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Abstract

Multiport catheters and catheters with a porous surface have been proposed for intraparenchymal 

infusions of therapeutics in fluid suspensions. Target diseases include brain cancer and serious 

neurodegenerative diseases, as well as peripheral tumors, for example in the prostate and the liver. 

We set up the theory for infusions from such devices, in particular the fluid flow equations which 

demand a coupling between the flow within the catheter and that in tissue. (Such a coupling is not 

necessary in the theory of infusion from single port catheters.) The new feature of such catheters, 

treated by our model, is revealed by infusions into inhomogeneous media. Multiport designs have 

the potential to overcome the limitation of single port catheters, for which the path of the fluid 

leaving the port is dominated by the inhomogeneities. We solve these equations for some simple 

cases to illustrate the key design features of porous catheters that show such advantages. The 

mathematics required for numerical solution with more realistic assumptions is also developed. 

We confirm the robustness of such catheters, when the ports are sufficiently resistive, against 

leakage paths that would compromise the infusions from catheters with one or a few large ports. 

The methods of this paper can be incorporated into a larger planning system for intraparenchymal 

infusions involving such devices.

1. Introduction

Direct infusion of drugs into the brain parenchyma using convection-enhanced delivery 

(CED) results in the treatment of large regions of tissue and concentrates the infusate 

therein, thereby circumventing the delivery obstacles posed by the blood-brain barrier and 

dilution of infusate in the blood [1]. CED is a technique that relies on pressure gradients to 

establish bulk flow over time, resulting in continuous convective flow and widespread 

distribution of the infusate in the brain. It has been used in several clinical trials including 

large volume infusions in brain cancer, with, however, the trials failing to reach their goals 

for successful introduction of the drug (see e.g., [2]). As that reference indicates, there is 

strong evidence that the failure to deliver the therapeutic dose to the intended target regions 

may alone be sufficient to account for the failure of efficacy (as measured by survival of the 

patient) in the trials, though of course the studies could not evaluate the efficacy of the drug. 

The point is that such efficacy could not be evaluated, being confounded by the inadequacy 

of the delivery. The mainstay for delivery device in these trials has been a simple end-port 
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catheter, (see e.g., [3]) which has a single port of efflux. While there is no evidence to 

suggest that a better catheter would have resulted in a different outcome, there is a need to 

overcome some of the known limitations of such catheters. Without pretence at 

completeness, these include: (i) at high flow rates, excessive pressure may develope at one 

place (e.g., the tip) which may be undesirable in itself and also may result in deleterious 

backflow; and (ii) the placement of such catheters is rather critical since sinks, sulci, blood 

vessels are often in the proximity and act as siphons for fluid flow (this is further discussed 

at the end of the next section). In fact, when attempting a large volume distribution, the 

advance from a ‘point’ source may easily encounter such sinks. It may in fact be an 

advantage not to have a catheter that strongly limits backflow in such circumstances, as has 

been reiterated recently [4]. In any case, to overcome some of the limitations of such 

catheters, people have proposed multiport catheters, which, if the ports are large, have well-

known pitfalls, namely a tendency for all the efflux to come out of one of the ports (see e.g., 
Figure 10 and accompanying text in [5] or, in a different context, [6]). These pitfalls are 

brought out by the mathematical model in this paper and are discussed further – see end of 

Section 3 and also later. Catheters with small pores, and porous membrane catheters (for the 

latter, see [7]), were proposed in part to overcome these limitations, and such catheters are 

the subject of this paper. In the next section we give some of the background and rationale 

for the introduction of such catheters with extended fluid sources. Following that, we first 

point out the characteristic resistances that determine the nature of the outflow from a simple 

discrete two-port catheter. Then we proceed immediately to a simple approximation for 

porous catheters that allow us to exhibit its behavior with just integrations of analytic 

expressions. The theory bears out the expectations and the considerations for design of such 

catheters. Apart from concluding discussions, we have also introduced appendices where we 

exhibit the expressions needed for a more exact treatment of such catheters. We also remark 

that we have only referenced non-standard or recent materials, which seems appropriate at 

the present time, when searches are easily performed. Thus for example, we use the phrase 

“Hilbert transform” without explanation or reference. That implies that entering these words 

into a search engine will easily retrieve an accurate description of the term.

2. Background

We recapitulate some of the reasons why one might consider catheters such as we are 

treating in this paper. However, we emphasize that the purpose of the paper is to develop a 

useful mathematical model for such catheters. Justification for the clinical use of such 

catheters must rely on experimental and empirical evidence and is beyond the scope of this 

paper. We mention in particular that the catheter is currently being considered only for acute 

infusions. (There is a well-known need for chronic infusions in brain disease as well [8], [9] 

but the current porous devices are intended for only 7 –day or less use with only 

intraoperative or implant indications and only after adequate testing of potential therapeutic 

occlusion.) As stated above, end port catheters have been used in human brain cancer 

patients. A representative example of the variability of infusions and the problems that can 

arise is shown in Figure 1. There are two pairs of images, obtained by different magnetic 

resonance imaging (MRI) sequences. A contrast reagent, Magnevist™, which shows up with 

high intensity in the two images – Figures 1(a) and (b) – comprising the first pair, was 
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infused at a concentration of 1 mM (millimoles per liter) at a rate of  for 24 hours 

from two catheters. Figure 1(a) shows a baseline image; while (b) is the image where the 

presence of the reagent shows up as high intensity. Little or no infusate is visible from the 

first catheter (in-plane) in tissue. (The second catheter is partially in-plane, with the tip more 

medial and inferior from the visible portion in this slice. A large distribution of tracer is 

visible around this catheter.) There are too many fluid spaces such as sulci and CSF regions 

near the site of infusion for effective distribution from the first catheter. Evidence for this 

assertion is provided by Figures 1(c) and (d). These are exactly the same time and space 

slices as the left pair, but the MR sequence used (called FLAIR) is sensitive to tracer in the 

cerebro-spinal fluid (CSF). The resection cavity shows leakage of tracer, with most of the 

infusate from the first catheter having leaked. Even when detailed guidelines are provided, 

such catheters provide inadequate delivery, as was discussed in the post-hoc analysis 

referred to [2]. Now, distributing large volumes in at least the hemisphere of the the brain 

where tumor is present has been a goal for a number of years in brain tumor therapies 

delivered intraparenchymally. More recently, an important need for improved delivery has 

emerged with the promise of disease-modifying therapies, such as small interfering RNA 

(siRNA)-based strategies, for neurodegenerative diseases such as Parkinson’s or 

Huntington’s.

With either direct delivery of these molecules, or through an adeno-associated viral (AAV) 

carrier, there is an emphasis on global delivery of these agents to the brain. In these and 

other target diseases, current “point source” methods of delivery have limitations just 

described that limit their clinical utility without placement of a large number of catheters. 

People have therefore proposed multiport catheters to allow efflux from an entire length of 

catheter, and, in particular where a certain length of catheter is porous [7], which may be 

considered as a catheter with a very large number of small (and thus high fluid- resistivity) 

ports, and which is the principal subject of this paper. (We shall mention more conventional 

multiport catheters and their limitations in the next section. Also, methods such as laser 

drilling of holes or track-etching processes using heavy ion accelerators, both of which result 

in large numbers of small ports in a catheter – albeit smaller and more numerous for the 

etching process – are within the purview of our theories.) There are of course alternate 

designs for infusing larger volumes, such as an array of catheters that are deployed from a 

single point of entry (a modern version of this is being tested as the Cleveland Multiport 

Catheter™), or infusing along a trajectory as a single port is advanced or withdrawn (see [10] 

for a discussion of this: in any case this is not a useful method for large volume infusions 

where each infusion will be required to last many hours). Existing models for single port 

catheters suffice to simulate such designs. Our purpose here is to develop a model for porous 

catheters for which the model of the single port catheter does not suffice. Figure 2 shows 

views of both so-called microporous (a) and macroporous configurations (b). The port sizes 

are of the order of a 100 nm for the former, and of the order of several micrometers for the 

latter. A schematic layout of such a catheter is shown in the figure (c), where the length of 

the region containing the myriad of microports can be customized. The fact that a single port 

of efflux can result in the infusate being directed away from target because the flow 

encountered is illustrated in Figure 3 (a) which shows a coronal view (where the catheter is 

in-plane) at a particular instant of an in-vivo infusion in the thalamus of a pig brain 
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conducted at the laboratory of Dr. Walter Block at the University of Wisconsin. (While not 

directly relevant to the phenomenon we are discussing, this was an infusion conducted at 1 

μL min for 100 min (see [11] for the protocol used for this and related experiments). The 

infusate from the catheter, which happened to be placed near a blood vessel in the thalamus, 

is carried mostly out into CSF. On the other hand, in a porcine infusion conducted at the 

University of Virginia at the laboratory of Dr. Jaime Mata with the microporous catheter, 

Figure 3 (b), it may be seen that the catheter placed deliberately through a ventricle, infuses 

the tissue successfully on either side of the fluid sink. (This was an entirely different 

experiment: the infusion rate was ramped up from 1 μL/min to 6 μL/min for a total of 1 mL 

of infusate). This would not be possible with a single end-port catheter, although we did not 

do a control comparison during this study. Such a study was performed in vitro and is shown 

in Figure 3 (c). This is a direct comparison between such a catheter and an endport catheter 

and the the “bridging” property is displayed, though this time in gel, with bromophenol blue 

dye being the infusate for visibility. A fluid filled gap was created in gel, with the distal end 

of both catheters just penetrating tissue past the gap. The endport catheter immediately 

backflowed [12] into the gap and filled it. The porous catheter, on the other hand, distributes 

along its entire length. A small amount not easily visible does of course enter the gap, but 

the porous gel material is successfully infused. (Both infusions were performed at 5 μL/min 

for a total of two hours.)

While it may be objected that careful planning allows trajectories not to bridge a ventricle, 

the points that we are emphasizing is that (i) a length of porous catheter obviates the need 

for infusing several times along a trajectory which in any case becomes impracticable as 

mentioned for large infusions; (ii) placement near blood vessels, sulci, and many other 

‘siphons’ for flow is not always or even usually practicable even if ventricular traversal can 

be avoided; and (iii) in any case it can be argued that it is useful to have a device that is 

robust against such ‘errors’ in placement.

3. The two-port catheter

Below, we treat the porous catheter as the limit of a multiport catheter with a large number 

of ports of small diameter. To facilitate comparison with that limit, we shall first treat a two 

port catheter. The distal end of the catheter is in the negative portion of the z–axis, so that z 
increases vertically “upwards” as is conventional. We have chosen the position of the ports 

so that they will be symmetrically situated with respect to the ends of the porous length 

which we shall take below to extend from z = −L/2 to z = L/2. Thus the two ports will be 

situated at z = −L/4 (distal port) and at z = L/4 (proximal end). When we present numerical 

results, we shall considered a layered medium with two layers with very different fluid 

conductivities, one for z < 0, and another conductivity for z > 0: hence our choice of 

coordinates and positioning of the catheter so that the ports are always symmetrically 

situated with respect to the two layers. In the case of a uniform medium of course, the choice 

would be immaterial.

Denote Q =AV0 to be the flow rate through the catheter, where A is the internal cross-section 

of the catheter accessible to the fluid, so thatV0 is the incoming axial velocity. Let q1 = av1 

be the outflow rate across the first port of cross-sectional area a with outflow velocity v1. For 
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simplicity, we take the areas of all the ports to be equal, so that we don’t have to index these. 

Then, the axial flow speed past the first port isV1, with

(1)

Further, let us denote the pressure at the pump to be p0, and that at the first port be p1: the 

distance between these two positions is denoted L0. We thus also have

(2)

with Kcath being the hydraulic permeability (with dimensions of area) of the catheter. For a 

circular cylindrical lumen, this would be R2/8, from the equation for Poiseuille flow, while 

for a catheter with a stylet in place, it would be more appropriate to use the permeability for 

annular Poiseuille flow between two cylinders. With similarly defined quantities for the 

second and final port, we have

(3)

along with

(4)

Further, denoting the pressures in the tissue just outside the ports, in tissue, by 

corresponding capital letters,

(5)

where t is the width of the port and Kport its hydraulic permeability. Thus if we know the 

external pressures, we may solve for p0, p1, p2 from the above three different expressions 

(2), and the two equations in (4), upon using (5) for q1,q2. The remaining unknowns P1,P2 

may also be determined from Darcy’s law in porous media if we know the medium 

properties. First, assuming the tissue conductivity is uniform, we get, by the method of 

images,
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(6)

In a two layer medium we retain the symbol K for the tissue conductivity at the proximal 

port (at positive z). However, we confine our attention to the case where the distal port is 

facing fluid (infinite conductivity), as would occur if this port of the catheter were in the 

ventricle or a blood vessel. Then the pressures in tissue at the two ports for a double layer 

medium simplify to

(7)

Equations (6) or (7) as the case may be substituted into equations (5) give us two equations 

for the four unknowns (the efflux rates q and the port pressures p at the two ports), while (3) 

substituted into the rightmost term in (4) give us two more, so we may obtain unique results 

for all the quantities concerned. Although these equations are linear and their solutions may 

be explicitly obtained, in Figure 4 we only show the plots of the outflow rates from the 

catheters, evaluated from (5) after substituting the solutions obtained for the pressures, by 

the above method. The interesting quantities are the outflow rates from the two ports, and a 

significant determinant of these is the resistance of the ports. So we plot the outflow from 

the port facing the tissue (the outflow through the other is just the total flow rate less the 

flow rate through the first port) as a function of hydraulic permeability of the port in cm2. 

The curves displayed are for the tissue permeabilities (the inverse of the resistivities) of 

10−10, 10−7, 10−6, and 1, (cm2) respectively as shown in the legend. At the extreme left, all 

curves begin with the flows being balanced (equal out of each port) due essentially to the 

high port resistivity compared with any of the tissue resistivities used in the plot. The ideal 
case would be when all the graphs are horizontal: in that case the efflux would be uniform 
from each port no matter what the permeability of the tissue facing the ports. K refers to the 

permeability of the tissue. The total outflow rate is always 1250 microliters/minute, so the 

port not shown has efflux that is simply the displayed rate subtracted from the total. At the 

extreme left therefore (very high port resistance) the flow from the two ports are equal, 

despite the fact that one is in tissue, and the other in water. This modeling shows that for the 

lowest tissue permeability, there is equal flow out of both ports even though the second port 

faces fluid; however as the port resistance drops, the zero resistance of the fluid facing the 

second port wins out and there is no flow out of the first port. In contrast, if we consider the 

condition of low tissue resistance, while the beginning of the curve indicates equal outflow 

from both ports, the port facing tissue wins out even for low resistance ports (at least for the 

numerical values here chosen for the permeabilities). The reason now is that the tissue 

resistance is so low that the resistance of the catheter lumen sufficiently disfavors the second 

port, which is situated in our case further downstream of the flow within the catheter. 

Intermediate values of the tissue resistance display intermediate behaviors. There is thus a 

tissue resistance that balances with the lumen and port resistances so that equal outflow 

Raghavan and Odland Page 6

Biomed Phys Eng Express. Author manuscript; available in PMC 2018 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



occurs from both ports. Thus, in general, we expect an interplay between these three kinds of 

resistances in determining the outflow rates. The clinical implication is that smaller pores 

will result in equal flow out of the pores, while large pore outflow is influenced by the 

position of the pore relative to the pressure source (proximal to distal on the catheter) and 

the hydraulic conductivity of the tissue adjacent to the pore. If all else were equal, one would 

opt for the highest port resistances. However, this has two deleterious consequences: the 

intraluminal pressures can be very high and can become dangerous to the mechanical 

integrity of the catheter components; and secondly, high resistances means very small pores, 

and the therapeutic particle may not be able to traverse through the ports into the tissue 

which it needs to treat. In practice, therefore, a compromise has to be made.

4. The porous catheter

It is clear that the above equations can be generalized to any number of ports (for a 

specialized case for these where however the external pressures are assumed to be known, 

see [13]). However, both as a practical matter (since the parameters of all the ports will not 

be available) and for theoretical convenience, we shall proceed to a continuum limit that 

obtains when the number of ports increases without limit while the size of the ports 

decreases and a certain quantity (see below) has a finite limit. We expect that this would be a 

good approximation with a sufficiently large number of small diameter ports. The basic 

geometry of this catheter has already been described above. The problem of laminar flow in 

a tube or channel with porous walls and with suction or efflux through these walls has been 

the subject of a rich literature with some remarkable phenomena that occur [14]. For 

numerical evaluation, we shall take the parameters to be as in Table 1. The equations needed 

to describe simple outflow from an array of ports can be immediately written down from the 

above two-port case. The symbols Q, A, a, t, Kport, and K retain their meanings from before 

(see also Table 1). So, for simplicity, we assume all the ports are identical. We denote the 

cross-sectional-averaged fluid velocity within the lumen of the catheter, and at a point z 
along its axis, as V (z). As mentioned before, the distal end (next to the tip, see Figure 2(c)) 

of the porous length is at z = −L/2 while the proximal end is at z = L/2. The end of the tube 

is closed. Further notation: let the ports be numbered i, ranging from 1 to N, and let their 

centers be at z = Li, and the average fluid speed across a port entering tissue is denoted vi. 

We also denote the distances between the centers of the ports directly below one another 

along the axis to be Δ and all uniform.

Then, from Darcy–type laws arising directly from Poiseuille flow,

(8)

In the second of the equations, δpi is the pressure drop P – p between the pressure P in the 

tissue facing the port and the pressure p within the catheter just inside. We denote V (z) at 

port i by Vi. In the region between pump and the first port, the average velocity of fluid flow 

for a fixed flow rate Q is constant, say V0. We thus have
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(9)

Denote

(10)

and its continuum limit, q(z). Subtracting equation(9) from a similar one for i+1, and 

replacing Vi by its discretized Darcy expression from (8), taking Δ → 0, and setting the 

ambient pressure outside the catheter in the fluid to be P (z), we get

(11)

Since the efflux via from the ports goes like 1/N, and thus taking the limit N → ∞ as well, 

we must have a finite non-zero limit for

(12)

(13)

At z = L/2, we know that V0 = −Q/A in the direction of increasing z, so

(14)

and the second boundary condition holds since all the fluid has exited out of the catheter by 

there.

Consolidating we have

(15)
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where the positive parameter λ is defined to be

(16)

along with the boundary conditions (14). We emphasize that this is a continuum limit of the 

case of discrete ports and so holds only if the conditions noted above are satisfied. The 

general solution for p is

(17)

with C1 and C2 being the integration constants evaluated by imposing (14). We select the 

lower limit for the integral to be z = −L/2. The value for λ has to be obtained from other 

considerations (see below), but since it depends on the catheter construction, it does not 

change according the boundary conditions. The equations for C1, C2 are explicitly

(18)

(19)

We now look at some special cases. In case P (z) = 0 everywhere (e.g., if there is only fluid 

outside the catheter), this gives

(20)

We proceed as for the two-port catheter to solve for the more general case where there is a 

medium with known hydraulic permeability outside. We shall present numerical results for 

two simple cases. One for a uniform medium, and the other for a two layer medium where 

the distal half of the catheter faces pure fluid. The mathematics required for computing the 
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pressure in tissue due to outflow at a rate q(z) per unit length from a cylinder of finite radius 

is complicated. We give the method in Appendix A but defer its numerical implementation 

for later. To show the qualitative phenomena however, we may adopt the model of a thin 

wire rather than that of a cylindrical catheter surface of non-zero radius, taking care to 

evaluate the resulting expressions only for radial distances from the wire larger than the 

catheter radius (i.e., for r > rc). In that case the solution are standard from analogous 

problems in electrostatics and we may write the pressure outside the catheter in a uniform 

medium, subject to the boundary condition that the flow is radially out into the medium, as

(21)

(22)

for r > rc, which is the convolution of the kernel shown with the flux density q(z)/(4πK/η). 

For the rest of this paper we shall set α = 0 which means we are neglecting any efflux of 

water out of the tissue due to capillary losses, ductal systems etc. If we need to consider 

these, then we shall have to include the exponential in the kernel. However, to highlight the 

special features of such catheters, it is simpler to neglect this for the present.

We now have equations for the internal and external pressures at the catheter (at least for a 

uniform medium): (17) and (21) along with (15). Abstractly we can write

(23)

where L1,2 are linear integral operators that do however also depend on λ as can be seen 

from their defining equations. The solution for p for example is formally

(24)

A solution method that suggests itself is to write (1 − x)−1 ~ 1 + x + x2 + ···, or by iterating 

the pair of equations in (23). Viewed this way it is clear that large λ (or, rather, large λL 
which is dimensionless) poses a problem since the mappings back and forth may fail to be 

contractions and hence may not result in a convergent solution. We have not conducted a 
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mathematical investigation of these equations, but proceed to show solutions constructed by 

iteration, where they clearly converge, and we shall make remarks on large λ further on.

Uniform medium

First, we consider the case where the flow rate out of the catheter is uniform: q(z) = const = 

Q/L, 0 ≤ z ≤ L and zero otherwise. This gives us the external pressure P(z) along the catheter 

as we have already seen in equation (21). Then we can use this to compute the integration 

constants from (18),(19). This allows us to compute the pressure inside the catheter from 

(17), which in turn allows us to compute the flow rate from (13), using (15) for the second 

derivative of the pressure. This process may then be iterated. If the mappings (17) and the 

composite mapping (15) followed by (21) are contractions, we may hope for convergence 

from this iteration. The results are shown in Figure 5. The outflow is reasonably uniform 

along the length. Assuming a constant flow rate per unit length throughout the porous 

length, the pressure in the tissue is shown as the dotted curve in (c) of the figure. The 

solution for the internal lumen pressure from equation (17) then is plotted in Figure 5 (a), 

which in turn determines a revised outflow rate plotted in (b). We see that the outflow rate is 

fairly uniform but not constant (for the parameter values chosen, see Table 1); and this 

outflow rate can in turn be used to calculate a new pressure in the tissue in the second 

iteration: this is plotted as the solid curve in (c). We see that it is quite close to the starting 

curve, and we expect that the iteration is already close to convergence. We have checked 

this.

Two layer medium

For different hydraulic conductivities in tissue at the ports, K+, K−, say, where the interface 

is at z = 0, we can show, by the method of images, that the pressure in the tissue is given by

(25)

We should mention that the above formula is correct only for a two layer system, so K(z) = 

K± according to whether z > 0 or z < 0. We chose K = 10−9 cm2 in the upper layer, a 

reasonable value for brain tissue. We choose the lower layer to be water with a formally 

infinite hydraulic conductivity. This immediately gives the pressure for negative z to be zero. 

The reason is that Darcy’s law is a reduction of the equations of viscous flow near solid 

surfaces when the only effect of the viscosity is at the interface: the viscosity of fluid in the 

bulk plays no role. Thus even with outflow, there is no pressure gradient in the bulk fluid. 

This is of course incorrect, but qualitatively does not make much difference due to the very 

high resistivity of the porous medium in comparison. In any case if we let K− → ∞, the 

prefactor in the second term is just −1 for z > 0, the only region where (25) needs to be 

evaluated. It should also be noted that the range of the integral is only from ζ = 0 to L/2: 

when |ζ| > L/2, q is zero (no ports), while in this particular case since P is evaluated (and is 

non-zero) only for z ≥ 0, the second fraction for ζ ≤ 0 is the same as the first, and cancels 
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with it because of the negative sign. Of course, all these just noted simplifications occur only 

in this particular case due to the singularity of the fluid conductivity in the lower layer.

In Figure 6(a), we show two iterations of the outflow rate (beyond the zero’th where we 

assume it to be a constant) for the case λL/2 = 0.1, a value small enough to hope for 

convergence. Indeed the two iterations (dotted for the first and a solid line for the second) 

are indistinguishable. Note that the range of the ordinate is very small and the flow rates are 

essentially uniform with a small variation around the mean of 250 μL/min/cm of porous 

length. This is quite remarkable considering that the lower layer is water with infinite 

conductivity. To get a feeling for the value of this for catheters that have been made, we use 

some unpublished data from infusions in water where the outside pressure can be set to zero, 

and the pressure at the pump for a given flow rate was observed. We can then use equation 

(20) for the lumen pressure, neglecting the small pressure differential due to the tubing and 

lumen from the pump to the proximal end of the porous catheter. Using the internal 

diameters of the catheters and other known parameters such as the radius of stylets used 

during the infusion, we obtained λL/2 ≃ 1.325 and 6.55 for the micro- and macro-porous 

catheters, respectively. The results for the outflow after iterating for the microporous catheter 

is given in Figure 6(b). The figure (b) shows that while there is certainly loss into the fluid, 

there remains substantial flow into the tissue (the positive z portion of the X –axis). The flow 

rate however shows considerably more variation now. The two iterations are still close 

together, and so demonstrate convergence of the iteration scheme mentioned. On the other 

hand our iteration scheme does not work for the macroporous catheter: the ports are of such 

low resistance that fluid is actually sucked in from the tissue and ejected into the fluid. We 

hope to report on more robust numerical methods later, but there is a physical basis to this 

behavior as well, namely the low resistance of the catheter can lead to very sub-optimal 

behavior. It has been previously shown (see, e.g., examples shown in [15]) that multiport 

catheters with large ports often have an “all or nothing” behavior even when the variation in 

conductivity of the tissue or gel medium is minimal.

5. Suction and fluid removal

In the above discussion we have focused on acute intraparenchymal infusions into the tissue. 

Following an initial evaluation of membrane dialysis as a method of fluid removal, [16], 

such porous catheters have also been proposed for this purpose [17], [18], [19], [20]. We 

emphasize again that our purpose is to indicate how the model might be used for reversed 

flow, but consideration of blockage and other such potential problems is beyond the scope of 

this paper. The model may be used in calculations only if we assume there is no blockage. If 

we simply reverse the sign of the flow, we will obtain exactly the same solution as shown 

above, albeit with negative pressure (with respect to the CSF pressure, say). However, when 

using the device for such a purpose we cannot set the flow rate, but rather we run it with a 

specified negative pressure at the pump, say pA where pA is negative with respect to resting 

interstitial tissue pressure (which, rather than atmospheric pressure, has throughout been 

taken to be zero). If the pump pressure is set at z = A > L/2 (since it is the length that reaches 

up to L/2, and there is a further length of tubing that reaches to the pump), that means 

simply that we replace the first boundary condition of the pair in (14) with
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(26)

the second in that pair remaining the same. The second term on the left hand side is the 

small drop of pressure in the length between pump and the beginning of the porous length, 

and can usually be neglected. We have verified that the same iteration process as above 

encounters no difficulties in similar cases, so we omit displaying the curves that result, since 

they are qualitatively as before. The theory above is adequate to deal with fluid removal with 

negative pressure but we should mention that the inventors of the porous device now favor a 

different approach to fluid removal from brain tissue, see [21], [22].

6. Conclusions

We have provided the theoretical framework for computing the behavior of infusions from 

both discrete multiport catheters (already contained in part in [13]) as well as a continuum 

limit which allows us to examine porous catheters. Without this limit, a simulation would 

demand detailed knowledge of the geometry of the pores, an essential impossibility. This is 

the first treatment of such devices and applications as far as we know. The computation 

demands that we calculate also the fluid flow and pressure within the lumen of the catheter. 

We have illustrated simple cases of the performance of such catheters: full implementation 

of the calculational scheme in an extension of our approach to simulations of fluid and 

particulate flow in tissue [23] is under way at the time of this writing. We have also shown 

that the same method can also be used for the use of such catheters in fluid removal. In 

addition, the appendices below describe (i) the substantial extension required to treat the 

catheter body as a finite radius cylinder, confirming the model used in the main body of the 

paper in the suitable limit of small radius; and (ii) an approach to treating backflow at the 

same level of approximation as the previous simple model developed for single port 

catheters [12]. While the class of problems encountered fall within the rubric of potential 

theory in classical physics such as electrostatics, the details differ and the particular 

geometries and boundary conditions have not been treated before, again as far as we know 

(see also Appendix 1). Our calculations confirm the expectations of the inventors of such 

devices [7], namely that they significantly ameliorate the “all or nothing” behavior seen so 

often in single port catheters (and discussed above), and that the fluid resistivity of the ports 

of the catheter relative to that of the tissue plays a critical role in ensuring the superior 

performance of such devices when faced with tissue of varying resistivity. Such behavior is 

of particular advantage in large volume infusions, where one can infuse simultaneously from 

a large surface (over the length of the porous region of the catheter) as opposed to a single 

port. Studies of precisely such infusions are being concluded at the present time in a separate 

project, and the results will be reported upon. It is also obvious from the formulas in this 

paper (and as has been checked with the numerical simulations) that the pressure at any 

point of tissue facing the catheter is correspondingly smaller than from a single port infusing 

at the same total rate, since the pressure here is distributed over a much larger surface area. 

For high infusion rates, this could also be of advantage.
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In previous work [23] we have described a patient-specific planning system for targeted drug 

delivery and argued [24] for its importance in helping ensure effective delivery, and by 

extension, in helping the success of clinical trials and administration of such therapies. The 

models of infusions hitherto have been restricted entirely to single port catheters. The 

treatment here allows one to extend the modeling to multiport and porous catheters, and to 

extend the range of planning systems to these. We hope to incorporate these advances into 

the next generation of mathematical models and software for planning CED to infuse large 

volumes of therapeutic solutions into brain, liver and other tissue.
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Appendix A. Outflow from a cylinder

The purpose of this appendix is first, to describe the mathematics required to compute the 

pressure distribution in tissue for a specified outflow rate from a length of catheter which is 

a cylinder of non-zero radius, and secondly, to show that the wire model we have used in the 

main text results by taking suitable limits for the expressions put forth here. In addition, we 

indicate an iteration scheme for solving the equations for the finite radius catheters 

beginning with the limiting case of zero radius. The setup of the problem belongs to the 

venerable tradition of the “methods of mathematical physics” [25], and to applications of 

potential theory to physics, but the particular geometry and boundary conditions are not 

available in the classical texts.

Raghavan and Odland Page 15

Biomed Phys Eng Express. Author manuscript; available in PMC 2018 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We now reset the distal closed end of the catheter at z = 0. It was convenient in the main 

body of the paper to set that at z = −L/2 since we wished to display results for when half the 

catheter was in fluid and half in tissue. Here, our treatment is general, and it will be simpler 

to choose the origin of the axes at the distal catheter end. As before places with negative z 
coordinates are entirely in tissue while the catheter shaft is along the positive z axis. Our 

starting point is the porous flow equation in cylindrical coordinates with azimuthal 

symmetry assumed in the wire model,

(A.1)

where α has been defined earlier, equation (22). For simplicity we set this to zero here as 

well, although the following development goes through with its inclusion. Separable 

solutions of the form

(A.2)

will then lead to

(A.3a)

(A.3b)

for some constant k independent of the coordinates. Let the semi-infinite catheter of outer 

radius rc occupy the half space z ≥ 0, the space z < 0 being open. The solution to Laplace’s 

equation must exist in the region I ⊕ II where

(A.4)

(A.5)

In region I the asymptotic condition at infinity, namely that the pressure approaches zero 

(though a constant will do if it would be convenient for us to have zero solutions at other 

locations), implies rejecting the growing exponentials exp (|kz|) and I0(|k|r). This means that 

in region I we can take the solution to be of the form exp (ikz) K0(|k|r), using real k, which 
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would form a complete set of solutions satisfying the boundary condition at infinity. In 

region II we demand regularity at r = 0 and finiteness as z → −∞, thus limiting ourselves to 

solutions of the form exp (|k|z) J0(kr) or exp (ikz) I0(|k|r).

Consequently, in region I we posit the solution

(A.6)

subject to the Neumann boundary condition specifying the outflow rate for z > 0

(A.7)

where H(z) the Heaviside, or unit step, function

(A.8)

and the other symbols have the same meaning as in the text. (The value at z = 0 is chosen 

between 0 and 1 according to convenience.) We are also employing the following notation 

for any function g

(A.9)

At the closed base of the catheter, z = 0 and r < r1, we invoke Neumann boundary 

conditions.

(A.10)

We then posit

(A.11)

with the coefficients required to satisfy
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(A.12)

Since I0(|k|r) is an even function of k, this requires β̃(k) to be an even function of k with β̃(0) 

= 0. (We do not need the form of solution expressed by the J0–type Bessel functions, due to 

the homogeneous boundary condition at the end cap appropriate to the type of catheters we 

are treating here: had there been a non-homogeneous condition of either Dirichlet or 

Neumann type, then we would need to augment the forms chosen with products of first kind 

Bessel functions and real exponentials. These would be used to satisfy the inhomogeneous 

boundary condition, while the rest of the approach below would continue to hold, with the 

appropriate modifications.) To obtain the solution of Laplace equation valid everywhere for 

z < 0, the solution should be continuous at a boundary and its gradient have the requisite 

discontinuity determined by the boundary. But the boundary between regions I and II is 

purely fictitious (mathematical), hence demanding the continuity and differentiability of the 

solution at that boundary renders it a regular solution of the Laplace equation. One can 

observe this directly from eq. (A.1), as well. Continuity and differentiability of p at r1 would 

make the ∂rp and  terms equal for pI and pII at the boundary, so that the Laplace equation 

would render  continuous at that boundary as well. Applying an analogous argument 

while taking higher derivatives of eq. A.1 would render higher derivatives of the solution 

continuous at the boundary as well, thus guaranteeing a regular solution. The continuity and 

differentiability of the solution at the I/II boundary is expressed via

(A.13)

(A.14)

The first of these equations is satisfied by setting

(A.15)

The Fourier transform of H(−z) g(z) is  and conversely, where ℋ 
denotes the Hilbert transform, so the Fourier transform of the second equation reads
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(A.16)

Substitution of α̃(k) from the previous equation results in an inhomogeneous singular 

integral equation for β̃(k). This is a form of integral equation that has received attention in 

the literature, and, in general, there are numerical schemes available to solve such equations. 

We shall not pursue solution of these equations here, although the iterative approach we 

describe below could also be used with this equation, but we note that in the limit the 

catheter approaches an infinitely-thin semi-infinite wire, region II disappears and the full 

solution is given via eq. (A.6), i.e.

(A.17)

the second equation coming from the convolutional property of the Fourier transform and 

the fact that the Fourier transform of  in k is . Strictly speaking, even 

with this wire approximation, we should solve the Neumann boundary condition at the 

catheter radius, namely

(A.18)

for a. This too is a singular integral equation. In the main text, we further simplified the 

approach by noting that

(A.19)

becomes a delta function in the limit r →0, since

(A.20)

This is also apparent from the Fourier transform from which Δ(z, r) was derived, namely
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(A.21)

and the fact that

(A.22)

So that taking this limit we obtained simply

(A.23)

which is the approximation we have used in the text: equation (21) with α set to zero. 

However, we show that this is a reasonable approximation by proposing a series solution for 

the integral equation (which, as we remarked, may also be used with the more difficult 

integral equation for the finite cylinder above). If we define the convolution operator in the z 
variable as

(A.24)

then

(A.25)

where r = r1 is assumed, needs to be solved for a Now define

(A.26)

Thus eqs. (A.25) and (A.26) imply that

(A.27)

must be solved for a where we recall that a = a+. Defining the operator ℒ through the 

relation
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(A.28)

we see that

(A.29)

Other than using standard methods to solve for this integral equation, we could also attempt 

a series solution for a assuming that the norm of the operator ℒ < 1:

(A.30)

with

(A.31)

and so on. By definition of the operator ℒ in eq. (A.28) and W+ being non-zero only for z > 

0, it is clear that the series solution in eq. (A.30) respects this property for the resulting a, i.e. 
a = a+ as well. In order to examine the convergence of the series, we consider the expansion 

of the Bessel function:

(  is the digamma function.) The Fourier transform in z of the kernel Δ is

(A.32)

so that the term (Δ1 * W) is the Fourier transform of . So 

is at most (r2|k|2). We can then confine ourselves to the first few terms of the series 

expansion if  is principally confined to long wavelengths, in particular compared to 

the catheter radius. We show two iterations in the figure, showing excellent convergence 

outside of the end: it should be noted that the curve is symmetrical around the mid point of 

the porous length, and only one end of it is shown. We leave such explorations to the future.
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Figure A1. 
Iterating the integral equation

Appendix B. Backflow

In the treatment of multiport catheters in this paper, we have ignored backflow. In general 

for the flow rates encountered, there is little flow beyond the extent of the porous length 

itself, particularly when the latter is large. As mentioned in the Introduction, there is a priori 
an argument to be made for having a larger length of porous catheter for infusing large 

regions, so that in applications where this catheter is particularly advantageous, this length 

can be several centimeters. Nevertheless, it may be useful to indicate, following the theory of 

our earlier paper, how backflow may be computed in the present model. This appendix is not 

self-contained, and relies on an understanding of backflow and how to model it as discussed 

in [12]. In the simplest model for backflow, which we called the NIH model for sound 

historical reasons, there were a pair of equations to be solved for Q, p where Q was the flow 

rate up the catheter, in the thin annular fluid-filled layer surrounding the catheter, and p is 

the pressure at the boundary of the catheter that drives flow into the tissue. In the current 

treatment, we have used the quantities q(z) to be the flow per unit length radially outward 

from the catheter, and P to be the pressure at the catheter surface. (We have used the lower 

case p to be the pressure, and similarly we used Q to denote the flow, within the catheter 

lumen itself.) Let us therefore denote Qb to be the flow rate on the outside flowing up the 

catheter. Furthermore, the radially outward flow in the treatment above was equal to the flow 

coming in through the port, which is no longer the case. So let us now denote the flow into 

the port to be qin, i.e., qin in is defined to be the right hand side of the first equation in (15). 

We then have

(B.1)
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Therefore we may proceed with the backflow theory as outlined previously. There are now 

five unknown functions of z, in contrast to the two for the simpler endport case, namely, 

(omitting the argument z), p, qin, q, P and Qb. The relation between (what is now denoted) P 
and Qb for Poiseuille flow is as before, see equation (6) in [12] – with the notational 

replacements noted – while the pressure P is computed as a function of q as shown in the 

present paper. The internal pressure p in the lumen which determine q, has also been 

described in this paper. Finally, the fourth equation we have is (B.1), and we may 

numerically compute the four functions from these four equations. The final backflow 

obtained will be subject to similar limitations as described in [12], except that the most 

important of these limitations, namely, that for the pressure in the tissue along the catheter 

length has been correctly described here. We hope to develop this computation in the future, 

though in practice, very little backflow has been observed for the infusion rates employed in 

experiments so far. The reason for this is undoubtedly the smaller pressure over any unit 

surface area (as mentioned in the Conclusions above) with corresponding reduction in the 

backflow that would otherwise result.
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Figure 1. 
Infusion in human brain cancer (Dr. John Sampson’s laboratory at Duke University.)
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Figure 2. 
Porous membrane type catheters.
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Figure 3. 
The “bridging” effect: porous versus end-port catheters.
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Figure 4. 
Outflow from the port facing tissue in a two-port catheter, the other port facing fluid. The X-

axis is the hydraulic permeability (inverse of the resistivity) of the port: high resistance is to 

the left (near the origin) and low resistance to the right. See text for detailed explanation.
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Figure 5. 
Iterative solution for the pressure and flow from a porous membrane catheter for uniform 

tissue outside. The fluid is entering the catheter from the positive (right) side. Pressure 

within the lumen (a) and outflow (b) are fairly constant along the length of the catheter (+2.5 

to − 2.5) and falls off quickly proximally and distally in the 10 cms of the abscissa shown in 

(c).
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Figure 6. 
Outflow rate computation in two layer media. Two iterations of the outflow rate beyond the 

starting assmption of uniform flow using the method described in the text are shown in (a) 

and (b): the dotted one is the first and the solid line the second iteration. The iterative 

method is useful for the case where there are a large number of small ports, and is described 

by a dimensionless number described in the text. In (a) this number was chosen to be 0.1, 

while (b) is the number appropriate for the microporous catheter, which turns out to be > 1. 

However the iterations still converge well for this device.
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Table 1

Parameter values for theoretical calculations.

Symbol Meaning Value

r0 Inner radius of catheter 0.03 cm

rc outer radius of catheter 0.045 cm

w diameter of stylet 2 × 0.02 cm

K hydraulic permeability of tissue 10−9 cm2

L length of porous region of catheter 5 cm

Q total flow rate out of catheter 1.25 mL/min

η viscosity of fluid (water) 0.01@25C dyne – sec/cm2

A (internal) area of catheter lumen 0.096 mm2

Kcath hydraulic permeability of catheter lumen 0.038 mm2

Λ boundary value (see text)
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