evaluations of RDS point estimators have been conducted both with real RDS samples from 

non‐hidden populations and with simulated RDS samples, but the accuracy of RDS variance 

estimators can only be evaluated via simulation. This is because, while it is theoretically 

possible to know the true value of an estimand in the target population to which to compare 

point estimators, it is only possible to know the true variability of an estimator in a true 

population by conducting a large number of independent studies in the same population with 

the same structure, which is practically infeasible.

Evaluating RDS by simulation consists of three steps: (1) obtaining or creating a population 

network with certain characteristics, (2) simulating RDS on that network, and (3) applying 

RDS estimators to the trait of interest in the resulting samples. As these procedures are 

repeated many times, the resulting distribution of simulated estimates approaches the true 

sampling distribution of the estimators under the simulation conditions. Therefore, one is 

able to compare estimates of estimator uncertainty to “true” simulated levels of uncertainty.

Our primary results evaluate the performance of RDS uncertainty estimation based on the 

performance of the CIs calculated from different point/variance estimator pairs (e.g., SH/

Sal‐BS). An estimator pair’s CI coverage is the percentage of simulations in which its CIs 

capture the network’s true population value, which is compared to the nominal coverage of 

100 * (1 − α)% (e.g., a 95% CI should capture the true population value in 95% of 

simulations).

In addition to evaluating variance estimators, for comparison with previous research on RDS 

uncertainty estimation, we consider RDS design effects (DEs), a relative measure of the 

variability of an estimator calculated from a sample drawn with a complex sampling method 

(Goel and Salganik 2010, Verdery et al. 2015). We calculate the DE as the ratio of the 

variance of an estimator from a given sampling design to the hypothetical variance if the 

sample had been collected using SRS on the same population. Specifically, the DE is the 

ratio of the RDS estimate’s variance to that under an SRS design of the same sample size. A 

method with a DE of two would require a sample size twice as large as that required by SRS 

to achieve the same variability for the estimate of a given trait.

Typical DEs for many complex surveys that did not use RDS are between 1.5 and 2, but for 

some variables in some studies can range to 5 (Pettersson and Silva 2005, US Census 

Bureau 2006). Previous research on the variance of RDS estimators has suggested that RDS 

DEs may be significantly larger than is typical in surveys conducted using complex 

sampling methods other than RDS (Goel and Salganik 2010, Lu et al. 2012, Verdery et al. 

2015).

While the DE of a given RDS study in the real world is unknown because it cannot be 

calculated from the data, we can calculate the DEs for our simulations numerically. We refer 

to these as the “actual DEs” below. In addition to actual RDS DEs, which previous research 

has also calculated based on simulations, the DEs estimated by RDS variance estimators 

(which can be calculated from a real RDS study’s data) are also of interest. We refer to these 

as “estimated DEs” below. Previous simulation studies have suggested that RDS variance 
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estimators produce inaccurate estimated DEs when they compared the estimated and actual 

DEs for a given simulation (Goel and Salganik 2010, Verdery et al. 2015).

Table 1 summarizes the findings from three previous simulation studies of RDS variance 

estimation and design effects. The two studies that evaluated 95% CI coverage reported 

mean or median 95% CI coverage rates below 70%. The three studies found a wide range of 

design effects, with mean or median design effects greater than 5 and ranging from 5 to 30.

Methods

Evaluating RDS via simulation requires obtaining or creating a population network from 

which to draw samples and simulating RDS on that network. Previous studies have 

simulated RDS both on real and synthetic population networks. RDS is used to study hidden 

populations, so an RDS simulation study’s population network should be as similar to real 

hidden population networks as possible. Unfortunately, complete data for hidden population 

networks is extremely rare. Complete network data is difficult and expensive to collect in 

any setting (Morris 2004), and these challenges are compounded among populations whose 

members wish to remain hidden.

Hidden population network data are unavailable, so the real population networks in previous 

RDS simulation studies have come from a variety of sources (Table 1). Two of the studies 

used network data from a sample of United States adolescents in 7th through 12th grades (the 

“Add Health” study) (Harris et al. 2009, Goel and Salganik 2010, Verdery et al. 2015), and 

another used Facebook network data from college students when Facebook only permitted 

college students to use the service (Verdery et al. 2015). Notably, both of these population 

networks are embedded within schools. In the United States, middle schools and high 

schools are highly structured by grade, with students typically taking classes only with 

others in the same grade. Colleges are less structured by grade, but they have additional 

structure along academic disciplines. Students in these settings often have friends outside 

their grades and disciplines, but their networks are strongly shaped and constrained by those 

institutional structures.

Such institutional structures are not present for the vast majority of hidden population 

networks RDS is used to sample. RDS variance is known to be strongly positively related to 

homophily, the extent to which networks are assortative along characteristics of its members. 

These school networks demonstrate strong homophily by grade, resulting in networks that 

may have “bottlenecks” between population sub-groups (Goodreau et al. 2009). As noted 

earlier, a key element of RDS estimators is self-reported degree. In Add Health, participants 

were asked to name up to five boy best friends and five girl best friends (Harris et al. 2009). 

The degree for a given participant was the sum of the number of persons she named and the 

number of times she was named by participants she did not name. In contrast, RDS study 

participants are typically asked to state the number of persons they know in the target 

population who also know them (Malekinejad et al. 2008), which serves as a proxy for the 

number of people who might recruit them into the study. Because of the difference in how 

degree is elicited between Add Health and RDS studies, the degree distribution for RDS 

studies typically has a higher mean and higher variance than those in the Add Health school 
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networks (Malekinejad et al. 2008, Goodreau et al. 2009). In sum, these school networks are 

very unlike the hidden population networks through which RDS coupons are typically 

passed, and some of their features make it known a priori that RDS will perform poorly in 

simulations.

Given the differences between the available population network data and the networks of 

hidden populations, we based both our simulated population networks and our simulated 

RDS sampling process on real RDS studies. To maximize the similarity of our simulations to 

RDS as it occurs in the field, our simulations are designed to reflect RDS as it was used to 

sample PWID by the CDC’S National HIV Behavioral Surveillance system (NHBS) in 2009 

and 2012. NHBS sampled PWID in 20 U.S. cities in both 2009 and 2012 using a standard 

protocol, resulting in 40 RDS samples (CDC 2012, 2015). A flowchart of our simulation 

methods is presented in the supplemental material.

To create the simulated population networks for our study (step 1 in the 3-step process 

described above), we first estimated four characteristics of the PWID population in each 

NHBS city from each of the 40 NHBS samples: the prevalence and homophily for a two‐
valued trait of public health interest; the estimated mean degree of population members; and 

differential activity (DA). Homophily is a measure of assortative mixing in the network 

defined as the proportion of ties in the network between two respondents who share a trait 

status relative to what would be expected by chance. DA is measure of one group’s 

gregariousness compared to another and is defined as the ratio of the mean degrees of 

population members with and without the trait. Summary statistics of these characteristics 

can be found in Table 2.* Using each of the 40 sets of characteristics, we then simulated 

1,000 networks using exponential‐family random graph models (ERGMs) (Frank and 

Strauss 1986, Hunter and Handcock 2006, Hunter et al. 2008a, Hunter et al. 2008b, 

Handcock et al. 2014), for a total of 40,000 networks. Each simulated network had a 

population size of 10,000 members.

We designed the RDS process (step #2 above) used in the simulations to match those 

observed in the NHBS samples by first measuring the following characteristics for each of 

the 40 NHBS samples: the sample size, the numbers of seeds with and without the trait, and 

the distribution of number of recruitments by sample members. Summary statistics of these 

characteristics can be found in Table 2.†

For each of the 1,000 networks corresponding to a given NHBS sample, we simulated one 

RDS sample using the RDS package in the statistical software R (step #3 above) (Handcock 

et al. 2015, R Core Team 2015). The simulated RDS process was implemented based on the 

RDS process characteristics of the NHBS sample described above; for example, a given 

simulated RDS sample had the same number of seeds as did its corresponding NHBS 

sample. Because RDS samples do not allow for repeated participation, our baseline samples 

were without replacement. For each simulated RDS sample, we applied each of the four 

*De-identified characteristics for each sample may be found in the supplementary materials.
†De-identified characteristics for each sample may be found in the supplementary materials.
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point/variance estimator pairs to the trait of interest. For each of the three RDS estimator 

pairs, we calculated 95% CIs using both the studentized and percentile bootstrap methods.

Our analysis compares the coverage rates of the 95% CIs for the four point/variance 

estimator pairs and two bootstrap CI methods when sampling was with and without 

replacement, where the coverage rates are calculated as the proportion of the simulations in 

which the CI contained the true population prevalence of the trait.

We calculate the actual DEs for our simulations numerically as ratio of the variance of the 

distribution of point estimates across simulations to the SRS variance, where the SRS 

variance includes a finite population adjustment based on the proportion of the population 

that was sampled. We calculate the estimated DEs for our simulations as the ratio of the 

estimated variance to the SRS variance. Each actual DE is calculated as the variance of the 

1,000 simulations for each population network. Each estimated DE is calculated from a 

specific estimator pair applied to a single sampling simulation. Because the actual DE varies 

in magnitude across population networks, we summarize the estimated DEs’ accuracy by 

calculating the ratio of each simulation’s estimated DE to the actual DE for that population 

network. We compare the actual DEs for the four point estimators and also compare the 

actual DEs to the DEs estimated by the RDS variance estimators.

Results

Figure 1 presents the 95% CI coverage rates for the four estimator pairs for the 40 sets of 

RDS simulations conducted with the baseline condition of sampling without replacement 

and estimating the CI via the studentized bootstrap method. The horizontal axis of the figure 

is the nominal 95% CI coverage rate, and the vertical axis is the 40 simulation sets ordered 

from top to bottom by the SS coverage rate (the red line).‡ The left panel of Figure 1 

displays the full range of coverage rates on the horizontal axis. The sample mean performs 

poorly compared to the other estimators. Hence, the right panel omits the sample mean and 

displays coverage rates from 80% to 100% to allow more detailed comparison of the non‐
sample mean RDS estimator pair coverages. The right panel reveals that the SH/Sal-BS and 

VH/Sal-BS estimates have similar performance to SS/SS-BS estimators for a majority of 

simulation sets, but that they have considerably worse coverage rates in at least 4 sets of 

simulations.

The SS/SS‐BS estimator pair had overall higher coverage than the other two RDS estimator 

pairs: it only had one instance of coverage below 90%, whereas the SH/Sal‐BS and VH/Sal‐
BS coverages were below 90% in five instances. The NHBS sample corresponding to the 

instance with SS/SS-BS coverage below 90% (86.8%) has trait prevalence of .034 and the 

smallest sample size (n=210) of all the NHBS samples.

The SH/Sal-BS and VH/Sal-BS had considerably worse coverage rates in 4 sets of 

simulations (Figure 1, right panel: B-01, A-08, B-19, and A-01). The NHBS samples 

‡Samples numbers are prefixed with “A” for samples from 2009 and “B” for samples from 2012. Sample numbers were randomly 
assigned to cities and are consistent across the two survey years (e.g., A-01 is the same city as B-01).
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corresponding to these extreme cases had lower differential activity and higher homophily 

for the trait of interest than did the other samples.

Table 3 shows summary statistics across the 40 simulation sets for these RDS estimator pair 

coverages along with results for the percentile bootstrap. For the SH/Sal-BS and VH/Sal-BS 

estimators, the studentized bootstrap performs better, with mean coverage rates 6 and 5.9 

percentage points higher and median coverage rates 2 and 2.1 percentage points higher, 

respectively. For the SS/SS-BS the results are very similar, with the studentized mean 

coverage rate 0.3 and median coverage rate 0.4 percentage points lower.

Given that the conditions varied considerably across the forty simulation sets, summary 

statistics such as the mean may mask meaningful variation in the coverages. Therefore, we 

calculated a summary measure of “acceptable coverage”.§ The Mean/SRS estimator had 

acceptable coverage in 5% of CIs. The SH/Sal‐BS and VH/Sal‐BS with studentized 

bootstrap estimator pairs produced acceptable coverage for 67.5% of CIs, and the SS/SS‐BS 

with percentile and studentized bootstrap CI methods produced acceptable coverages for 

80% and 75% of CIs, respectively.

We conducted additional simulations to investigate the higher 95% CI coverage rates for the 

VH/Sal-BS in our analysis (all greater than 80%; see Figure 1) than the VH/Sal-BS coverage 

rates reported in the seminal Goel and Salganik paper (medians of 52% and 62% coverage 

for the two samples analyzed) and the paper by Verdery and colleagues (means of 68% and 

65% for the two samples analyzed) (Goel and Salganik 2010, Verdery et al. 2015). We 

hypothesized that the simulation of RDS sampling with replacement or the use of the 

percentile bootstrap CI method impacted the coverage findings in those papers. Figure 2 

presents the coverage rates for the VH/Sal‐BS estimator pair under four conditions: 

sampling with replacement with percentile bootstrap CIs, sampling with replacement with 

studentized bootstrap CIs, sampling without replacement with percentile bootstrap CIs, and 

sampling without replacement with studentized bootstrap CIs. This figure shows that the 

estimator applied to simulations using without replacement sampling and the studentized 

bootstrap method (purple line and triangles) consistently outperforms simulations using with 

replacement sampling and the percentile bootstrap (red line and circles).

Table 4 summarizes the DEs from our RDS simulations. The first four rows of Table 4 show 

the actual DEs for samples drawn without replacement for the sample mean, SH, VH, and 

SS estimators. The median DEs for the SH, VH, and SS point estimators (table rows 2 – 4) 

were approximately 1.7, which is similar to the DEs observed for other complex sampling 

methods (Pettersson and Silva 2005, US Census Bureau 2006). For both the VH and SS 

estimators, the maximum DE was between 6 and 6.2; the maximum DE for SH was 95.5. In 

addition to its maximum DE of 95.5, the SH had 3 additional DEs that were much higher 

than expected. The DEs in these four scenarios were due the SH estimator failing for 

between 2 and 6 of the 1,000 simulation runs. Specifically, in these cases the SH produced a 

trait prevalence of 1 when the true prevalence was less than 0.08.¶

§Acceptable coverage percent is calculated as the percentage of confidence intervals (CIs) with coverage between 93% and 97%, 
inclusive, for a given estimator pair and bootstrap CI method.
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The last row of Table 4 shows the DEs of the VH estimator for sampling with replacement, 

which was the RDS simulation process used in the papers by Goel and Salganik and Verdery 

and colleagues (Goel and Salganik 2010, Verdery et al. 2015). Note that for every summary 

statistic, the DEs are higher for the VH sampling with replacement condition than for the 

VH sampling without replacement condition.

Table 5 compares the estimated and actual DEs by estimator pair and sampling method. It 

summarizes the performance of the DEs estimated by a given estimator pair and sampling 

method by comparing the distribution of estimated DE to actual DE ratios across the 40,000 

simulations to a benchmark. It presents three benchmarks: estimated DEs within a factor of 

1.5 (i.e., 60% to 150%) of the actual DE, a factor of 2 (i.e., 50% to 200%) of the actual DE, 

and a factor of 3 (i.e., 33% to 300%) of the actual DE. For each benchmark, it presents the 

percent of estimated DEs that were within that factor and the percent of those that were 

within the factor that were too low. For example, 78.1% of the SH/Sal-BS without 

replacement estimated DEs were within a factor of 1.5 of the actual DE; of that 78.1%, 

45.8% were too low.

Table 5 shows that for without replacement sampling, the pattern of estimated DE 

performance for the estimators is consistent for all three benchmarks: the SS/SS-BS 

estimator pair had the highest percentage within the factor, the VH/Sal-BS had the second-

highest percentage, and the SH/Sal-BS had the lowest percentage. This ordering was the 

same for the percentage of estimates within the benchmark that were too low, with the 

SS/SS-BS pair having the most even distribution (percentages closest to 50%). This pattern 

reflects the SH/Sal-BS and VH/Sal-BS pairs having less accurate estimated DEs that are 

biased upward, and the SS/SS-BS pair having more accurate estimated DEs that are 

approximately unbiased.

For with replacement sampling the VH/Sal-BS estimator pair shows much lower accuracy 

than all three without replacement estimators for the most stringent benchmark factor. It also 

has a high proportion of estimated DEs that are too low, with more than 79% of estimated 

DEs lower than the actual DE.

Discussion

Our simulations suggest that the coverage of 95% CIs for RDS samples is usually above 

90% (with no coverage rates above 97%). This is better than past work has suggested, 

demonstrating that reasonably accurate RDS variance estimation is feasible and that 

conclusions drawn from past analyses of RDS data that applied one of these estimators may 

well be reasonable in scenarios where RDS assumptions are met.

While the RDS estimators performed better than expected, the SRS variance estimator 

significantly underestimates the variability of RDS samples and provides very low coverage. 

Because of the complexity of RDS, it may be tempting to dispense with complicated 

¶We have also observed this pattern of SH estimator behavior in its implementation in the Respondent-Driven Sampling Analysis Tool 
v7.1 software (Volz et al. 2012). It typically, but not always, occurs when ‘0’ cells are present in the recruitment matrix (e.g., when two 
population sub-groups do not recruit one another).
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inferential approaches and use the sample mean and SRS variance approximation. Our 

results show that this approach is likely to cause significant under-estimation of uncertainty 

and lead to misleading conclusions.

We found that the SS/SS‐BS estimator pair had overall higher coverage than the other two 

estimator pairs. The SS/SS-BS exhibited its lowest coverage when applied to a sample with 

lower prevalence and a smaller sample size than the other samples. In contrast, the SH/Sal‐
BS and VH/Sal‐BS had lower coverage for samples with levels of differential activity much 

lower than those of the other samples in combination with higher levels of homophily than 

those of the other samples.

Note that the difference between the SS and VH estimators is a finite population adjustment 

that requires knowing the true size of the population, which is typically unavailable. The 

impact of error in the population size specified for the SS estimator in a given sample is a 

function of the true size of the population. The impact is relative, so the impact of a given 

absolute error in the specified population size will be larger for smaller population sizes 

(e.g., an error of 500 in the specified population size will have more impact when the true 

population size is 1,000 than when it is 10,000). For large population sizes the SS estimator 

approaches the VH estimator because the finite population adjustment has little impact, so 

using the SS estimator with a too-large population size specification will pull it toward the 

VH estimate. Therefore, the SS will perform at least as well as the VH unless the population 

size is dramatically underestimated.

The complexity of the relationship between a population’s characteristics and RDS CI 

coverage is high, so the specific relationships between prevalence, sample size, and 

homophily and the performance of RDS estimator pairs require further investigation. More 

generally, the number of such population characteristics that must be systematically varied 

in a simulation (the “parameter space”) to disentangle the combinations of factors that 

influence RDS CI coverage is very large. A systematic study of that parameter space is 

needed to provide evidence about RDS CI coverage in the large variety of settings in which 

RDS is applied.

While other work has suggested RDS variance estimators perform poorly, our analysis 

suggests those results can, at least partially, be attributed to the choice of bootstrap method 

and unrealistic use of with-replacement sampling in prior studies. For the SH and VH 

estimators, we found that using the studentized bootstrap, as compared to the percentile 

bootstrap, significantly increased the percentage of CIs with good coverage from 40 to 67.5 

and 42.5 to 67.5, respectively (Table 2). Goel and Salganik’s findings of low CI coverage 

were likely at least partially due to their use of with‐replacement sampling and the percentile 

bootstrap CI method (see Figure 2). Other work, such as that by Chernick and LaBudde, has 

studied the relative performance of studentized and percentile bootstrap CI estimates and 

found that in most scenarios the studentized approach is more accurate (Chernick and 

LaBudde 2014).

We also found significantly smaller DEs than Goel and Salganik, with evidence that 

sampling with replacement increases the DE. For example, for without replacement 
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sampling, both SS/SS and VH/Sal-BS produced actual DEs less than 3 in 92.5% of our 

conditions (37/40) and 62.5% less than 2, whereas for with replacement sampling the VH/

Sal-BS estimator pair DE was less than 3 in only 67.5% of our conditions with only 30% 

less than 2. This echoes findings by Lu and colleagues and Gile and Handcock that sampling 

without replacement may reduce the DEs for RDS (Gile and Handcock 2010, Lu et al. 

2012).

Furthermore, the estimated DEs were more accurate for sampling without replacement than 

for sampling with replacement. For example, for the VH/Sal-BS estimator pair sampling 

without replacement produced estimated DEs within a factor of 2 of the actual DEs 91.8% 

of the time, with slightly less than half (47.3%) being lower than the actual DE (the anti-

conservative direction). In contrast, for with replacement sampling the estimated DEs were 

within a factor of 2 of the actual DEs only 79.9% of the time, with a significant majority 

(82.8%) being lower than the actual DE. Overall, the estimated DEs for the SS/SS estimator 

pair were the most accurate: 92.9% within a factor of 1.5, with fewer large outliers (see the 

Technical Supplement for more detail).

The RDS sampling process is highly complex and only partially observed in real RDS 

studies, so many choices about simulation design and specification must be made without 

reference to empirical data. Because the ultimate goal of RDS simulation studies is to 

understand how RDS performs in the real world, we recommend conducting RDS 

simulations without replacement and with parameters informed by real RDS samples to the 

extent possible.

This study’s simulations find that RDS DEs are in the range suggested in other 

methodological work that did not use simulation studies (Wejnert et al. 2012). We found that 

simulated RDS DEs in cases chosen to approximate the NHBS are usually between 1 and 3, 

in contrast with suggestions in past simulation work that DEs may often be greater than 10 

(Goel and Salganik 2010, Verdery et al. 2015). This means that, in instances where RDS 

assumptions are met, RDS provides samples with statistical precision similar to that of other 

complex sampling methods (although with significantly less precision than simple random 

samples of the same populations).

We used data from a large number of real RDS studies to parameterize our simulated 

networks and RDS sampling process. These RDS samples were of PWID in large US urban 

areas, so the results are likely most applicable to RDS samples drawn from large cities. Most 

of the largest RDS studies in the world occur in such places, such as studies conducted in 

China and Brazil (Szwarcwald et al. 2011, Li et al. 2014). However, many RDS samples are 

drawn from smaller populations in less urban areas, which may have population networks 

with significantly different structures than those in NHBS cities (Malekinejad et al. 2008). 

Sampling fractions may be substantial in studies of small populations, making it important 

to use RDS estimators that accommodate RDS sampling without-replacement (which the SH 

and VH estimators do not). McCreesh and colleagues conducted an RDS methodological 

study in Uganda that is more similar to such small populations than are NHBS samples 

(McCreesh et al. 2012). They found that some sub-populations under-represented in the 

sample (relative to the population) did not have correspondingly lower mean degree, which 
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led the RDS estimators to perform poorly. However, the poor performance of RDS 

estimators was also partially due to some recruiters’ misunderstanding of which population 

members were eligible for the study (and should be considered for recruitment) due to 

differences between the researchers’ and the local population’s interpretation of the 

language used to communicate the eligibility criteria (McCreesh et al. 2012). This 

misunderstanding led to systematically biased recruitment by some sample participants. 

With all sampling methods, but especially in peer-driven methods such as RDS, it is critical 

that researchers understand and account for the cultural norms and context of the 

communities they are sampling. These differences in population structure, RDS execution, 

and RDS estimation highlight the importance of context in understanding the applicability of 

RDS methodological study findings.

Our results are subject to a number of limitations. First, although the networks created for 

our simulations were designed with some structural characteristics similar to those of PWID 

networks in NHBS cities, the true structure and complexity of hidden population networks is 

unknown. Almost all social networks contain structure that is not observed in RDS data. For 

example, an outcome might vary across a city’s neighborhoods, and the PWID networks in 

some neighborhoods may have few connections to those in other neighborhoods. The 

ERGM used to create our simulated networks did not directly specify such complex network 

structure, as it is unclear what the correct levels of such structure should be. Note that for 

such network structure to strongly influence RDS estimation, it must be strongly related to 

the outcome (e.g., quite different prevalences of the trait across the weakly connected 

subgroups).

Second, the characteristics we used to create the networks for our simulations were 

estimated from NHBS samples using RDS estimators. Therefore, the simulations are not 

replicates of the 40 samples collected by NHBS but are, instead, examples of networks and 

RDS processes similar to those observed in the NHBS samples. The results may be sensitive 

to our use of large networks and small sampling fractions as in the NHBS samples. The 

stability of NHBS samples of PWID over time suggests that our findings are applicable to 

future NHBS studies of PWID.

Third, our simulations implemented RDS with only a few statistical assumptions not met. 

Both the SH and VH point estimators assume that recruitment trees do not branch (i.e., each 

sample member makes exactly one recruitment) and that sampling is with-replacement, 

neither of which was true in our simulations. Other RDS statistical assumptions such as 

participants recruiting randomly from their set of contacts and, for the SS estimator, that the 

population size is known, were met. It is known that violations of RDS point estimator 

assumptions decrease the accuracy of RDS point estimates (Gile and Handcock 2010, Tomas 

and Gile 2011, Lu et al. 2012). This is likely true for RDS variance estimators as well. 

Future work will examine the effects of violations of assumptions on the performance of 

RDS variance estimators.

Fourth, our analysis did not evaluate all RDS variance estimators. Some work has proposed 

new point estimators that were accompanied by minor modifications to an existing variance 

estimator to incorporate the new point estimator (Lu 2013, Lu et al. 2013). Gile and 
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Handcock introduced an estimator that simulates RDS on a synthetic network created from 

characteristics of the sample data (Gile and Handcock 2015). Yamanis and colleagues 

proposed a modification to the Salganik bootstrap that reflects the branching structure of 

RDS samples (Yamanis et al. 2013). Baraff and colleagues recently proposed a tree 

bootstrap in which each resample replicates recruitment trees’ structures by sampling with 

replacement from each recruiter’s set of recruits (Baraff et al. 2016). We look forward to 

evaluating these variance estimators and understanding how their differences impact 

estimate coverage.

Conclusion

Sampling hidden populations is critical for public health surveillance and planning around 

the world. RDS is effective at reaching members of hidden populations that other sampling 

methods cannot and is inexpensive enough to be used in low‐resource settings. These 

strengths have led to its wide use around the world for many different applications.

Past research on RDS variance estimation suggested that RDS variance estimator CIs 

provide very low coverage rates and that RDS has higher DEs than has been assumed in the 

public health literature (Goel and Salganik 2010, Verdery et al. 2015). Our results indicate 

instead that both CI coverage rates and DEs are often acceptable but not perfect. However, 

researchers should evaluate whether a given study has characteristics similar to those found 

in our simulations that produced good (or poor) coverage. Additionally, deviations from the 

assumed RDS sampling process or population network structures not examined in this paper 

may impact the CI coverage rates and DE magnitudes for a given study.

RDS is used around the world to sample hidden populations that suffer from high rates of 

infection by HIV and other diseases. It is critical that researchers draw correct conclusions 

from RDS data by applying appropriate statistical techniques. We look forward to an 

improved understanding of RDS estimation that will better inform the policies critical to 

preventing and reducing the burden of disease borne by hidden populations worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
95% confidence interval (CI) coverage percentages for 40 sets of RDS simulations 

(sampling without replacement; studentized bootstrap CI method). The horizontal axis is the 

nominal 95% CI coverage percentage, and the vertical axis is the 40 simulation sets ordered 

from top to bottom by the SS coverage percentage (the red line). The left panel’s horizontal 

axis ranges from 0 to 100%; the right panel’s horizontal axis ranges from 80% to 100% for 

detail. The coverage percentages for the sample mean do not appear in the right panel.
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Figure 2. 
95% confidence interval (CI) coverage percentages for 40 sets of RDS simulations (VH/Sal-

BS estimator pair) by bootstrap CI method and sampling with and without replacement. The 

horizontal axis is the nominal 95% CI coverage percentage, and the vertical axis is the 40 

simulation sets ordered from top to bottom by the without replacement, studentized 

bootstrap condition (the purple line and triangles).
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Table 4

Design effects for four RDS point estimators by sampling with or without replacement

Point Estimator (sampling method) Range Median Mean Standard Deviation

Sample mean (without replacement) [0.75, 2.64] 1.34 1.42 0.49

Salganik-Heckathorn (without replacement) [0.83, 95.51] 1.72 7.47 19.96

Volz-Heckathorn (without replacement) [0.81, 6.19] 1.69 1.91 0.96

Successive Sampling (without replacement) [0.83, 6.03] 1.66 1.89 0.93

Volz-Heckathorn (with replacement)* [1.01, 7.97] 2.34 2.77 1.48

*
Point estimator and sampling method used in Goel and Salganik 2010
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