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Abstract

Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting 

natural resources into a wide range of chemicals. To broaden the scope of potential products 

beyond natural metabolites, methods of engineering enzymes to accept alternative substrates 

and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of 

enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising 

enzyme variants. Our solution to this challenge is structure-guided mutagenesis in which 

optimization algorithms select the best sequences from libraries based on specified criteria (i.e. 

binding selectivity). Here, we demonstrate this approach by identifying medium-chain (C6-C12) 

acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, products 

of thioesterase-catalyzed hydrolysis, are limited in natural abundance compared to long-chain fatty 

acids; the limited supply leads to high costs of C6-C10 oleochemicals such as fatty alcohols, 

amines, and esters. Here, we applied computational tools to tune substrate binding to the highly-

active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase 

variants with enhanced C12- or C8-specificity while maintaining high activity. After four rounds of 

structure-guided mutagenesis, we identified three thioesterases with enhanced production of 

dodecanoic acid (C12) and twenty-seven thioesterases with enhanced production of octanoic acid 

(C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total 

free fatty acids. A comparably sized library created by random mutagenesis failed to identify 

promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in 
vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal 

structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity. 

We expect that the design rules we uncovered and the thioesterase variants identified will be useful 
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to metabolic engineering projects aimed at sustainable production of medium-chain 

oleochemicals.
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Introduction

Free fatty acids (FFAs) are energy-rich precursors of membrane lipids, natural oils, liquid 

transportation fuels (a.k.a. biodiesel), and high-value oleochemicals (e.g. fatty alcohols, 

aldehydes, olefins, and waxes)1–4. Oleochemical properties such as energy content, melting 

point, and volatility are dictated by the chain length, degree of saturation, and branching 

pattern of the acyl-chain5. Fuels and oleochemicals derived from microbially produced FFAs 

could displace current, unsustainable plant feedstocks and reduce carbon footprints relative 

to petrochemical alternatives6–7. Unfortunately, natural sources of medium-chain length 

FFAs and lipids are significantly less abundant than longer chain compounds. The limited 

supply and costly petrochemical synthesis alternative leads to higher selling prices for 

medium-chain oleochemicals (e.g., 1-octanol costs approximately twice as much as 1-

hexadecanol per pound)4. These economic drivers make bioproduction of medium-chain 

length FFA and oleochemicals an attractive opportunity if biosynthesis pathways with high 

yield and selectivity can be assembled and optimized.

While many oleochemical pathways have been demonstrated in model hosts, chain length 

selectivity remains an unsolved challenge. The product distribution of most metabolic 

engineering efforts has been restricted to the chain-length of the most abundant acyl-

thioester in the cell or the distribution created by expression of a thioesterase. Acyl chains 

that comprise FFAs, lipids, and oleochemicals are made by an iterative series of elongation, 

keto-reduction, dehydration and enoyl-reduction reactions acting on acyl-coenzyme A (acyl-

CoA) or acyl-acyl-carrier protein (acyl-ACP) thioesters4. An acyl-chain is elongated by two 

carbon atoms per cycle until it is trans-esterified (into phospholipids, waxes, or esters), 

reduced (to a fatty aldehyde or alcohol), or hydrolyzed (yielding a FFA)1. The chain length 

distribution of these terminal products is controlled by the relative kinetics of elongation, 

transesterification, reduction, and/or hydrolysis. In Escherichia coli, the activity of 

phospholipid synthases (PlsB, PlsC) and fatty acid synthases (FabB, FabF, FabH) constrain 

the lipid composition to mostly C16 or C18 acyl-chains with little FFA content8. In contrast, 

E. coli can produce high titers of FFA with a wide range of chain-length distributions by the 

upregulation of native thioesterases (TesA and TesB) or heterologous expression of plant and 

bacterial thioesterases (see Table S1). In the absence of pathways for catabolizing FFA 

and/or acyl-thioesters (i.e. beta-oxidation), the specificity of the acyl-ACP thioesterase 

controls the chain-length distribution and the chemical properties of downstream 

oleochemicals (see Figure 1). Collectively, thioesterases exhibit a wide range of substrate 

specificities2, 9–14 that has been further diversified through protein engineering and 

evolution15–17. Even with this known diversity, very few thioesterases are specific towards a 
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single aliphatic chain length10. Worse, heterologous expression of thioesterases frequently 

begets unexpected product distributions4, 10, poor FFA yields18–19, or both. Of the many 

studied thioesterases, ‘TesA (a cytosolic E. coli TesA lacking the N-terminal signal peptide) 

has been used extensively in metabolic engineering studies and has a crystallographically 

resolved structure20. However, ‘TesA has broad substrate specificity with relatively low 

medium-chain content2, 9. For these reasons, ‘TesA is an attractive system for applying 

enzyme engineering to improve thioesterase selectivity towards medium chain lengths.

Enzyme engineering is generally pursued using directed evolution approaches that rely on 

high-throughput screening of large mutant libraries21. These large libraries are constructed 

using various mechanisms for diversifying the gene pool, including homologous (e.g., DNA 

shuffling) or non-homologous (e.g., overlap extension PCR) recombination, random 

mutagenesis (e.g., error-prone PCR), or combinations thereof (see Ref.22 for review). Large 

library sizes rely on high-throughput screening that takes advantage of optical properties, 

such as fluorescent or colorimetric assays. Currently, no high-throughput screen that can 

discriminate between different FFA chain lengths has been developed. When optical screens 

are unsuitable, more laborious experiments (e.g., mass spectrometry or NMR spectroscopy) 

can be used in low-throughput screens that mandate small, more focused libraries. Focused 

libraries can be generated through site saturation mutagenesis (e.g., degenerate 

oligonucleotide-primed PCR) but this approach can only include a small number of sites 

(three saturated sites would yield 8,000 variants) with a high percentage of inactive mutants. 

Smaller library sizes can be formed through site-directed mutagenesis23 (i.e., rational 

design) but so far it has been very difficult to forecast the effect of multiple mutations. When 

a protein structure is known, molecular modeling tools can suggest a handful of promising 

mutations while considering sequence-structure relationships as well as ther approximations.

Structure-based protein redesign procedures such as the Iterative Protein Redesign and 

Optimization (IPRO) method24 used here, offer several advantages over tools that simply 

suggest “hot spot” residues25–30, as they can capture the simultaneous effect of multiple 

mutations. Another class of computational protein redesign tools uses mostly sequence 

information to suggest crossover locations for generating combinatorial libraries31–37. 

However, these combinatorial libraries are limited by the parental sequence space and do not 

take full advantage of available structural information. De novo enzyme designs38–42 are 

usually less active than native ones (without the aid of directed evolution)38–39, 41. Thus, 

structure-based protein redesign can harness natural protein performance and suggest 

directed modifications using structural insight to meet a single or multiple design objectives. 

IPRO differs from other structure-based protein redesign procedures in that it employs a 

mixed-integer linear program to guarantee a global minimum for a given protein backbone 

structure, it can handle multiple decision criterion simultaneously, and distance restraints can 

be easily imposed to keep catalytic machinery intact24, 43–44. More extensive reviews of 

existing computational protein engineering procedures have been provided by Pantazes et al.
45, Samish et al.46, and Huang et al.40

In this study, we applied the Iterative Protein Redesign and Optimization (IPRO) method24 

to guide ‘TesA mutagenesis in search of variants that both improve medium-chain FFA 

specificity and maintain high thioesterase activity. Specifically, we engineered ‘TesA to 
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yield additional dodecanoic acid (C12:0) and octanoic acid (C8:0) at the expense of the 

natively preferred tetradecanoic acid (C14:0). The employed redesign procedure involved 

recursively predicting in silico ‘TesA mutants with enhanced binding capabilities, analyzing 

the in vivo FFA composition, and modifying the computational explorations in a Design-

Build-Test-Learn cycle47. We identified three separate ‘TesA mutants that exhibited a 

statistically significant (p<0.05) improvement in C12 composition over wild-type (WT) and 

twenty-two mutants with a statistically significant improvement in C8 composition. In 

comparison to previously studied thioesterases (see Table S1), our computationally predicted 

mutants include four of the ten most C12-specific and one of the ten most C8-specific 

thioesterases. While computational enzyme redesign that reaches industrially relevant 

performance metrics has so far remained elusive45, the results presented here demonstrate 

the potential of the adopted Design-Build-Test-Learn paradigm to pinpoint promising 

enzyme mutants45, 47–48.

Results and Discussion

Overview of the Design-Build-Test-Learn approach

In support of efforts to alter the product profile of ‘TesA towards medium chain length 

FFAs, we performed four rounds of site-directed mutagenesis structured around a Design-

Build-Test-Learn cycle (Figure 2). In each round, mutagenesis targets and specific amino 

acid substitutions were selected after analyzing simulations of enzyme-substrate binding 

performed with IPRO24. Genes encoding the designed ‘TesA variants were constructed by 

Quikchange® or Gibson Assembly® of PCR products (Materials and Methods) and cloned 

into arabinose-inducible expression vectors. The impact of each mutation was assessed by 

quantifying the FFA content of a ‘TesA expressing E. coli culture (see Table S1). After each 

round, the product distributions for each mutant were analyzed and used to improve to the 

IPRO framework24 via changes in the scoring function parameters or refocusing the 

mutagenesis targets. The following sections describe the deployment of our computational 

enzyme Design phase, results of the Build-Test phase, and a discussion of what we have 

Learned about thioesterase selectivity after each round.

IPRO constraints and implementation

IPRO enzyme redesign requires a three-dimensional model of the protein complex structure, 

a set of predetermined mutatable residues known as design positions, and a set of constraints 

that quantify the desired improvements that protein variants need to reach relative to wild-

type. Examples of such constraints include imposing relations that require a (i) stronger 

interaction energy with the new substrate and (ii) weaker interaction energy with the native 

substrate compared to wild-type. Here, we constructed a structural model of ‘TesA bound to 

an acyl-ACP with acyl chains ranging from C8 to C14. The model was assembled from 

published structures of ‘TesA (PDB 1U8U)20 and decanoyl-ACP (PDB 2FAE)49. Docking 

between ‘TesA and octanoyl-ACP was modeled by systematically rotating the octanoyl-ACP 

structure about its phosphopantetheine linker until it aligned with bound octanoic acid in the 

‘TesA crystal structure (PDB 1U8U, Materials and Methods). Other ‘TesA:acyl-ACP 

complexes were derived from the ‘TesA:octanoyl-ACP complex structure by adding atoms 

to the ω-1 carbon (i.e., the carbon furthest from ACP) of the octanoyl-ACP structure. The 
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IPRO algorithm was used to search for mutations that led to improved binding between 

‘TesA and the desired substrate while simultaneously discouraging binding of undesired 

substrate(s). Design positions for ‘TesA were selected based on proximity to the ω-1 carbon 

of bound tetradecanoyl-ACP while not considering positions vital for catalytic turnover 

(Materials and Methods). The fitness of each predicted variant was assessed using 

interaction energy as a proxy for binding energy (i.e., ΔG) thereby reducing force field 

dependence and requiring fewer calculations. Interaction energy is defined as GEnz:FFA,mm-

GEnz-GFFA, where G is Gibbs free energy, “Enz” represents the enzyme (‘TesA or a variant 

thereof), and “min” indicates that the molecule(s) have undergone an energy minimization. 

In contrast, binding energy is defined as GEnz:FFA,min -GEnz,min -GFFA,min. The first 

constraint is aimed at worsening the interaction energy between ‘TesA and the native 

substrate, tetradecanoyl-ACP (e.g., C14). This first constraint safeguards against binding to 

even longer acyl-ACPs (e.g., C16, C18) because the repulsive interactions, which disfavor 

interactions with the long acyl-ACP (e.g., C14 and longer), are further exaggerated due to 

steric clashes or hydrophobicity. The second constraint requires interaction energy 

improvements between ‘TesA and the medium-chain acyl-ACP (e.g., C12). The imposition 

of the second constraint attempts to enhance binding with C12 or even shorter acyl-ACPs 

(e.g., C8, C10).

IPRO operates by successively performing redesign iterations for a preset number of cycles 

until a variant that simultaneously satisfies all constraints and optimizes the objective 

function is found. IPRO has been applied previously to modify E. coli β-glucuronidase 

substrate specificity50, alter the cofactor specificity of Candida boidnii xylose reductase51, 

graft a calciumbinding pocket into Thermoactinomyces vulgaris thermitase or a copper-

binding pocket into E. coli thioredoxin52, and de novo design antibody variable regions that 

target influenza hemagglutinin, HIV gp120 and Ebola GP1-GP2 viruses42. Each IPRO 

iteration begins with a local backbone perturbation nearby a randomly selected design 

position from the requisite input set. The second step implements a mixed integer linear 

program (MILP) to identify the optimal set of amino acids for the new backbone 

conformation. The third step of IPRO executes a local, rigid-body docking (i.e., 

intramolecular movements are prohibited and only relative positioning between the enzyme 

and ligand is considered) to reorient the ligand (i.e., the acyl-ACP) within the binding site. 

The fourth and fifth steps perform an energy minimization of the entire enzyme complex. 

The sixth step and final steps evaluate the constraints set forth (i.e., (i) reducing binding to 

C14 and (ii) increasing binding to C12). The results of the iteration are retained or discarded 

based on the Metropolis criterion whereby worsening solutions are accepted with a decaying 

exponential probability as in simulated annealing (see Ref.24 for further details). The two 

constraints are imposed only at the ground state of the thioester hydrolysis with no 

additional calculations at the transition state. Instead, simple restraints on catalytic distances 

were imposed during all IPRO iterations so as to preserve, but not necessarily boost, 

catalytic activity50. Multiple IPRO trajectories (~10 independent trajectories) were simulated 

to discover alternative routes for improving specificity. For each variant, the difference of 

interaction energies for the short and long acyl-ACP with ‘TesA (i.e., ΔIE = IEC12 − IEC14) 

was calculated. The variants were prioritized based on the extent of the energy differences, 

and 10-20 variants were selected to build a focused library for experimental testing.
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Method implementation for ‘TesA redesign

The first round (R1) of IPRO-guided mutagenesis helped tune the parameters of the scoring 

function to improve prediction accuracy. Our initial objective was a modest shift in substrate 

preference from C14 to C12, that makes up to 20% of the native ‘TesA product profile, in 

order to assess the efficacy of the redesign protocol. Of twelve tested variants, one improved 

C12 composition) and maintained WT production levels (i.e., ≥ WTTotal, p<0.05; R1.M1; 

Table S1). In contrast, ten were inactive (i.e., < ControlTotal) and included more than two 

charged substitutions (all except R1.M1 and R1.M2). The scoring function implemented 

within IPRO’s MILP rotamer-residue selection algorithm was identified as the source of the 

charged residue bias. The scoring function energy terms were re-weighted using logistic 

regression on a dataset of high-quality protein structures53. The updated scoring function 

roughly doubled native rotamer recovery relative to the existing scoring function (Materials 

and Methods). The former scoring function was adequate for earlier systems24, 42, 50–52, but 

the high hydrophobicity of ‘TesA (the energy term that was underemphasized in the former 

scoring function) made this enzyme especially susceptible to unsuccessful designs.

The modified scoring function was used to design a second round (R2) of variants with 

improved activity on C12 acyl chains. While all fourteen variants were active, thirteen 

mutants (all except R2.M5) produced less total FFA than WT and none improved the C12 

fraction (p<0.05). All thirteen variants incorporated a mutation at either position L11 or 

G72. These positions were in hindsight deemed conserved (exhibiting 86.3% and 60.0% 

sequence conservation, respectively, across the L1-like lysophospholipase subgroup of the 

SGNH-hydrolase family) as they are immediately adjacent to S10 and N73 which are part of 

the oxyanion hole20. Therefore, both L11 and G72 were eliminated from the list of design 

positions in subsequent rounds.

The third round (R3) of mutagenesis, based on the updated set of design positions and 

revised scoring function, resulted in a higher fraction of variants that maintained WT activity 

(80.0%) compared to that of R1 and R2 (8.3% and 7.1%, respectively). Of the ten tested R3 

designs, two improved the C12 product composition (R3.M1, R3.M8; p<0.05) and one led to 

a major increase in the C8 mole fraction (R3.M4; p<0.005). Notably, as the design 

constraints imposed by IPRO in rounds R1 through R3 did not preclude binding to acyl-

ACPs smaller than C12 (i.e., C6, C8, C10), it led to the serendipitous isolation of an octanoyl-

ACP dominant variant (R3.M4). The discovery of a C8 mutant R3.M4 and the higher 

commercial value of octanoic acid4 prompted a final round of computational predictions 

focusing on C8 composition only.

In the fourth round (R4), the IPRO imposed design constraints were similar to that of rounds 

R1 through R3 except that dodecanoyl-ACP (the “desired substrate”) was replaced with 

octanoyl-ACP, while tetradecanoyl-ACP (the “undesired substrate”) was replaced with 

dodecanoyl-ACP. These changes were made to drive more aggressive mutagenesis towards 

C8 preference. Of the eighteen R4 variants tested, all were active, sixteen maintained WT 

FFA production levels (all except R4.M11 and R4.M12), thirteen improved the C8 mole 

fraction, but none produced more octanoic acid than R3.M4. The reduced production levels 

for R4.M11 and R4.M12 could be explained by the rearrangement of aromatic side chains in 

Grisewood et al. Page 6

ACS Catal. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the binding crevice (i.e., R108F, F139, Y145, and Y145F) relative to the active R4 variants, 

which may have disrupted the hydrophobicity of the binding crevice.

Through four rounds of the Design-Build-Test-Learn paradigm, 54 variants were tested, 43 

were active, 25 maintained WT production levels (23 in R3-R4), 3 improved the C12 mole 

fraction, and 27 raised C8 composition (see Tables S1 and S2). All three C12-specific 

variants and all but six of the 27 C8-specific variants (R1.M2, R2.M2, R2.M3, R2.M4, 

R3.M3, and R4.M12) maintained or exceeded WT production levels. The success rate of 

computational enzyme design varies drastically based on the procedures employed, the 

system studied and the ambition of the (re)design (published values can range from as low as 

7% to as high as 78%), and the frequency of favorable outcomes from IPRO in this study 

(24% for R1-R4, 43% for R3-R4) falls in line with these previously reported 

values47–48, 54–57. The variant with the highest C12 mole fraction (48±8%, a 1.8-fold 

improvement over WT), R3.M1, consisted of three mutations: S122K, Y145K, and L146K. 

Despite attempting to target octanoic acid production in R4, the variant with the highest C8 

mole fraction was R3.M4 (50±3%, a 10-fold improvement over WT), containing mutations 

M141L, Y145K, and L146K. The FFA profiles for the top C12- and C8-specific variants are 

summarized in Figure 3.

Computation-guided design outperforms random mutagenesis

Several of our best performing variants have a small number of mutations that may have 

been recovered from classical random mutagenesis approaches. Therefore, we created a 

small library of randomly mutated ‘TesA variants by error-prone PCR mutagenesis and 

screened for changes in product profile. The purpose of this library was to provide a negative 

control for testing that a library not directed by IPRO would not achieve the same level of 

success. The FFA profile of 61 E. coli cultures harboring expression vectors for unique 

‘TesA variants was measured (N=1). Of the 61 random mutants (RMs) screened, 46 were 

active (i.e., ≥ 240 μM), and 20 maintained WT FFA production levels (i.e., ≥ 1750 μM). The 

best dodecanoic acid producing RM (RM.M39, 44±6%) demonstrated a comparable C12 

composition to the top computationally predicted variant (R3.M1, 48±8%) but at the 

expense of a substantial reduction in total FFA titer (p<0.05, 80% of R3.M1). The best 

octanoic acid producing RM (RM.M29, 21.9%) produced a lower fraction of C8 than R3.M4 

(50±3%, 44% reduction) and displayed only 58% of the total activity of R3.M4 (see Table 

S3). A comparison of these results shows that IPRO-guided mutagenesis generated more 

hits, more active mutants, and better leads than a library of similar size made through 

random mutagenesis.

Analysis of successful ‘TesA redesigns

The best C12 producing variants were dominated by three mutations: S122K, Y145K, and 

L146K. Mutation S122K (R3.RD3, Table S1) alone was sufficient to shift the C12 fraction to 

35% of total FFAs, equal to the best C12-producing mutant R3.M1. A non-polar mutation at 

the same position (S122L – R3.RD4) had a similar but less pronounced shift towards C12 at 

the expense of C14, indicating that S122 is an important residue in the active site (see Figure 

S1). The additional mutations in R3.M1 (Y145K and L146K – equivalent to the R3.M7 

mutation) also reduced the long-chain composition but produced a higher fraction of C8 and 
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lower total activity. Nearly all of the top C8 producing variants contained a mutation at Y145 

with lysine or phenylalanine as the dominant substituents. The best C8 producing mutant 

(R3.M4) contained Y145K and L146K mutations as well as a M141L, which by itself 

(R3.M2) was able to dramatically increase the C8 composition. The Y145K mutation 

drastically increased the fraction of unsaturated products in the C12 and C14 chain lengths.

Crystal structures and simulations show that hydrophobic interactions govern specificity

Crystal structures of WT ‘TesA and R3.M4 bound to octanoic acid were solved to confirm 

the structures predicted by IPRO and facilitate analysis of helpful mutations. The WT crystal 

structure was very similar to the previously published structure20 with an all-atom root-

mean-square deviation (RMSD) of 1.1 Å. The X-ray resolved structures corroborated the 

structures predicted by our computational methods, quantified by an all-atom RMSD of 1.6 

Å for R3.M4:octanoyl-ACP (Figure 4). The structural differences in loop111-120 may have 

affected IPRO’s ability to accept or reject mutations. However, the strong structural 

similarity between the crystallized and modeled structure at positions M141L, Y145K and 

L146K indicate that the conformation of these side chains is favorable despite the movement 

of loop111-120. Comparison of the WT and R3.M4 structures reveal that the largest 

differences (RMSD ≥ 2.5 Å) occur at (i) the mutated positions (M141L, Y145K, L146K), 

(ii) the flexible regions as suggested by MD-derived B factors (L11-A19, Q32-S33, G44-

D45, N73, I107-R115 and D153-I156), (iii) the solvent-exposed residues adjacent to these 

flexible loops (i.e., H157 and R160), and (iv) the C-terminus (i.e., L177, Figure 5). Whereas 

structural differences in the flexible regions are possibly artifacts due to high residue 

mobility, the structural differences at the mutated positions provide insight to enzyme 

specificity determinants. The M141L side chain extends laterally towards the ω-1 carbon of 

the FFA yielding an attractive dispersion force (Figure 6A). Y145K partially occludes the 

binding crevice by forming a barrier between the ω-1 carbon of the FFA and solvent. L146K 

forms a salt bridge with E143 that may stabilize the conformation of Y145K but does not 

directly influence binding. Because mutant R3.M4’s (and all other active variants’) catalytic 

machinery includes an oxyanion hole that necessitates a negative charge for binding, R3.M4 

in complex with octanoic acid (pKa 4.9) was also crystallized at a higher pH to ensure 

binding site occupancy. The additional experiments included crystallization at pH 7.5 and 

crystallization at pH 5.0 followed by additional octanoic acid buffered at pH 7.5. These 

additional experiments revealed substantial differences (RMSD ≥ 2.5 Å) at R16 (2.534 Å), 

K34 (3.024 Å), A111 (4.362 Å), Y113 (9.311 Å), G114 (3.536 Å), and L177 (3.723 Å, 

Figure S2). These highly flexible regions indicate that their movement is highly sensitive to 

changes in hydrophobicity and their motion may be essential for catalytic turnover. The 

structure of N112 was not solved for R3.M4 at pH 5.0 because of low-resolution electron 

density maps.

MD simulations were used to elucidate the mechanisms by which FFA composition is 

controlled. Seven total trajectories were analyzed using MD. These included WT (bound to 

C14, C14, or C8 acyl-ACPs), R3.M1 (bound to C14 or C12), and R3.M4 (bound to C12 or C8). 

The MD results revealed an alternate binding mode nearby T46, S47, N73, and R77 that is 

only assumed for preferred chain lengths in the WT and R3.M4 trajectories. This binding 

mode is likely not observed for R3.M1:dodecanoyl-ACP because of insufficient 
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conformational sampling. In addition to the alternate binding mode, MD analysis revealed 

that enzymes bound to acyl-ACPs beyond their preferred chain lengths have a deformed loop 

between G75 and Q80. With the exception of R3.M4:octanoyl-ACP and WT:octanoyl-ACP, 

all other enzymes bound to an acyl-ACP equal to or just below (≤ 2 carbon atoms) its 

preferred chain length maintain a constant conformation of this loop (Figure S3). Finally, B 

factors for each of the seven simulated enzymes were estimated and exhibited six regions 

with increased mobility. These regions were found from L11-A19, Q32-S33, G44-D45, N73, 

I107-R115, and D153-I156 .

Combining the MD and crystallography results with previously published investigations of 

‘TesA acyl-ACP specificity20 support the theory that hydrophobic interactions formed 

between loop75-80 (i.e., residues forming the loop between G75 and Q80), the acyl chain of 

acyl-ACP, and loop111-120 govern substrate selectivity. Lo et al.20 previously postulated that 

loop75-80, described therein as the “switch loop” that is in one conformation (i.e., “on”) 

when the acyl-ACP is bound and in another conformation (i.e., “off’) when the substrate is 

not bound. The switch loop is dependent on the acyl chain length and stabilizes the 

enzyme:substrate complex during hydrolysis. Our MD simulations are consistent with these 

findings, as the switch loop is in the “on” position for variants bound to an acyl-ACP equal 

to or just less than (≤ 2 carbon atoms; i.e., WT bound to C12) its preferred chain length. Prior 

studies20, 58 revealed that rigidity of the switch loop or the lack of a bound acyl-ACP force 

the switch loop into the “off” conformation. MD simulations for WT:octanoyl-ACP, 

R3.M1:tetradecanoyl-ACP, and R3.M4:dodecanoyl-ACP occupy intermediate states between 

the “on” and “off” conformations. The switch loop is in a completely different conformation 

for R3.M4:octanoyl-ACP, which is due to the increased hydrophobicity in the binding 

crevice towards the C-1 terminus caused by M141L. For R3.M4:octanoyl-ACP, the 

movement of the switch loop towards loop111-120 allows octanoyl-ACP to slide underneath 

the switch loop into the alternate binding cavity, which could be important for octanoic acid 

release. The pH-dependent conformation of loop111-120 for R3.M4 from the crystallography 

experiments suggests that a change in protonation state of a titratable residue (i.e., an acidic 

or basic amino acid) causes a major conformational change, demonstrating the sensitivity of 

the hydrophobic region to electrostatics. At pH 7.5, the hydrophobic loop111-120 extends 

away from the typically hydrophobic binding crevice towards the highly hydrophilic bulk 

solvent (Figure S2), which is unexpected since nonpolar substances typically aggregate (i.e., 

the hydrophobic effect). This movement of loop111-120 is postulated to be due to a newly 

charged residue in the binding crevice, weakening the binding crevice’s hydrophobic 

environment. This observation is consistent with octanoic acid serving as the titratable 

residue. While M141L increases the hydrophobicity near the C-8 of R3.M4, Y145K limits 

hydrolysis of longer acyl-ACPs by reducing binding crevice hydrophobicity near the ω-1 

atom (i.e., C-10, C-12, C-14) thereby disrupting the conformation of the switch loop. A 

simple two-atom model involving the FFA ω-1 carbon and the ε-amino nitrogen (i.e., the 

side chain nitrogen) atom had pairwise energies calculated and demonstrates that the 

Lazaridis-Karplus solvation term, a computationally accessible proxy for hydrophobicity, 

governs unfavorable interactions with the ω-1 carbon (Figure 6B). The two-atom model 

illustrates that solvation energy dominates the phase space with the exception of the van der 

Waals region. The ω-1 carbon would not be expected to occupy the van der Waals region 
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because the energy is much more unfavorable (i.e., positive) at these close distances (E~r−12 

for van der Waals, E~exp(-r2) for Lazaridis-Karplus solvation). Longer FFA chain lengths 

extend closer to the ε-amino nitrogen, exacerbating the repulsive solvation energy. Adding 

additional carbon atoms to the point where the ω-1 is further from the ε-amino nitrogen will 

only add to the total repulsive energy, although the marginal cost will decrease with each 

additional carbon. Finally, the large degree of switch loop and loop111-120 mobility could 

explain the broad substrate specificity that is typically observed for ‘TesA.

ΔΔG (ΔGVariant−ΔGwt) values estimated from the computations exhibited good agreement 

with experimentally derived values (Supporting Information). A Pearson correlation 

coefficient of 0.6 ± 0.2 was found for R3 and 0.43 ± 0.07 for R4. These correlation 

coefficients are in line with earlier computational studies24, 59–60. Notably, the regions with 

elevated B factors from the MD trajectories (loop11-19, loop32-33, loop44-45, loop73, 

loop107-115, and loop153-156) overlap with the regions with elevated B factors from the 

crystallography experiments (loop30-35, loop59-62, loop98-100, loop111-115, and loop153) and 

other published20, 58 crystallographic structures (loop31-35, loop75-80, and loop111-120).

In vitro assays of ‘TesA WT and R3.M4 C8-specific confirms in vivo results

‘TesA can catalyze hydrolysis of both acyl-CoA and acyl-ACP substrates. Given the relative 

availability of these substrates, we compared the kinetic activity of WT ‘TesA and R3.M4 on 

acyl-CoAs ranging from 6-16 carbons in length. We monitored reaction progress by tracking 

the abundance of free CoA released by hydrolysis. The highest in vitro ‘TesA WT activity 

(Figure 7A) was observed for C12-CoA, C14-CoA and C16-CoA, consistent with the in vivo 
data for release of FFAs from acyl-ACPs (Figure 3). In contrast, R3.M4 showed a significant 

increase in activity on C8-CoA compared to WT, consistent with the observed in vivo 
production of octanoic acid, and a modest decrease in activity on C12-CoA and C14-CoA 

activity. For both enzymes, we observed an unexpected drop in activity on hexadecanoyl-

CoA (C16-CoA) beyond a threshold concentration. Interestingly, in the R3.M4 mutant the 

inhibitory effect of C16-CoA is exacerbated and C14-CoA also shows inhibition (not seen on 

‘TesA WT). Given the linear reaction progress curves we observed, we suspected that the 

enzymes were substrate inhibited. Therefore, we performed assays with both C8-CoA and 

the inhibitory CoA species (Figure 7B–E). Competitive binding assays were performed at a 

constant concentration of C8-CoA (50 μM) and variable concentrations of C14-CoA (Figure 

7B for WT and 7C for R3.M4) and C16-CoA (Figure 7D for WT and 7E for R3.M4). In all 

cases, production of free CoA was inhibited by C14-CoA and C16-CoA in a concentration 

dependent manner consistent with the original assay in Figure 7A.

Conclusions

The potential of the IPRO algorithm to aid in protein engineering efforts was demonstrated 

using a Design-Build-Test-Learn approach to alter the substrate preference of ‘TesA. Our 

approach leverages computational protein design procedures to achieve successful 

experimental redesign beyond what has been achievable so far15–17, yielding two top 

variants. One, R3.M1, produced 48±8% C12 composition, a 1.8-fold improvement over WT, 

while maintaining native production levels. Despite a preference for C14 production in WT 
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‘TesA, three amino acid substitutions constitute R3.M1, which is the third most C12-specific 

thioesterase known to date (see Table 1). Similarly, R3.M4 produced 50±3% C8 

composition, a 10-fold improvement, while maintaining WT production levels. R3.M4 is the 

tenth most C8-specific thioesterase described to date. In total, the Design-Build-Test-Learn 

paradigm yielded three and twenty-one variants with significant (p<0.05) improvements in 

C12 and C8 mole fraction, respectively, while maintaining WT production levels.

Despite sampling a similar library size, random mutagenesis yielded fewer active mutants 

than the computationally guided library. In addition, the random library produced two fewer 

C12-specific variants with native production levels and twenty fewer C8-specific variants 

with at least WT productivity. Unlike random mutagenesis, variants from R3 and R4 

achieved high levels of activity by directly enforcing catalytic contacts through imposed 

restraints and preserving conserved amino acids. Furthermore, R3 and R4 variants 

systematically tailored the binding crevice environment to generate hydrophobic clusters 

between loop111-120, the acyl-ACP, and the switch loop (loop75-80). MD and crystallography 

results from this work and elsewhere20, 58 suggest that this hydrophobic packing is essential 

for enzyme functionality. Whereas the in silico method directly accounts for hydrophobicity 

(albeit only approximately) through the Lazaridis-Karplus solvation energy term, random 

mutagenesis techniques can only improve binding site hydrophobicity by chance alone.

The results from this work not only establish the potential of computational methods in 

enzyme redesign, but the lessons learned from earlier rounds of design (i.e., R1 and R2) may 

inform redesign work with other systems. Computational procedures are especially valuable 

when high throughput screening is impractical. We found that the number of inactive 

designs was reduced by applying a modified scoring function that alleviated bias towards 

senseless mutations and avoiding design positions that are highly conserved in family 

sequence alignments. These initial rounds thus established the essentiality of working with a 

correctly calibrated scoring function and carefully selecting design positions with the aid of 

sequence alignments. The integrated deployment of computations with experiments in a 

sequential manner allows for the “early on” identification of deficiencies in molecular 

modeling and erroneously targeted design positions, providing a tractable workflow for 

engineering enzymes for higher specificity and activity.

Materials and methods

‘TesA model construction

The structure of ‘TesA was derived from PDB 1U8U, where it is in complex with octanoic 

acid20. The acyl-ACP structures were derived from PDB 2FAE, where decanoyl-ACP is held 

in an internal binding cavity49. Other acyl-ACP structures include hexanoyl-ACP from PDB 

2FAC49 and heptanoyl-ACP from PDB 2FAD49 are similar to decanoyl-ACP as 

demonstrated by respective all-atom RMSDs of 1.1 Å and 1.1 Å. In order to dock octanoyl-

ACP with ‘TesA, the acyl chain was systematically rotated about the phosphopantetheine 

linker and superimposed with the bound octanoic acid in 1U8U. The rotation that led to the 

lowest root-mean-square deviation was energy-minimized within CHARMM3461. Acyl-

ACPs with different chain lengths were adapted from this initial complex by either deleting 

atoms or adding atoms using CHARMM’s internal coordinate system. Lazaridis-Karplus 
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solvation files and CHARMM input files were constructed using published parameters for 

lipids and proteins. The constructed topology and parameter files were in close agreement 

with CGenFF-derived parameters62–63.

Structure-based redesign and analysis

All computationally-predicted mutants were identified using multiple IPRO trajectories that 

each ran for 1000 iterations without ensemble structure refinements24. The primary 

constraint of each trajectory was to eliminate binding to a larger acyl-ACPs (C14 for Rounds 

1-3, C12 for Round 4) with a secondary constraint to improve binding to the shorter acyl-

ACPs (C12 for Rounds 1-3, C8 for Round 4). Round 4 C8/C14 and C8/C12 fraction ratios 

correlate with r = 0.88 ± 0.02, alluding to a similar repulsive force for C12 and C14 binding 

(Figure S4). Design position selection is described in the “Design Position Selection” 

subsection. Restraints were imposed to ensure that the intermolecular catalytic distances 

(± 0.2 Å) were maintained (i.e., S10, G44, N73, D154 and H157). All other IPRO 

parameters were set to their standard values, and calculations were run on the Lion-XF 

system at Penn State University. Error propagation was performed manually and replicated 

using the Python uncertainties module64. Statistical differences were calculated using 

Welch’s t-test between the WT and mutant FFA profiles. For a given enzyme-FFA complex, 

the interaction energy is found using IE=GEnz-FFA,min−GEnz−GFFA. Mutants were sorted by 

the interaction energy difference between the short-chain FFA and C14 

(ΔIE=IEC12,C8−IEC14,C12). Therefore, for a given round, Mutant 1 (smallest ΔIE) would be 

expected to show the biggest change in specificity.

Design Position Selection

For R1, ‘TesA residues were sorted by distance to carbon atoms in the acyl group of the 

‘TesA:tetradecanoyl-ACP complex (i.e., C-1 through C-14). The minimum interatomic 

distance between the residue’s heavy atoms (i.e., not hydrogen atoms) and the acyl carbon 

atoms was used for sorting. In R1, residues constituting the catalytic triad (i.e., S10, D154, 

H157) and the oxyanion hole (i.e., S10, G44, N73) were not considered during design 

position selection. At the time design positions for R1 were designated, IPRO was unable to 

handle mutations from proline so these residues were not considered during the selection of 

design positions24. L109 was considered to be important for ‘TesA functionality and was 

also removed from consideration as a design position20. Residues that were near the 

undesired end of the acyl group (i.e., near C-1 instead of ω-1) were no longer regarded as 

potential design positions. Residues considered “near C-1” were those that contained a 

heavy atom within 4.5 Å of the thioester sulfur atom. A final set of residues that were 

strongly oriented away from the ω-1 terminus of the acyl moiety were also no longer 

considered as potential design positions. Residues “strongly oriented away from the ω-1 

terminus” were those whose Cα atom was over 0.75 Å closer to the ω-1 atom than the Cβ 
atom (glycines not considered). The sorted residues are provided in Table S4 with any 

exceptions annotated. The eight nearest residues that were not filtered out were selected as 

design positions. The set of design positions used for R1 were L11, G72, L76, I107, R108, 

A111, F139, and Y145.
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For R2, ‘TesA residues were once again sorted by distance to carbon atoms in the acyl group 

of the ‘TesA:tetradecanoyl-ACP complex. Residues constituting the catalytic triad and 

oxyanionic hole, proline residues, residues near the C-1 terminus of the acyl moiety, and 

L109 were once again removed from consideration, as described for the R1 design position 

selection procedure. In addition, residues belonging to the three flexible loops (i.e., 

loop31-35, loop75-80, loop111-120) were no longer recognized as prospective design positions 

for the same reason that L109 was removed from consideration20. Finally, I107 and R108 

were removed as possible design positions because these positions invariably mutated to 

lysines in R1 and all instances of I107K and R108K abolished catalytic activity (see Figure 

2, Table S2). The set of design positions (i.e., the eight nearest residues that were not filtered 

out) employed for R2 was L11, G72, F139, M141, E142, Y145, G155, and I156.

For R3 and R4, a very different approach was used when compared to R1 and R2. Instead of 

sorting residues by distance to carbon atoms in the acyl group of ‘TesA:tetradecanoyl-ACP, 

residues were sorted by distance between the residue’s Cβ atom and the ω-1 atom of 

dodecanoyl-ACP from the ‘TesA: dodecanoyl-ACP complex. In lieu of the Cβ atom, Cα 
was used to calculate interatomic distances for glycine residues, and Cγ was used for H180 

because Cα and Cβ were not part of the solved crystal structure20. Unlike R1 and R2, only 

residues that were aligned to gaps or had ≥40% sequence conservation were not considered 

as candidate design positions. Sequence alignment was performed using the conserved 

domain database, where 81 members (including ‘TesA) of the lysophospholipase L1-like 

subgroup from the SGNH-hydrolase superfamily were found65. The sorted residues are 

provided in Table S4. Residues aligned to gaps or conserved residues are also noted in Table 

S4. The final set of design positions (i.e., the eight nearest residues that were not filtered out) 

used for R3 and R4 was I107, R108, L109, S122, M141, E142, Y145, and L146.

Scoring function re-weighting

A new set of weights for the IPRO scoring function was found that approximately doubles 

native rotamer recovery relative to the unmodified scoring function. The scoring function 

was modified using a symmetric logistic regression within Weka, a collection of machine-

learning algorithms66. A dataset of native and non-native rotamers was collected from the 

top8000 database, which is a dataset of 8000 high-resolution (< 2 Å), quality-filtered (< 2.0 

MolProbity score67), nonhomologous (<70% identity) protein structures53. Of these 

structures, 50 were randomly selected for use with the machine-learning training set. A 

separate set of 80 structures was randomly selected to validate the results. From these 130 

structures, the native rotamer was found by finding the rotamer (of the same amino acid 

type) with the lowest root-mean-square deviation to the crystallized side chain. Then the van 

der Waals, electrostatic, and Lazaridis-Karplus solvation energies were calculated for each 

rotamer (regardless of amino acid type) as well as a binary indicator as to whether this was 

the native rotamer at the position or not. The data was separated for residues at the protein 

surface (≤ 20 Cβ atoms within 10 Å) and within the core of the protein (> 20 Cβ atoms 

within 10 Å) using a distance-based metric developed by Kuhlman and Baker68. Finally, 

since the number of non-native rotamers heavily outweighed the number of native rotamers, 

non-native rotamers were randomly removed until there was approximately a 60:40 split of 

non-native:native rotamers. The rotamer data was used to determine the set of weights that 
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can optimally classify a rotamer as native or non-native. The updated energy equation for the 

core residues is E = 0.04 EVDW + 0.02 EElec + 0.16 ELK. For the surface residues, the 

updated energy equation is E = 0.03 EVDW + 0.01 EElec + 0.09 ELK. The inaccuracy of the 

original scoring function that used equally-weighted energy terms (i.e., E = 0.01 EVDW 

+ 0.01 EElec + 0.01 ELK) stemmed mostly from the Lazaridis-Karplus implicit solvation 

energy term.

Using the modified scoring function weights, the classifier was able to correctly classify 

78.4% of the core rotamers and 68.1% of the surface rotamers as either native or non-native 

from the validation set. Revisiting the complete validation set (before modifying to the 60:40 

ratio), the full set of rotamers for each position was sorted from lowest energy to highest. 

The native rotamer was found to be the lowest-energy rotamer for 8.48% of the total dataset 

for the modified scoring function, up from 3.46%. Furthermore, the native rotamer was in 

the top 1.5%, 3.0%, and 6.0% of the energy-sorted rotamers in 19.09%, 31.64%, and 45.89% 

of the time. This was up from 9.09%, 16.86%, and 30.36%, respectively, for the original 

scoring function. Similar improvements were demonstrated on two different validation sets: 

one used to train the Rosetta scoring function69 (native: 8.38% (3.57%), 1.5%: 18.56% 

(8.79%), 3.0%: 13.01% (16.30%), 6.0%: 45.07% (29.20%)) and one on high-quality 

antibody structures (native: 8.02% (4.00%), 1.5%: 16.68% (9.05%), 3.0%: 28.31% 

(16.46%), 6.0%: 43.10% (30.19%)). The success of the modified scoring function on diverse 

sets of protein structures that do not include ‘TesA implies that the new scoring function is 

equally accurate across most (if not all) systems.

DNA synthesis and ‘TesA variant construction

All mutants were created starting with WT ‘tesA gene cloned into a pBAD18 plasmid70 to 

link ‘TesA expression to the presence of L-arabinose. Round 1 mutants were constructed 

using Agilent technologies QuickChange II site directed mutagenesis kit following the given 

protocol. For Rounds 2-4, all mutants were constructed using Gibson assembly strategies 

using primers containing the desired mutations in the 5′ tails. All cloning was performed in 

E. coli DH5α strain.

‘TesA in pBad18 was randomly mutagenized using Gene Morph II random mutagenesis kit 

following the kit protocol to make a library of 61 mutants with a mutation rate of 1.8 amino 

acids per gene (Table S2). Primers were designed to include the start and stop codons to 

ensure keeping those positions of the mutants invariant.

Bacterial culturing and fatty acid production

FFA production was assayed from small batch cultures (5-50 mL) of E. coli strain RL08ara 

(K-12 MG1655 ΔfadD ΔaraBAD ΔaraFGH Φ(ΔaraEp PCP18-araE)3) harboring each 

thioesterase expression vector. Three single colonies of each mutant were grown overnight 

on LB media containing 100 mg/L of ampicillin. Overnight cultures of each strain were 

diluted 1:100 into 25 mL of LB media containing 100 mg/L of ampicillin and 0.4% w/v 

glycerol in a 250 mL baffled shake flask and grown at 37°C and 250 rpm. When the OD600 

reached 0.2-0.3, cultures were induced with 0.2% w/v L-arabinose and shaken for 24 h. All 
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mutants were tested in triplicate and error bars represent the standard error of the 

measurements.

Lipid extraction and quantification

After 24 h post induction, 2.5 mL culture samples were collected in 10 mL glass centrifuge 

tubes, and 5 μL of 10 g/L heptadecanoic acid in ethanol solution was added as an internal 

standard. For fatty acid extraction into a chloroform layer, 100 mL of glacial acetic acid was 

added, followed by 5 mL of a 1:1 v/v solution of chloroform and methanol. Samples were 

vortexed and centrifuged for 10 min at 1000g to separate the layers. The chloroform extract 

was dried using a SpeedVac SC250EXP concentrator at no heat setting for 75 minutes and 

1.0 torr. Samples were further dried for 30 min in a lyophilizer to remove any residual liquid. 

To methylate the dried extract, 0.5 mL of 1.25 M HCl in methanol was added and left 

overnight at 50°C. Finally, 5 mL of a 100 g/L sodium bicarbonate solution was added and 

fatty acid methyl esters were then extracted twice with 0.5 mL hexane for GC-FID 

quantification. Samples were collected and analyzed using a GC-FID model Shimadzu 

GC-2010 equipped with an AOC-20i auto-injector and a 30 m, 0.25 mm ID RTX-5 column. 

The GC temperature protocol was 100°C for 2 min, ramp to 150°C (at 80°C/min), hold for 4 

min, ramp to 218°C (at 4°C/min), ramp to 250°C (at 8°C/min), and hold for 2.5 min.

Protein expression and purification of WT ‘TesA

The WT ‘tesA gene was cloned into pET28t, a vector previously modified to contain a TEV 

protease site rather than a thrombin cleavage site between ‘tesA and a N-terminal 

polyhistidine tag71. When translated, the modified enzyme was fused to the following 

peptide: MGSSHHHHHHSSENLYFQGGGG. The pET28t-tesA plasmid was used to 

transform E. coli Rosetta2(DE3) cells (Novagen). Cultures were grown at 37°C with shaking 

in lysogeny broth supplemented with 50 mg/L kanamycin and 50 mg/L chloramphenicol 

until the OD600 reached 0.8. Flasks were cooled in an ice bath, induced with 1 mM 

isopropyl-β-D-thiogalactopyranoside, and incubated overnight at 21°C. Cells were harvested 

by centrifugation and frozen as pellets in liquid nitrogen. The frozen cell pellets were 

sonicated on ice in a lysis buffer composed of 50 mM sodium phosphate, 20 mM imidazole, 

10% glycerol, and 300 mM NaCl (pH 8.0). The lysate was cleared by centrifugation, and 

‘TesA was purified at 4°C utilizing Ni-nitrilotriacetic acid resin (Qiagen) according to the 

manufacturer’s instructions. TEV protease was added in a 1:20 molar ratio to the pooled 

protein solution and subsequently dialyzed against 50 mM sodium phosphate, 300 mM 

NaCl, and 20 imidazole (pH 8.0) at 4°C for 36 h. Both the TEV protease and the uncleaved 

protein were removed by passage over a Ni-nitrilotriacetic acid resin. The cleaved protein 

was collected and dialyzed against 10 mM Tris-HCl (pH 8.0) and 200 mM NaCl and 

concentrated to ~35 g/L based on an extinction coefficient of 0.62 (g/L)−1cm−1.

Crystallization and structural analysis of WT ‘TesA

Crystallization conditions for ‘TesA were surveyed by the hanging drop method of vapor 

diffusion using a laboratory-based sparse matrix screen. The enzyme was initially tested 

either in the presence or absence of 3 mM C8 FFA. Crystals were subsequently grown from 

22-26% poly(ethylene glycol) (PEG) 5000 with 100 mM Homo-PIPES buffer (pH 5.0). The 

protein solution used contained 3 mM C8 FFA. Crystals belonged to the monoclinic space 
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group P21 with unit cell dimensions of a = 40.9 Å, b = 82.1 Å, c = 53.9 Å, and P = 90.4°. 

The asymmetric unit was comprised of two monomers. Prior to X-ray data collection at 

100K, the crystals were transferred to a cryoprotectant solution composed of 30% PEG 

5000, 250 mM NaCl, 3 mM C8 FFA, and 13% ethylene glycol with Homo-PIPES buffer 

(pH 5.0). An X-ray data set was collected with a Bruker AXS Platinum-135 CCD detector 

using the PROTEUM software suite (Bruker AXS Inc.) The X-ray source was Cu Ka 

radiation from a Rigaku RU200 X-ray generator equipped with Montel optics and operated 

at 50 kV and 90 mA. Data were processed with SAINT and scaled with SADABS (Bruker 

AXS Inc.). X-ray data collection statistics are listed in Table S5. The structure of WT ‘TesA 

was solved via molecular replacement using the software package PHASER72 and the PDB 

1U8U as the search model20. Model refinement with REFMAC73 and manual model 

building with COOT74–75 reduced the overall R-factor to 18.8% at 1.65 A resolution. 

Refinement statistics are presented in Table S6.

Crystallization and structural analysis of R3.M4

The R3.M4 ‘tesA gene was subcloned, expressed, and purified as described for WT. Crystals 

were obtained at both pH 5.0 and pH 7.5. Those obtained at pH 5.0 were grown from 

20-25% PEG 5000 with 100 mM Homo-PIPES buffer (protein solution contained 3 mM C8 

FFA). The crystals were cryoprotected as described for WT ‘TesA. Crystals belonged to the 

monoclinic space group P21 with unit cell dimensions of a = 40.7 Å, b = 55.2 Å, c = 42.3 Å, 

and P = 105.2° with a single monomer in the asymmetric unit. R3.M4 crystals obtained at 

pH 7.5 were grown from 24-28% PEG with 100 mM HEPES buffer (pH 7.5). Again the 

protein solution contained 3 mM C8 FFA. These crystals were isomorphous to those 

obtained at pH 5.0 and were cryoprotected with a solution composed of 32% PEG, 250 mM 

NaCl, 3 mM C8 FFA, and 13% ethylene glycol with 100 mM HEPES buffer (pH 7.5). Given 

the concern that at pH 5.0 the C8 FFA would most likely not bind at full occupancy, these 

crystals were subsequently moved in a final experiment to solutions buffered at pH 7.5 that 

contained an additional 3 mM C8 FFA. These “soaked” crystals were cryoprotected in a 

similar manner to those grown at pH 7.5. X-ray data from R3.M4 crystals obtained at pH 

5.0, pH 7.5, and from the “soaked” crystals were collected as described for WT. The 

structure R3.M4 at pH 5.0 was solved by molecular replacement using the WT model as the 

search probe whereas the structures either grown or soaked at pH 7.5 were solved via 

Fourier difference analyses. X-ray data collection statistics and model refinement statistics 

are provided in Tables S5 and S6, respectively.

Purification for enzymatic assays of WT ‘TesA and R3.M4

The ‘tesA gene was subcloned as described for WT. Expression followed the same 

procedure, except the construct was transformed into BL21(DE3) cells. The frozen cell 

pellets were sonicated on ice in a lysis buffer composed of 50 mM sodium phosphate, 10 

mM imidazole, and 300 mM NaCl (pH 8.0). The lysate was cleared by centrifugation, and 

‘TesA was purified at 20°C utilizing Ni-nitrilotriacetic acid resin (Qiagen) according to the 

manufacturer’s instructions. TEV protease was added in a 1:20 molar ratio to the pooled 

protein solution and subsequently dialyzed against 10 mM Tris-HCl (pH 7.5) at 4°C for 18 

h. Both the TEV protease and the uncleaved protein were removed by passage over a Ni-

nitrilotriacetic acid resin. The cleaved protein was concentrated to 2.5 mL to be solvent 
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exchanged into 50mM potassium phosphate (pH 7.0), and 30% glycerol using a PD-10 

desalting column (GE) according to the manufacturer’s instructions.

Enzymatic assays of WT ‘TesA and R3.M4

Enzymatic thioesterase assay was performed with WT and R3.M4 ‘TesA to compare their 

activities on various chain lengths. The reaction conditions follow as per Shin et al. (63), 

except the enzyme concentration used was 40 nM and substrate concentrations ranged 0-120 

μM for six saturated acyl-CoA substrates of 6-16 carbons (hexanoyl-CoA, octanoyl-CoA, 

decanoyl-CoA, dodecanoyl-CoA, tetradecanoyl-CoA and hexadecanoyl-CoA). The assay 

tracks generation of free-CoA as ‘TesA hydrolyses the thiol bond in the acyl-CoA. This 

hydrolysis is tracked by the increase of absorbance at 412 nm due to the free-CoA dependent 

reduction of 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) present in the reaction mixture 

(63). Absorbance at 412 nm was followed using a NanoDrop 2000c (Thermo Scientific) 

using a path length of 10 mm and measurements were taken for 2 minutes in 10 second 

intervals.

Molecular dynamics

VMD was used to solvate enzyme-FFA complexes within a 12.0 Å water box with 0.17 M 

NaCl and contained ≈49,000 atoms76. Each complex was minimized and slowly heated to 

310K and 1 atm over 7 ns using Langevin dynamics. Force field parameters were identical to 

those used for the IPRO trajectories. Periodic boundary conditions were applied, and long-

range electrostatic forces were considered using the particle mesh Ewald method. 40 ns 

production simulations were performed using NAMD over 30 nodes on the Lion-XF cluster 

at Penn State University using the NVE ensemble77.
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Figure 1. Overview of fatty acid biosynthesis and role of acyl-ACP thioesterases
In each cycle of fatty acid biosynthesis, two carbons are added from a malonyl-ACP (M-

ACP) yielding a β-ketoacyl-ACP (Kx-ACP where x is the number of carbons). Three 

reactions (three vertical arrows) reduce the Kx-ACP to a saturated acyl-ACP (Ax-ACP). In E. 
coli, A16-ACP and A18-ACP are incorporated into membrane lipids. Thioesterases produce 

free fatty acids by hydrolyzing the acyl-thioester bond (green inset). Tailoring the specificity 

of the acyl-ACP thioesterase (‘TesA) dictates free fatty acid and downstream oleochemical 

chain lengths (red arrows).
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Figure 2. Overview of Predict-Design-Revise-Learn approach used to guide ‘TesA redesign
Pictorial illustration of the steps traversed (left column) and mutants identified with 

improved specificity towards C12- or C8- acyl-ACPs. The right column denotes the changes 

in the computational procedure modifications in response to the experimental results. 

Variants that produced significant improvements in the C12 (p<0.05) or C8 (p<0.005) 

fraction while maintaining WT production levels are indicated with an upward arrow 

followed by the FFA. Major improvements in C8 are indicated by p<0.005 rather than 

p<0.05 to highlight top designs Struck through variants indicate enzyme inactivity, and 
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names followed by a downward arrow represent variants with reduced total production levels 

relative to WT.
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Figure 3. Fatty acid production profiles for the most C12-specific and C8-specific 
computationally designed variants
FFA titers are shown as bars, where error bars indicate total FFA standard deviation. Profiles 

of uninduced cells (Control) and wild-type ‘TesA (WT) are provided for reference. All 

profiles are listed in Table S1.
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Figure 4. Comparison of computationally-predicted and crystallized structure of R3.M4
The IPRO-derived structure (green) and crystallized structure at pH 5.0 (blue) of R3.M4 are 

shown as cartoons bound to octanoyl-ACP (truncated at the thioester bond) and octanoic 

acid (C8), respectively. The carbonyl oxygen of each FFA structure is shown as a sphere. 

Regions of relatively large structural differences (RMSD ≥ 3.0 Å) are shown in a plot of 

RMSD versus position and annotated. Design positions (141, 145, and 146) are shown in the 

bottom left inset, where each residue is shown by sticks and a transparent surface. Hydrogen 

atoms are excluded from the IPRO predicted structure.
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Figure 5. Comparison of WT and R3.M4 crystal structures
Both WT (green) and R3.M4 (blue, pH 5.0) are shown as cartoons to the right of the figure 

bound to octanoic acid (C8). The carbonyl oxygen of each FFA structure is shown as a 

sphere. Regions with relatively large changes (RMSD ≥ 1.5 Å) are annotated. Quantification 

of the structural differences is shown with the inset plot of RMSD versus sequence position. 

The structural differences between the residues at positions 141, 145, and 146 (the mutated 

positions in R3.M4) are depicted in the bottom left inset. Here, each of the three residues, as 

well as octanoic acid, is represented as sticks with a transparent surface.
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Figure 6. Hydrophobicity drives substrate specificity as demonstrated by (A) R3.M4 crystal 
structure and (B) a two-atom model for the Y145K mutation
In (A), crystallized R3.M4 (pH 5.0) is bound to octanoic acid (C8). The two critical 

hydrophobic loops (loop75-80 and loop111-120) as well as the residues nearby the design 

positions are shown as molecular surfaces and colored according to their hydrophobicity 

score. The FFA is represented as sticks (with its carbonyl oxygen shown as a sphere) and a 

black molecular surface, as its hydrophobicity score is unknown. In (B), a two-atom model 

is shown to examine the ability of Y145K to eliminate binding to tetradecanoyl-ACP. The ε-

amino nitrogen of Y145K (blue sphere) and the ω-1 carbon of FFA (green sphere) constitute 

the two-atom model. The model shows the effect of extending the acyl chain, which changes 

the hypothetical position of the ω-1 atom (transparent green sphere). r represents the 

interatomic distance between the C8 ω-1 atom and the hypothetical ω-1 atom. θ represents 

the angle between the ε-amino nitrogen, the C8 ω-1 atom and the hypothetical ω-1 atom. At 

(r=0 Å, 0=0°), the ω-1 atom occupies the position of the crystallized ω-1 C8 atom. The 

energy term with the largest contribution towards the interaction energy between the ε-

amino nitrogen and the hypothetical ω-1 atom at a given r and 0 is provided in the contour 

plot (red=van der Waals energy, yellow=Lazaridis-Karplus solvation energy). The positions 

of the hypothetical ω-1 atoms using ideal FFA geometry (C-C bond length of 1.54 Å, 109.5° 

angle, 180° dihedral angle) are also labeled in the contour plot. C13 (r=6.4 Å, 0=62.8°) and 

C14 (r=7.5 Å, θ=54.9°) are beyond the boundaries of the contour plot. Molecular structures 

were generated using PyMOL.
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Figure 7. Enzymatic assays of ‘TesA WT and R3.M4 (A) confirm the mutant’s increase in 
specificity for C8 species, and competitive binding assays (B-E) show ‘TesA WT and R3.M4 
activity on C8-CoA as a function of C14-CoA (B and C) and C16-CoA (D and E) concentration
In (A), the activity of ‘TesA WT (left) and R3.M4 (right) as a function of substrate 

concentration for six different acyl-CoA substrates. Open and closed circles indicate 

measurements taken in separate days. Competitive binding assays (B-E) were done to see 

the effect that an increase in C14-CoA and C16-CoA would have on the activity of the 

enzymes on C8-CoA. Competitive binding assays were done at a constant C8-CoA 

concentration of 50 μM and variable concentrations of C14-CoA ((B) for WT and (C) for 

R3.M4) and C16-CoA ((D) for WT and (E) for R3.M4). In all cases the activity of ‘TesA was 

impacted by the C14-CoA and C16-CoA in a concentration dependent manner consistent 

with the original assay in (A).
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