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Abstract

Abnormal levels of Alzheimer’s disease (AD) biomarkers, measured by positron emission 

tomography imaging using amyloid-based radiotracers and cerebrospinal fluid, are associated with 

impaired driving performance in older adults. We examined whether preclinical AD staging, 

defined using amyloid imaging and tau imaging using the radiotracer T807 (AKA flortaucipir or 

AV-1451), was associated with receiving a marginal/fail rating on a standardized road test (n = 42). 

Participants at Stage 2 (positive amyloid and tau scans) of preclinical AD were more likely to 

receive a marginal/fail rating compared to participants at Stage 0 or 1. Stage 2 preclinical AD may 

manifest in worse driving performance.
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INTRODUCTION

The population of older adults will continue to grow, resulting in a projected estimate of 69 

million licensed drivers aged 65 years and older by 2050 [1, 2]. Recent studies of older 

drivers indicate an increase in annual average miles driven, along with an associated higher 

number of crashes, injuries, and deaths and annual lifetime costs estimated at $80 billion [3, 

4]. Compared to older drivers generally, those with symptomatic Alzheimer’s disease (AD) 

have an increased risk of injury and mortality from crashes [4]. Autopsy studies suggested 

that driving impairment may be associated with the long preclinical stage preceding 

symptomatic AD [5].

Development of molecular biomarkers has allowed for in vivo detection of plaques and 

tangles, both hallmarks of symptomatic AD. These AD biomarkers include imaging of 

fibrillar amyloid using positron emission tomography (PET) with radiotracers such as 

Pittsburgh compound B (PiB) or florbetapir [18F-AV-45] [6–9]. Our prior studies have 

shown that cognitively normal older adult drivers with more abnormal molecular AD 

biomarkers (cerebrospinal fluid (CSF) and amyloid imaging) make more errors on a 

standardized road test, report a greater history of traffic violations and crashes, and are more 

likely to fail a road test over time, compared to those with normal biomarker levels [10–12]. 

These observations suggest that preclinical AD may be sufficient to impair functional 

performance, and hence may not be entirely asymptomatic.

The hypothetical staging of preclinical AD using biomarkers suggests several stages, 

including Stage 0 which presents with no abnormal biomarkers, Stage 1 which presents with 

amyloid+ (PET or CSF) and Stage 2 which presents with amyloid and neuronal injury (CSF 

tau or phosphorylated tau) [13, 14]. The recent development of tau radiotracers, such as 

T807 (also known as 18F-AV-1451 or flortaucipir), has enabled in vivo imaging of tau 

topography [15, 16]. Studies using Tau-PET imaging have examined differences between 

symptomatic AD and cognitively normal adults, correlations between CSF tau and tau PET, 

and preclinical AD staging and cognitive performance [17–22]. Additionally, tau pathology 

is more strongly related to concurrent cognition than amyloid-β [23]. To our knowledge, no 

study has used Tau-PET imaging to examine functional outcomes like driving. We examined 

whether preclinical AD Stages 0–2 are associated with driving performance among 

cognitively normal older adults.

METHODS

Design

Data from participants with normal cognition (Clinical Dementia Rating (CDR) [24] = 0), 

65 years or older, with a valid driver’s license, who drove at least once per week, had both 

tau PET and amyloid PET imaging, and who met criteria for pre-clinical AD Stages 0, 1, 
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and 2 were used. These participants were a subsample of individuals participating in a larger 

study on preclinical AD and driving, and were recruited from the pool of individuals already 

participating in longitudinal studies at the Knight Alzheimer’s Disease Research Center. 

Participants also completed clinical and neuropsychological testing, and a standardized on-

road test. The Washington University Human Research Protection Office approved study 

protocols along with written informed consents from participants.

Clinical assessment

A CDR score was derived by experienced clinicians who synthesize information obtained 

from interviews with the participant and a collateral source who is well acquainted with the 

participant [24]. CDRs are derived in accordance with a standard scoring algorithm; CDR 0 

= no dementia, CDR 0.5 = very mild, CDR 1 = mild, CDR 2 = moderate, and CDR 3 = 

severe dementia.

Road test

The 12-mile, modified Washington University Road Test, takes approximately one hour to 

complete. Participants begin the course in a closed parking lot and progress into traffic 

routes which includes unprotected left hand turns, complex intersections and lane merges 

[25]. The examiner sits in the front seat and gives verbal directions to the participant while 

scoring their performance. A global rating of pass (no problems/errors), marginal (some 

errors and safety concerns), or fail (numerous errors and high safety risk) is derived at the 

end of the road test.

Biomarker measurement

Data were processed using a region of interest approach using FreeSurfer segmentations 

(http://freesurfer.net/) of magnetization-prepared rapid gradient-echo (MPRAGE) images 

[26]. Amyloid imaging data were obtained on a Biograph mMR scanner (Siemens Medical 

Solutions, Erlangen, Germany) [18]. Participants received a single intravenous injection of 

7.4–11.3 mCi of florbetapir (F-AV-45) [19]. Data from the 50–70-min post IV window were 

converted to standardized uptake value ratios (SUVRs) using the cerebellar cortex as a 

reference [17, 18]. A summary measure of amyloid deposition was obtained by taking the 

mean from regions known to have high uptake among AD participants (pre-frontal cortex, 

gyrus rectus, lateral temporal cortex, and precuneus) [26]. Partial volume correction was also 

performed using a regional spread function technique [27]. Tau imaging data were obtained 

in a separate session on a Biograph 40 PET/CT scanner. Participants received a single IV 

injection of 7.2–10.7 mCi of flortaucipir (F-AV-1451). Data from the 80–100-min post 

injection window were converted to SUVRs using the cerebellar cortex as a reference and 

underwent partial volume correction [17, 18]. A summary measure of tau was created by 

averaging four regions (amygdala, entorhinal cortex, inferior temporal, and lateral occipital 

cortex) [28]. Established cutoffs were used for both tau (1.230) and amyloid (1.219) imaging 

SUVRs indicating positive versus negative [26, 28].
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Statistical analyses

Driving test performance yields a global rating of pass, marginal, or fail. Since a fail rating is 

relatively rare in a cognitively normal sample (all CDR = 0) and marginal ratings do identify 

concerning driving behaviors, the overall rating was dichotomized into pass versus marginal/

fail [10]. Based on the National Institute on Aging and the Alzheimer’s Association (NIA-

AA) criteria, a three-level biomarker variable was constructed based on Stages 0–2 [29]. 

Chi-square analysis examined the unadjusted association between driving performance and 

the three-level variable. Given the results of the three-level analysis, a dichotomous variable 

was also created to compare driving performance for persons with Stage 2 preclinical AD to 

those with Stages 0 and 1 combined. Logistic regression was then used to test the association 

of driving rating and the dichotomous variable while controlling for age. Secondary analyses 

examined differences in memory scores between participants who received a pass and 

marginal/fail rating using the free-recall portion of the Free and Cued Selective Reminding 

Test [30], Verbal Fluency (animal naming task) [31] and Trail Making Test (tasks A and B) 

[32], while adjusting for age. For each of the four psychometric tests, longitudinal data 

(when available) were used to calculate a slope of change score reflecting annualized change 

in psychometric test performance in the years prior to the driving test. General linear models 

examined whether slope of change across time, while adjusting for age, on each test differed 

for participants who received a pass and marginal/fail rating. Data were analyzed using 

SPSS Statistics version 24 (IBM Corp., Armonk, NY).

RESULTS

Data were available from 42 participants with ages ranging from 65 to 90 years (Table 1). 

Across the three groups, there were only five participants who received a marginal/fail rating 

(11.9%): – Stage 0 = 1/21; Stage 1 = 0/9; Stage 2 = 4/12 (χ2 = 7.49, df = 2, p = 0.02). 

Because of this, the major analyses examined differences between the Stage 2 (4/12, 33.3%) 

and Stages 0 and 1 combined (1/30, 3.3%; χ2 = 7.36, df = 1, p = 0.007). In the logistic 

regression analysis, participants classified as Stage 2 were more likely (OR: 11.4; CI: 1.03–

125.8; p = 0.047) to receive a marginal/fail rating on a road test compared to participants 

classified as Stage 0 or 1. Age was not a statistically significant predictor in this model. In 

secondary analyses, there were no cross-sectional differences in neuropsychological 

performance on the Free and Cued Selective Reminding Test (F: 1.92; p = 0.174), Animal 

Fluency (F: 0.87; p = 0.359), or Trail Making A (F: 2.76; p = 0.106) and B (F: 1.30; p = 

0.265) between participants who received a pass and marginal/fail rating. Similarly, there 

were no statistically significant group differences in slopes of change on Free and Cued 

Selective Reminding Test (F: 0.10; p = 0.758), Animal Fluency (F: 0.26; p = 0.616) or Trail 

Making A (F: 0.48; p = 0.827) and B (F: 0.94; p = 0.341). Age was not a statistically 

significant predictor in any of these models.

DISCUSSION

High levels of both tau and amyloid as ascertained via PET imaging were able to predict 

driving performance in a sample of cognitively normal older adults. Prior work suggests that 

higher stages (2 and 3) of preclinical AD are associated with greater cognitive decline and 
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mortality [33]. We found that participants classified at Stage 2 (positive tau and amyloid 

scans) were 11 times more likely to receive a marginal/fail rating on a road test compared to 

those at Stage 0 and 1, although the confidence interval for this point estimate was wide. 

Similar to cognitive testing, driving is complex activity that is dynamic and requires 

multisystem engagement. In this small sample, the combination of tau-PET and amyloid-

PET positivity was associated with higher driving risk as reflected on a road test, supporting 

the hypothesis that preclinical AD is not benign. When we examined performance on four 

neuropsychological tests, we found no differences between participants who received a 

marginal/fail rating and a pass rating. This suggests that decline in driving performance 

likely precedes other psychometric measures of objective decline in cognitive performance. 

This finding is consistent with our prior work in cognitively normal older adults and driving 

performance [10].

There are some limitations to our study. Participants were well educated, predominately 

Caucasian, willing to undergo PET imaging and thus may not be representative of the larger 

population. Results obtained from the standardized road test may not generalize to day-to-

day driving. Research using naturalistic methodologies [34–36] that collect data on a daily 

basis from a participant’s vehicle in the actual environment they drive may be more sensitive 

in detecting difficulties in driving behavior. Given the small sample, these analyses should 

be interpreted as preliminary findings. Despite these limitations, our results suggest that 

Stage 2 preclinical AD may interfere with driving skills, and that tau-PET imaging can help 

to predict driving difficulties in participants with and without preclinical AD.
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Table 1

Baseline demographics (n = 42)*

Age, y 72.4 ± 5.7

Education, y 16.9 ± 2.2

Women, n 15 (35.7%)

Race, Caucasian, n 39 (92.9%)

APOE4+, n 11 (26.2%)

Interval between tau and amyloid imaging, d 3.6 ± 2.7

Interval between tau imaging and clinical assessment, d 3.0 ± 2.1

Interval between tau imaging and driving assessment, d 90 ± 197.6

PET Imaging

 Florbetapir SUVR 1.4 ± 0.7

 Flortaucipir SUVR 1.2 ± 0.2

 Amyloid (+) 21 (44.7%)

 Tau (+) 12 (28.6%)

Imaging Groups

 Preclinical Stage 0: – amyloid – tau 21 (44.7%)

 Preclinical Stage 1: +amyloid – tau 9 (19.1%)

 Preclinical Stage 2: +amyloid + tau 12 (25.5%)

MMSE 29.3 ± 1.02

 Road Test Rating (Pass) 37 (88.1%)

APOE, apolipoprotein ε; PET, positron emission tomography; SUVR, standardized uptake value ratio; MMSE, Mini-Mental State Examination.

*
Mean or number ± SD or percentage.
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