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Radiosensitizing Agents in Oncology
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Radiotherapy is one of the major therapy forms in oncology, and combination therapies involving radiation and chemical
compounds can yield highly effective tumor eradication. In this paper, we develop a tumor growth inhibition model for
combination therapy with radiation and radiosensitizing agents. Moreover, we extend previous analyses of drug combinations
by introducing the tumor static exposure (TSE) curve. The TSE curve for radiation and radiosensitizer visualizes exposure
combinations sufficient for tumor regression. The model and TSE analysis are then tested on xenograft data. The calibrated
model indicates that the highest dose of combination therapy increases the time until tumor regrowth 10-fold. The TSE curve
shows that with an average radiosensitizer concentration of 1:0 lg=mL the radiation dose can be decreased from 2:2 Gy to
0:7 Gy. Finally, we successfully predict the effect of a clinically relevant treatment schedule, which contributes to validating
both the model and the TSE concept.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE OF THE

TOPIC?
� Tumor growth inhibition (TGI) models are commonly

used to describe chemical interventions. Tumor static

concentration (TSC) curves have been introduced for

combinations of chemical agents.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Can we extend current TGI models to describe radio-

therapy and combination therapies involving radiation?

Can the TSC concept be extended to such models?
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� The proposed model combines existing TGI models

with the linear-quadratic theory of radiobiology. The

model contains relatively few parameters and can be
calibrated to data from standard xenograft studies. The
tumor static exposure (TSE) curve is introduced by
considering average, as opposed to pointwise, tumor
stasis.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The proposed tumor model can be used to simulate
and predict therapies involving radiation to guide future
experiments. The model also has the potential to be
used as a translational tool to guide clinical studies.
The TSE curve can be used to evaluate, rank, and
compare radiosensitizing agents.

Combination therapies have become increasingly clinically

relevant and have multiple potential advantages over single-

agent treatment.1 By targeting the disease along multiple

pathways, the increasing problem of drug resistance can be

reduced.2 There is also a potential for drug synergies.3,4

Synergistic interactions can take many forms. For instance,

a pharmacokinetic synergy could mean that a drug

decreases the clearance of another, leading to an increased

exposure of the latter. Similarly, a pharmacodynamic synergy

could be that one drug increases the sensitivity to another.5

We have previously developed model-based methods to
quantitatively assess combination therapies of chemothera-
peutic drugs using the so-called tumor static concentration
(TSC) curve.6–8 The TSC curve is defined by all concentra-
tion pairs that result in tumor stasis according to a suitable
tumor model. The TSC curve determines sufficient drug
exposures for tumor regression, and highlights potential

inherent benefits of combining the two agents. It can also be
used to optimize dosing regimens for maintained tumor

regression, and can aid in evaluating the performance of dif-

ferent drug combinations. Furthermore, the curvature of the

TSC curve is related to drug interactions, with synergy and
antagonism resulting in a more convex or concave (curving

below or above a straight line connecting two points on the

curve) TSC curve, respectively. The TSC curve is visually

similar to the well-established isobologram, but the TSC

curve involves plasma concentrations (i.e., exposure), as
opposed to doses.9,10 Recently, another TSC-like curve

called the “half-maximal effect curve” was introduced based

on general combination effect expressions.11 The TSC curve

is currently only applicable to chemical compounds with
known plasma exposures. Therefore, it would be desirable to

extend the TSC concept to other important therapies, such

as radiation.
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Radiotherapy is one of the major approaches in oncology

along with chemotherapy and surgery.12 Ionizing radiation

(IR) damages the DNA of the cancer cells, causing them to

die through a variety of mechanisms, including apoptosis,

autophagy, necrosis, senescence, and mitotic catastro-

phe.13,14 Specifically, IR induces DNA single-strand and

double-strand breaks that, if unrepaired, are likely to result in

cell death. Mathematical models of radiotherapy have been

proposed with various levels of detail, ranging from the

linear-quadratic (LQ) model of the surviving fraction of cells,

to systems of partial differential equations describing both

temporal and spatial tumor growth.15–19 In the clinic, the LQ

model is widely used and has a strong empirical basis.20,21

A definitive derivation of the model does not exist, although

many potential derivations have been proposed.22,23

Radiotherapy can be given before, after, or alongside

chemotherapy, giving rise to potential interactions. A chemi-

cal compound acting synergistically with IR could mean a

net increase in the DNA damage caused by irradiation, or

that the compound facilitates one or several of the possible

mechanisms of cell death of the DNA-damaged cells.24 For

chemotherapeutic drugs, so-called tumor growth inhibition

(TGI), models involving a set of damage compartments

have become a well-established way of modeling volume-

time data.25–27

In this paper, we introduce a TGI model for treatments

involving both ionizing radiation and chemical compounds.

In particular, we focus on the case in which the compound

is a radiosensitizer that enhances the effect of the radio-

therapy. The proposed model can be viewed an extension

of traditional TGI models to radiotherapy, but it also has a

basis in the LQ theory of radiobiology. Based on this model,

we extend the TSC concept to combinations involving ioniz-

ing radiation by introducing the tumor static exposure (TSE)

curve. The analysis is based on requiring the growth of the

tumor to be zero not at each point in time, but on average

over a certain time period. Our tumor model and TSE anal-

ysis are illustrated using xenograft data. The model is able

to adequately describe both monotherapy and combination

therapy at different dose levels. The TSE curve visualizes

how the radiation effect is enhanced by the radiosensitizer,

significantly lowering the radiation exposure necessary for

tumor regression. We also consider the implications of

between-subject variability on the TSE curve. Finally, we

use the calibrated tumor model to predict the treatment

effect of a clinically relevant administration schedule. This

prediction can be viewed as a validation example of both

the tumor model and of the associated TSE curve.

METHODS

In this section, we introduce a general TGI model for com-

bination therapy with ionizing radiation and radiosensitizing

compounds. Thereafter, we extend the TSC concept to

such models by defining what we call the TSE curve.

Radiation and chemical tumor growth inhibition model
Untreated tumor growth is described using a model with

one main compartment and three damage compartments,

as described in ref. 7. The main compartment V1 repre-

sents the volume of proliferating cancer cells and follows

logistic growth with exponential growth rate kg and tumor

capacity parameter K . Natural cell death is modeled using

the three damage compartments V2, V3, and V4 with kill

rate parameter kk .
The action of ionizing radiation is incorporated as an

instant mass transfer between compartments V1 and U1 at

the time of irradiation. The compartments U1 and U2 can

be interpreted in the following way: Cancer cells that are

lethally irradiated are transferred to U1 where they are

allowed up to one more cell division. The daughter cells are

transferred to U2 where they can no longer proliferate and

will eventually die. The inclusion of U1 and U2 ensures that

the total tumor volume is continuously differentiable.
According to the LQ theory, the average number of lethal

lesions L inflicted by a radiation dose D is given by the

sum of a linear and a quadratic term with coefficients a and

b, respectively.19

L5 aD1bD2 (1)

The standard assumption is that such lesions are Poisson

distributed from cell to cell.19 Hence, the probability of hav-

ing k50 lethal lesions occurring in a cell is given by:

P k50ð Þ5 L0exp 2Lð Þ
0!

5exp 2Lð Þ (2)

and by independence, the surviving fraction of cells,

SF Dð Þ, as a function of radiation dose is given by:

SF Dð Þ5exp 2Lð Þ5exp 2aD2bD2� �
(3)

Hence, the radiation-induced mass transfer was chosen

as:

12SF Dð Þ512exp 2aD2bD2� �
(4)

Radiosensitizers can have many different mechanisms of

action. To make the model generally applicable, we lump

all of these processes together as having the net action

of stimulating the radiation-induced mass transfer. We

use a linear stimulatory function S Cð Þ511bC to describe

this action, where b is a pharmacodynamic parameter

associated with the radiosensitizing effect. Taking such

an effect into account, the modified surviving fraction for

combination therapy with radiation dose D and concurrent

plasma concentration of the radiosensitizer C will there-

fore be:

SF D;Cð Þ5exp 2 11bCð Þ aD1bD2
� �� �

(5)

Should the radiosensitizer also exhibit a monotherapy

effect, this can be described in a standard way (e.g., as a

linear stimulation of the natural death process of proliferat-

ing cancer cells with pharmacodynamic parameter a).
The full tumor model is depicted in Figure 1. The corre-

sponding system of differential equations reads:
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dV1

dt
5 kgV1 12

Vtotal

K

� �
2ð11aCÞkk V12 12SF D;Cð Þð ÞR V1

dV2

dt
5ð11aCÞkk V11kk U11kk U22kk V2

dV3

dt
5 kk V22kk V3

dV4

dt
5 kk V32kk V4

dU1

dt
5 12SF D;Cð Þð Þ R V12kgU1 12

Vtotal

K

� �
2kk U1

dU2

dt
5 2kgU1 12

Vtotal

K

� �
2 kk U2

(6)

where kg is the growth rate, kk the kill rate, K the tumor
capacity, R the radiation rate function for radiation consist-

ing of a series of Dirac delta distributions, a and b the radi-

ation parameters, and a and b pharmacodynamic
parameters associated with the stimulation of the natural

cell death and the radiation effect, respectively. Note the

factor 2 in the equation for U2 representing the fact that
irradiated cells are still able to proliferate once. The initial

conditions should be chosen as:

Vi 0ð Þ5V 0 kk

kg

� �i21

; Ui 0ð Þ50; (7)

where V 0 is the initial volume of the main compartment.
These initial conditions ensure that untreated tumors

grow exponentially with rate kg2kk , see the derivation in

ref. 7. The total tumor volume Vtotal comprises all six
compartments:

Vtotal5V11V21V31V41U11U2 (8)

Tumor static exposure
In previous studies, TSC values and TSC curves were
derived based on a condition of input and output balances
for each compartment (i.e., constant tumor stasis).6,7,28 For
the model in Eq. 6, it suffices to only consider the main
compartment, because if the main compartment is kept in
stasis, the other compartments will eventually reach stasis
as well. Moreover, the decrease in tumor growth rate for
large tumors introduced by the tumor capacity should be
ignored, because the treatment goal is tumor shrinkage.
Using Eq. 6, the TSC condition would therefore be:

kg2 11aCð Þkk 2 12exp 2 11bCð Þ aD1bD2� �� �� �
R 50 (9)

However, Eq. 9 cannot be solved directly, because the radi-
ation rate function R contains Dirac delta distributions and
is, therefore, not point-wise defined. This issue can be cir-
cumvented by, instead of requiring tumor stasis at each
time point, one only requires tumor stasis in an average
sense over a treatment period between times t50 and
t5T :29

We say that the main compartment is in stasis in an
average sense between t50 and t5T if V1 Tð Þ5V1 0ð Þ. A
TSE expression can then be derived in the following way.
Upon irradiation, only a fraction of proliferating cells survive.
These fractions will then regrow and at some point reach
their original volume. The TSE condition is imposed by
requiring the main compartment to reach its original volume
at time T when the next dose of radiation occurs. The deri-
vation of the expressions that follow can be found in Sup-
plementary Material SA.

For treatment only with radiation the TSE value
becomes:

D5
2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a214b kgT2kk T

� �q
2b

(10)

Eq. 10 can also be interpreted in the following way. Any
dose greater than the one given in Eq. 10, will result in the
main compartment shrinking. Upon repeated dosing every
T days, the entire tumor will eventually shrink and subse-
quently be eradicated. Furthermore, doses below the one
specified in Eq. 10 will be insufficient for tumor regression
and will only slow down the tumor growth.

Similarly, for monotherapy with the radiosensitizer the
TSE value is:

�C5
kg2kk

a kk
(11)

Eq. 11 has the following analogous interpretation. Assum-
ing bolus dosing every T days with the radiosensitizer
alone, the tumor will shrink if the average plasma concen-
tration is above the one specified in Eq. 11. Moreover, an

Figure 1 Tumor model describing combination therapy with ioniz-
ing radiation and a generic radiosensitizer. Viable cancer cells in
compartment V1 proliferate with rate kg and die naturally with
rate kk . Dying cells traverse a set of three damage compart-
ments (V2, V3, and V4) before exiting the system. Upon irradia-
tion (IR), a fraction of viable cells are moved from V1 to U1, after
which the irradiated cells can divide one more time at most, and
in the process transferring the daughter cells to U2, where the
cells can no longer proliferate and will eventually die. Plasma
concentration of the radiosensitizer C tð Þ can stimulate either or
both the natural-induced and the radiation-induced transfer of
viable cancer cells.
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average plasma concentration below this value will only

slow down the tumor growth but cannot reverse it.
Finally, for combination therapy with radiation and radio-

sensitizer the TSE expression becomes:

D5
2G að Þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G að Þ214G bð Þ kgT2kk T2kk a �C

� �q
2G bð Þ (12)

where the function G depends on the pharmacokinetics of

the radiosensitizer. In particular, for a standard one-

compartment model:

G xð Þ5x1bx
�C keT

12e2ke T (13)

Eq. 12 describes the concentration-dose pairs that give

average tumor stasis. For any average concentration �C of

the radiosensitizer, Eq. 12 gives the necessary radiation

dose such that combination treatment will keep the tumor

in stasis. In particular, by inserting �C50, Eq. 12 reduces to

Eq. 10, and similarly, letting D50 and solving for �C results

in Eq. 11. Geometrically, Eq. 12 describes a curve in the

concentration-dose plane and is called the TSE curve,

because plasma concentration and radiation dose are two

different types of exposure.

Experimental data
The tumor model and TSE analysis were tested on data

generated in FaDu xenograft models treated with radiation

and/or a small molecule discovery compound that inhibits

the repair of radiation-induced DNA damage, henceforth

referred to as RS1. Eighty mice were divided into eight

treatment groups with 10 mice in each of the following

groups: (A) vehicle; (B) radiation (2 Gy); (C–E) RS1

(10; 50; or 200 mg=kg); and (F–H) combination therapy

with radiation (2 Gy) and RS1 (10; 50; or 200 mg=kg).

Dosing occurred every day for 5 days. A second dataset

consisting of 10 mice receiving combination therapy with

radiation (2 Gy) and RS1 (25 mg=kg) 5 days a week for 6

weeks, was used for model validation. All experiments were

approved in accordance with the German animal welfare

regulations by the Regierungspr€asidium Darmstadt, Hes-

sen, Germany (protocol registration numbers DA 4/Anz.

397 and DA 4/Anz. 398). Further details on the experiments

can be found in Supplementary Material SB.

Computational methods
Nonlinear mixed-effects modeling was performed using a

first-order conditional estimation method in a computational

framework developed at the Fraunhofer-Chalmers Research

Centre for Industrial Mathematics (Gothenburg, Sweden)

and implemented in Mathematica (Wolfram Research).30

Exposure data were first fitted to a pharmacokinetic model.

Afterward, the pharmacodynamic data were fitted simulta-

neously to the tumor model. The tumor model was driven

by the complete population pharmacokinetic model (i.e., not

just the median individual). Model evaluation was based on

goodness-of-fit, Empirical Bayes Estimates, and residual

analysis.
Log-normal between-subject variability was allowed in ini-

tial tumor volume, capacity, distribution volume, and elimi-

nation rate. Residual errors were assumed to be

proportional to tumor volume with zero mean and variance

r2
V . Because data only included one radiation dose, the

Figure 2 Representative time courses of observed tumor volumes (circles) and model-fitted tumor growth (solid lines) for the following
treatment groups: (A) vehicle; (B) radiotherapy (2 Gy per dose); (E) RS1 monotherapy (200 mg=kg per dose); and (F–H) combination
therapy with radiation (2 Gy per dose) and RS1 (10, 50, or 200 mg=kg per dose).
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ratio between a and b was fixed to 10, which is a plausible

value for tumors.31

RESULTS

The tumor model and TSE analysis were applied to in vivo

data. The purpose was twofold. First, to illustrate how these

concepts can be applied in practice, and second, to validate

the usefulness of the developed methods.

Radiation and chemical tumor growth inhibition model
Exposure to RS1 was adequately described using a one-

compartment model. The parameter estimates are given in

Supplementary Table S1. Drug elimination was rapid, with

an estimated half-life of 3 hours. Simulated exposure pro-

files are shown in Supplementary Figure S1. Visual

predictive checks can be found in Supplementary

Material SC.
The tumor model successfully captured all eight treat-

ment groups. Examples of individual fit for one individual in

each of the treatment groups A, B, and E–H are shown in

Figure 2. Vehicle A exhibited approximately exponential

growth. Monotherapy with RS1 showed only a small devia-

tion from the vehicle group, even with the highest dose of

200 mg=kg in vehicle E. In contrast, monotherapy with radi-

ation (vehicle B) resulted in slowing down the tumor growth

considerably, but was insufficient for regression. When radi-

ation and RS1 were given simultaneously (vehicles F–H),

there was a substantial increase in the dose-related treat-

ment effect. Combination therapy with the highest dose

(200 mg=kg), showed rapid tumor regression and, in most

cases, the tumors were completely eradicated after 30

days. Visual predictive checks can be found in Supplemen-

tary Material SC.
The parameter estimates from fitting the tumor model

simultaneously to all eight treatment group are given in

Table 1. The net growth rate kg2kk 50:22 day21 corre-

sponds to a doubling time of 3.15 days that, however, slows

down as the tumors approach the capacity level. The total

initial volume, computed as the sum of all compartment vol-

umes at time zero, was 87 mm3. All parameters were esti-

mated with good or reasonable precision.

TSE curve of radiation and radiosensitizer
The TSE curve for combinations of radiation and RS1 was
computed by inserting the population parameter estimates
from Table 1 into Eq. 12 with T 51 for daily dosing. The
TSE curve is shown in blue in Figure 3. Concentration-
dose pairs above the curve (green area) signify tumor
shrinkage, whereas those below (red area) signify tumor
growth. The black dashed line represents a zero interaction
reference (i.e., what the curve would have looked like for
b50; see Eq. 12). The TSE curve has a significant down-
ward curvature, indicating a strong synergistic effect
between IR and RS1. From the curve’s intersections with
the coordinate axes, or by using Eqs. 10 and 11, one can
see that, if radiation is administered as monotherapy, the
daily dose required to achieve tumor regression (i.e., the
TSE value) is predicted to be 2:2 Gy, whereas if only RS1
is administered, the required average exposure is
8.3 lg=mL. Furthermore, by following the TSE curve as

Table 1 Parameter estimates for the tumor model describing the effects of radiation and RS1 combination therapy.

Parameter

Population median

(RSE%)

Between-subject

variabilitya (RSE%) Description

kg day21
� �

0:50 3ð Þ 2 Natural growth rate

kk day21
� �

0:28 2ð Þ 2 Natural kill rate

K mm3
� �

2200 8ð Þ 32 7ð Þ Tumor capacity

V 0 mm3
� �

40:0 3ð Þ 21 6ð Þ Initial volume of main compartment

a Gy21
� �

0:08 13ð Þ 2 Linear radiation parameter

b Gy22
� �

0:008 13ð Þ 2 Quadratic radiation parameter

a mL=lgð Þ 0:09 31ð Þ 2 Stimulation of natural cell death

b mL=lgð Þ 0:45 27ð Þ 2 Stimulation of radiation-induced cell death

rb
V (%) 23:0 10ð Þ 2 Proportional standard error

RSE, relative standard error.
aCalculated as

ffiffiffiffiffiffi
x2

ii

q
3100.

bIntra-individual variability.

Figure 3 Tumor static exposure curve for radiation and radiosen-
sitizer. Concentration-dose pairs above the curve give tumor
shrinkage, whereas those below give tumor growth. The syner-
gistic effect gives rise to a large curvature compared to the zero
interaction reference.
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exposure to RS1 is increased, we see that when the con-

centration reaches 1:0 lg=mL, the radiation dose can be

reduced from 2:2 Gy with monotherapy to �0:7 Gy per day

with combination therapy. To confirm the accuracy of the

TSE curve, the model was simulated for different exposure

pairs on the TSE curve, see Supplementary Material SD.
Based on between-subject variability in the parameters

K , V0, and ke, individual TSE curves were computed for

each of the 80 individuals. These are shown in Figure 4.

Although the individual TSE values remain approximately

the same, there is noticeable variation in curvature, and,

hence, variation in synergy between different individuals.

Prediction for 6-week treatment
Using the parameter estimates from Table 1, the tumor

model was used to simulate the treatment effect of 6 weeks

of combination therapy with 25 mg=kg (corresponding to an

average concentration of 0:52 lg=mL) and 2 Gy per dose

at the population level and compared to a second dataset

of 10 mice (Figure 5). These doses put the combination

therapy barely inside the green shrinkage area in Figure 3.

Therefore, the TSE curve predicts that prolonged treatment

should result in tumor regression and ultimately tumor erad-

ication. This is in agreement with the observed tumor vol-

umes in Figure 5, most of which are eradicated by the end

of the treatment period.
Approximately 80% of the observations were inside the

region between the simulated 5th and 95th percentiles.

Moreover, observed tumor volumes appeared to be a bit

smaller than predicted during the first 10 days of treatment,

including at the initial measurements when treatment was

started.

DISCUSSION

Combination therapies in oncology do not only include com-

binations of chemical compounds, but also commonly

include ionizing radiation. When mathematical models and

methods to describe and quantify anticancer combinations

are developed, it is, therefore, desirable that they can, with

minimal modification, be applied to treatments with chemi-

cal compounds, radiation, and combinations thereof. The

tumor model we propose is based on traditional tumor

growth inhibition models, but is modified using the LQ the-

ory to describe radiotherapy. Similarly, the previously intro-

duced TSC curve as a tool for evaluating anticancer

combinations was only applicable to combinations of chemi-

cal agents and was, therefore, modified to handle radiation.

Radiation and chemical tumor growth inhibition model
The tumor model contains several simplifications. Radiation

is modeled as an instantaneous mass transfer where dam-

aged cells inevitably die. This is a simplification of a much

more complicated process of many different mechanisms of

cell death that can occur after irradiation. DNA damage

may be repaired within a few hours, making it possible for

some cells to return to a proliferating state again.32 Includ-

ing these aspects into the model may be possible with addi-

tional sources of data. Assuming only total tumor volume is

measured, it is necessary to lump all of these processes

together into one step.
The same set of damage compartments is used for all

kinds of cell death. This implies that the death processes

are equivalent from a modeling perspective, which is con-

sistent with the simplification above. As an alternative,

some tumor models have been developed that use sepa-

rate sets of damage compartments for each compound, the

Figure 4 (Blue) Computed tumor static exposure (TSE) curves
for all of the 80 individuals in the combination therapy experi-
ment, assuming a maintained daily administration schedule, and
(red) TSE curve for the median individual. The curvature of indi-
vidual TSE curves varies considerably.

Figure 5 Comparison between model-predicted and observed
tumor volume evolutions for 6 weeks of combination therapy
treatment with radiation (2 Gy per dose) and RS1 (25 mg=kg
per dose). Blue curves represent simulated 5th, 50th, and 95th
percentiles based on the tumor model (Eqs. 6 and 7) and param-
eter estimates from Table 1 and Supplementary Table S1.
Measured tumor volumes are indicated by dots with each color
corresponding to a different animal.
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argument being that the death processes are completely
independent.33,34

The proposed tumor model was successfully able to
describe the data from a xenograft study. Monotherapy with
RS1 had a weak overall effect, represented by the parame-
ter a. The estimated value of 0:09 mL=lg corresponds to
an increase of the natural cell death by 9% for each
lg=mL. This effect did not have a significant impact on
overall tumor regression and was dominated by radiation
and interaction effects. Still, a was estimated with reason-
able precision, indicating that the differences between vehi-
cle and RS1 monotherapy were small but noticeable, which
can also be seen in the visual predictive checks in Supple-
mentary Material SC. Moreover, because the monotherapy
effect of RS1 was small, it should not have a significant
impact on other parameter estimates. The interaction
parameter b was estimated to 0:45 mL=lg. This means
that, for sufficiently low doses of radiation, the fraction of
cells killed is increased by 45% for each lg=mL. Without
this interaction, the combination therapy would not have
performed significantly better than radiation alone.

The radiation parameters a and b were estimated to be
0:08 Gy21 and 0:008 Gy22, respectively, and are of a simi-
lar order, as previously reported values.32 Using these esti-
mates, a dose of 2 Gy corresponds to 17% of proliferating
cells dying at each instance of irradiation. For combination
therapy, the fraction of dying cells increases to 24, 46, and
85%, with doses of 10, 50, and 200 mg=kg, respectively. If
cell proliferation is ignored, this means that after five doses
of irradiation, 38% of the cell population will survive,
whereas for combination therapy with the highest dose,
only 0.007% will survive. With such a small fraction of cells
surviving, tumor eradication is highly likely. Furthermore,
even if the tumor regrows it would take �10 times longer
for the tumor to reach its original volume compared to if it
was exposed only to radiation.

Between-subject variability was allowed only for initial vol-
ume, capacity, and the pharmacokinetic parameters. Some
scenarios with additional variability were tried, but did not
result in an improved overall fit, likely because of the
already large variability in RS1 exposure.

TSE curve of radiation and radiosensitizer
The TSE curve was introduced by conditioning on an average,
as opposed to point-wise, tumor growth of zero. This depar-
ture from previous TSC curves was necessary because
radiotherapy was characterized by a series of Dirac delta
pulses representing instances of irradiation.

An alternative way to introduce a TSE curve would have
been to use Eq. 9 and replace C with �C and D with �D
(and letting the rate function R51). However, this would not
yield accurate predictions of stasis, because it does not dis-
criminate between how the averages are achieved. In par-
ticular, two administration schedules can have the same
average exposure, but result in different tumor dynamics. In
contrast, the way the TSE curve is introduced in this paper
takes the administration schedule into account and should,
therefore, yield more accurate predictions.

The TSE curve for radiation and RS1 combinations deter-
mine the necessary exposure levels for tumor regression for

repeated dosing. This makes it possible to target exposure

levels in the green regression area of the plot (Figure 3). The

curve exhibits a large curvature, due to a significant interac-

tion effect. Without the interaction (i.e., b50), the TSE curve

would have been approximately a straight line. The curvature

increases the green area and, therefore, makes it easier to

achieve tumor regression.
In contrast to TSC curves derived previously,7 the TSE

curve depends on the administration schedule. For exam-

ple, if radiation and radiosensitizer were given at well-

separated time points, there would be no plasma

concentration in the system around the time of irradiation

and the synergistic effect would vanish. The curve would

then look closer to the zero interaction reference (Figure 3).
Given that the TSE curve is constructed using the

median parameter values, exposure near the TSE curve

will result in only half of the population showing tumor

regression, whereas the other half is still showing tumor

growth. Therefore, it is critical to examine how TSE varies

in the population via the individual TSE curves (Figure 4).

This makes it possible to target tumor regression for a

larger percentage of the population. The parameters that

are chosen to have between-subject variability will impact

how the individual TSE curves differ.
Finally, it is worth keeping in mind that the TSE curve

and the associated synergy are based on xenografts. As

future work, it would be interesting to consider how the

model could be translated to the clinical setting. In particu-

lar, it would be interesting to see how well the synergy indi-

cated by the TSE curve reflects the synergy in humans.

Prediction for 6-week treatment
The prediction of a 6-week treatment schedule using a sec-

ond dataset can be viewed as a validation example of the

tumor model and of the associated TSE curve. Importantly,

these data were generated using a clinically relevant

administration schedule. This reinforces the claim that the

TSE concept can be useful and has practical significance.

Overall, the prediction matched the outcome in the second

experiment reasonably well. Admittedly, tumor regression

occurred somewhat faster than predicted. This was likely

due to the smaller initial tumor volumes and shorter delay

of treatment effect compared to the primary dataset.

CONCLUSIONS AND PERSPECTIVES

A tumor model was introduced to describe combination ther-

apy with radiation and radiosensitizing agents. The model

was able to describe an in vivo dataset with eight different

treatment groups and multiple dose levels. The model also

provided a reasonable prediction of a second dataset with a

clinically relevant 6-week treatment schedule. Moreover, the

TSE curve is introduced based on a condition of approxi-

mate tumor stasis. The TSE curve illustrates how easily a

given anticancer combination can achieve tumor regression.

Potential future work includes challenging the tumor model

with additional radiosensitizing agents, using the TSE curve

to discriminate between and rank different combination ther-

apies while taking toxicological considerations into account,
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and using the model as a translational tool to predict and
describe the outcome of clinical trials.
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