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Abstract

Although there have been impressive strides in detector development for time-of-flight positron 

emission tomography (PET), most detectors still make use of simple signal processing methods to 

extract the time-of-flight information from the detector signals. In most cases, the timing pick-off 

for each waveform is computed using leading edge discrimination or constant fraction 

discrimination, as these were historically easily implemented with analog pulse processing 

electronics. However, now with the availability of fast waveform digitizers, there is opportunity to 

make use of more of the timing information contained in the coincident detector waveforms with 

advanced signal processing techniques. Here we describe the application of deep convolutional 

neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the 

pair of digitized detector waveforms for a coincident event. One of the key features of this 

approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true 

time-of-flight is determined from the difference in path length between the positron emission and 

each of the coincident detectors, which can be easily controlled experimentally. The experimental 

setup used here made use of two photomultiplier tube-based scintillation detectors, and a point 

source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector 

waveforms were digitized at 10 GS/s using a bench-top oscilloscope. The results shown here 

demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% 

compared to leading edge discrimination (231 ps vs. 185 ps), and 23% compared to constant 

fraction discrimination (242 ps vs 185 ps). By comparing several different CNN architectures, we 

also showed that CNN depth (number of convolutional and fully connected layers) had the largest 

impact on timing resolution, while the exact network parameters, such as convolutional filter size 

and number of feature maps, had only a minor influence.

1. Introduction

Improving timing resolution in scintillation detectors used for time-of-flight positron 

emission tomography (PET) has attracted research interest due to its potential to increase 

image quality, quantification, and lesion detection (Karp et al 2008, Conti 2011, 

Vandenberghe et al 2016). In scintillation detectors used for time-of-flight PET, the fast 

timing information is contained in the first 1 – 2 ns of the detector waveforms, the shape of 

which is influenced by several physical factors including the early optical photon flux 

(determined by the scintillator emission, deposited energy, and photon transport in the 

crystal), the photodetector response, and the response of other front-end electronics 
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(amplifiers). Therefore, most recent improvements in timing resolution have been a result of 

developing scintillators with higher luminosity and faster emission (both rise and decay 

times) (Surti et al 2002, Spurrier et al 2008), optimizing the photon transport and extraction 

from the crystal (Spanoudaki and Levin 2011, Auffray et al 2013, Lecoq et al 2013, Berg et 
al 2015), developing photodetectors with higher photon detection efficiency, lower noise, 

and reduced time jitter (Schaart et al 2010, Spanoudaki and Levin 2010, Seifert et al 2013, 

Nemallapudi et al 2015), and developing fast and low noise electronics (Anghinolfi et al 
2004, Rolo et al 2013).

However, most PET detectors still make use of rather simple signal processing techniques to 

estimate the time-of-flight, normally either leading edge discrimination or constant fraction 

discrimination (Surti and Karp 2016). Now, with readily available hardware for fast 

waveform digitization (> 1 GS/s), (e.g. domino ring sampling (Ritt 2008, Ashmanskas et al 
2014)), there is opportunity to develop alternative methods for estimating the time-of-flight 

from the digitized waveforms using advanced signal processing techniques, and ultimately 

improve timing resolution. There have been a few developments in signal processing for 

time-of-flight PET using digitized waveforms, including fitting the digitized samples with 

cubic spline functions to reconstruct the waveforms (Vinke et al 2010), using multiple 

thresholds along the rising edge to accurately correct for time-walk with leading edge 

discrimination (Xie et al 2009), using a time-over-threshold algorithm to correct for time-

walk (Rolo et al 2013), or deconvolving the photodetector’s response from the rising edge 

(Berg et al 2016). However, these methods still make use of the conventional leading edge or 

constant fraction discrimination methods on the digitized waveforms. Additionally, some 

attempts have been made at developing statistical-based timing estimation methods, 

specifically maximum likelihood estimation, by modeling digitized waveform samples as 

random Gaussian variables (Barrett et al 2009, Ruiz-Gonzalez et al 2017) or by modeling 

the time stamps (obtained with leading edge discrimination) from multiple photodetectors as 

random variables (Van Dam et al 2013). Lastly, Moskal et al (2015) have developed a 

method to estimate time-of-flight from detector waveforms by computing the similarity of a 

“test” waveform to a library of reference waveforms with known time-of-flights.

We propose to make use of deep convolutional neural networks (CNNs) to estimate PET 

time-of-flight from the coincident waveforms. Briefly, deep learning with CNNs is a branch 

of machine learning that uses a stack of convolutional and fully connected layers to learn 

features that are characteristic of the known input (e.g. image array or data sequence from 

speech). A detailed description and review of CNNs is not included here, rather we refer to 

Lecun et al (2015). Recently, deep CNNs have achieved state-of-the-art performance in 

many areas, and are now the dominant method used for image recognition (Krizhevsky et al 
2012, Simonyan and Zisserman 2014, Szegedy et al 2015). Here, we make use of CNNs 

such that the input to the CNN is the time-varying sequence of waveform samples from the 

pair of detectors for a coincidence event, and the CNN output is the estimated time-of-flight 

for the event.

One of the main attractions of deep convolutional neural networks is their ability to learn 

complex representations of the input data with little human engineering (Lecun et al 2015). 

In particular, deep CNNs can be sensitive to small changes or patterns in the input data, 
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while being relatively insensitive to irrelevant changes. Therefore, CNNs appear as a 

promising candidate to make use of all the information contained in the rising edge of the 

waveform and finding patterns in complex relationships between event timing and the 

various physical factors, without the need to explicitly model these physical processes in the 

neural network.

One potential pitfall associated with machine learning techniques, specifically for supervised 

learning methods, is the requirement for ground-truth-labeled training data. However, one 

fortunate aspect of using machine learning techniques for time-of-flight PET is that it is 

theoretically very easy to obtain ground-truth-labeled training data: since the two 511 keV 

annihilation photons are produced simultaneously, the ground-truth time-of-flight difference 

of the photons to the entrance face of the detectors is determined only by the distance 

between the positron emitting source and the coincident detectors, and these distances can 

be easily controlled in both benchtop and scanner settings. For instance, in this proof-of-

concept study, we obtain ground-truth-labeled time-of-flight training data by stepping a 

point source between a pair of detectors.

This proof-of-concept study focuses mainly on evaluating the use of convolutional neural 

networks to improve timing resolution for time-of-flight PET, and is not specifically aimed 

at improving upon the current state-of-the-art timing resolution. Therefore, in this paper we 

use a rather simple detector and focus on assessing the impact of differences in the design of 

the convolutional neural networks, such as network depth. We first describe the experiment, 

describe the configurations of the CNNs and their training, then compare timing resolution 

obtained with CNNs vs. conventional timing discrimination methods (leading edge and 

constant fraction discrimination).

2. Materials and Methods

2.1. Experiments

Coincidence waveforms were acquired using two identical detectors (Figure 1), each 

consisting of a 5 × 5 × 10 mm lutetium fine silicate (LFS) crystal wrapped with 5 layers of 

Teflon tape and coupled to a single channel photomultiplier tube (PMT, Hamamatsu 

R12844) using pressure sensitive optical adhesive (3M 8194). The face-to-face distance 

between detectors was ~ 40 cm. A 100 kBq 68Ge point source was stepped between the 

detectors at 5 mm increments over a 15 cm range (−7.5 cm to +7.5 cm from the mid-point 

between detectors), so that a total of 29 datasets were acquired. The PMT waveforms were 

digitized at 10 GS/s using a bench-top oscilloscope (Tektronix DPO7254), and 

approximately 15,000 coincidence waveforms were acquired for each source position.

2.2. Signal Processing

The waveforms acquired from the oscilloscope (Figure 2a) were first baseline corrected and 

integrated over 175 ns to estimate the energy deposited by each event. A 430 – 590 keV 

energy window (extracted from energy histograms) and 5 ns coincidence timing window 

was applied to all waveform pairs. Next, each waveform pair was cropped to capture only 

the first 3.5 ns of the waveforms (Figure 2b). The start of the cropped waveform pairs was 
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determined as 1.5 ns prior to the first sample at which one of the waveforms crosses a 150 

mV threshold, whichever is earliest. This cropping ensures that all waveform pairs contain 

the full rising edge of both waveforms, as well as ~ 1 ns of baseline before the samples 

containing the early rising edge. Lastly, for use in the CNNs, the waveform pairs were stored 

as two-dimensional arrays, and labeled with the ground-truth time-of-flight difference based 

on the distance of the point source relative to each detector (Figure 2c). Each array 

dimension was 2 × 35 × 1, where the rows correspond to the waveforms from each detector, 

the columns correspond to the digitized waveform samples (0.1 ns sampling), and stored in 

grayscale with pixel values in volts (approximately 0 to 0.5 V range).

Time-of-flight estimation using digital leading edge discrimination and constant fraction 

discrimination were performed using the cropped waveform pairs. Leading edge 

discrimination was optimized by varying the leading edge threshold over a range of 10 – 100 

mV, and time-walk correction of the leading edge timing pick-off values was performed 

using a linear correlation between the estimated energy values and the measured time-of-

flight. For constant fraction discrimination, the delay, attenuation factor, and threshold were 

also simultaneously optimized. Linear interpolation was used to estimate waveform values 

between samples.

2.3. CNN Architectures

The CNNs used here consist of several layers, including the input layer, convolutional 

layers, fully connected layers, and a regression layer. Several configurations for the 

convolutional layers were compared; these are summarized in Table 1. All convolutional 

layers used a stride of 1 pixel. The fully connected layers were fixed for all networks: the 

first fully connected layer had 256 outputs, while the second fully connected layer had one 

output. The filter weights were initialized with Gaussian randomness (standard deviation of 

0.01) and a bias of 0.7. For the 7-layer CNNs, the first four convolutional layers were 

initialized using the trained 6-layer CNNs to enable practical training time (Simonyan and 

Zisserman 2014). A dropout layer with 50% dropout probability is included after the first 

fully connected layer to reduce over-fitting of the training waveforms. The convolutional 

layers were followed by rectifying linear units (ReLU, not shown in Table 1).

The set of CNN architectures compared here is clearly not an exhaustive analysis of the 

infinite parameter space (number of layers, filter size, number of feature maps, etc), instead 

we focus mainly on investigating the impact of the CNN depth. Aside from the network 

depth, two configurations for the convolutional filters were compared, referred to as “fixed” 

and “tapered”. The fixed configuration uses small convolutional filters (5 pixel width) for all 

layers. The tapered CNNs use large filter width (11 pixels) for the first layer, intermediate 

filter width (7 pixels) for the second layer, and small filters (5 pixels) for subsequent layers. 

The fixed configuration is loosely adapted from the architecture of one of the top performing 

deep CNNs (VGG16 (Simonyan and Zisserman 2014)), while the tapered architecture 

follows the more traditional CNN design (Krizhevsky et al 2012).
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2.4. Training the CNNs

Each CNN was trained in three realizations using 145,000 randomly chosen waveform pairs 

for each realization (5000 events from each of the 29 source positions). The order of the 

training waveform pairs was randomized before training. The mini-batch size used in the 

stochastic gradient descent was 150 waveform pairs. The initial learning rate was 10−4, and 

stepped down to 10−5 and 10−6 at 30% and 60% of the maximum number of epochs, 

respectively. Training was performed using MATLAB 2017a Neural Network Toolbox and a 

GTX 1070 GPU. The only difference in training the CNNs described in Table 1 was the 

maximum number of epochs to ensure convergence (e.g. 200 epochs were used for the 3-

layer networks, while 1000 epochs were used for the 6-layer networks). Additionally, the 

sensitivity of CNN performance with regards to the size of the training dataset was 

examined by training the 5-layer tapered CNN using 100 – 5000 training waveforms from 

each source position.

2.5. Testing the CNNs

A set of 87,000 waveform pairs (3000 from each source position) were used to evaluate the 

trained CNNs. The test waveform pairs were chosen randomly, with no overlap with the 

training waveforms for each realization. The test waveform pairs were passed through the 

trained CNNs to predict the time-of-flight for each waveform pair.

3. Results

Figure 3a shows the timing resolution obtained with leading edge discrimination, constant 

fraction discrimination, and each of the CNNs. The results shown are the average for the 

central five source positions and three independent realizations for all cases (average timing 

resolution for each of the five source positions individually are provided in Supplemental 

Figure 1). Coincidence timing resolution was computed as the FWHM obtained from 

Gaussian fits to histograms of the estimated time-of-flight values. A comparison of timing 

spectra obtained from the central source position are provided in Figure 2b for all three 

timing methods.

The best timing resolution was obtained with the tapered 6-layer CNN (185 +/− 2 ps), 

representing a 20% improvement compared to leading edge discrimination (231 +/− 3 ps), 

and a 23% improvement compared to constant fraction discrimination (242 +/− 4 ps). The 

depth of the CNNs had the largest influence on timing resolution, with timing resolution 

ranging from ~ 220 ps with 3-layer CNNs, to ~ 185 ps with 6-layer CNNs. In general, there 

was no significant difference between the tapered networks vs. the fixed networks. Similarly, 

doubling the number of feature maps in each convolutional layer with the 6-layer network 

did not change the resulting timing resolution. The effect of training dataset size on timing 

resolution with the 5-layer tapered network is shown in Supplemental Figure 2: the timing 

resolution is stable (i.e. within 5% difference) when at least 1000 waveforms from each 

source position were used.

We also investigated the offset in the timing spectra for different source positions. Figure 4 

shows the timing spectra obtained with the 6-layer tapered CNN for the central five source 
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positions. The peak positions of the 5 histograms are provided on the figure, demonstrating 

time-of-flight offsets between neighboring source locations within 31 - 35 ps, in close 

agreement with the expected 33.3 ps offset.

4. Discussion

Here we demonstrated the applicability of using convolutional neural networks, a technique 

currently capable of achieving state-of-the-art performance in image recognition, for 

processing waveforms for time-of-flight PET. Aside from demonstrating the proof-of-

concept of using CNNs for estimating time-of-flight, we also compared the impact of several 

CNN parameters on timing resolution. The only significant factor found here was network 

depth, specifically the number of convolutional layers; in general, a larger number of 

convolutional layers led to improved timing resolution. The exception were the 7-layer 

CNNs, which performed slightly poorer than the 6-layer CNNs, possibly as a result of over-

fitting the training data. Timing resolution was largely insensitive to the exact network 

parameters, such as filter size and the number of feature maps. Of course, the practical trade-

off with increasing the network depth is longer training time, for example, training the 3-

layer networks required ~ 30 minutes, whereas the 6-layer networks required ~ 6 – 8 hours. 

In general, training time, defined as the number of iterations to reach convergence, increases 

approximately quadratically with the number of layers and feature maps, but does not 

strongly depend on the size of the training dataset.

Compared to CNN-based time-of-flight estimation, only maximum likelihood methods 

provide similar improvements in timing resolution compared to conventional methods. For 

example, Van Dam et al (2013) demonstrated a ~20% improvement in timing resolution 

using time stamps from multiple SiPM sensors in a maximum likelihood algorithm 

compared to using only the earliest time stamp. The study by Ruiz-Gonzalez et al (2017) 

involving maximum likelihood timing estimation from the digitized waveforms also showed 

improved timing resolution compared to leading edge and constant fraction discrimination, 

but only when using relatively slow sampling rates (< 1 GS/s) where the overall timing 

resolution was relatively poor.

Given the somewhat “black-box” nature of CNNs, it is difficult to provide exact conclusions 

on the origin of the improvement in timing resolution. However, the following describe some 

of the possible effects contributing to the success of CNNs for time-of-flight estimation. 

First, one of the major contributors may be the ability of the CNNs to essentially deconvolve 

the photodetector response. For timing estimation, the photodetector pulse shape is an 

irrelevant parameter (does not contain timing information), but it does influence the timing 

pick-off. CNNs are likely able to find these patterns and essentially deconvolve the 

photodetector pulse shape, whereas timing estimation with leading edge and constant 

fraction discrimination may be more strongly influenced by the photodetector pulse shape. 

However, we showed in previous work that deconvolving the photodetector response 

provided ~ 10% improvement in timing resolution with leading edge discrimination (Berg et 
al 2016), and so it is unlikely that this effect is the sole contributor to the observed 

improvement. We will investigate this hypothesis by comparing CNN-based timing with 

photodetectors characterized by different response functions, and in simulations where the 
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photodetector response can be easily modified. Second, the CNNs may be well suited to find 

patterns in the waveforms that are related to depth-of-interaction effects, such as changes in 

photon transit time and differences in overall light collection, that are not fully accounted for 

with conventional timing discrimination. In this work, we used a 10 mm length crystal; short 

enough so that these effects wouldn’t dominate the overall timing resolution, but long 

enough so not to completely eliminate depth-of-interaction effects. Experiments with 

crystals of different lengths, including depth-of-interaction encoding detectors, will be a 

subject of future studies to investigate this hypothesis. Lastly, the convolutional nature of 

CNNs may provide a robust solution to use information at the very start of the rising edge. 

Whereas leading edge discrimination requires a sufficiently high threshold as to not trigger 

on the noise baseline, the convolutional filters may be able to use some of this early 

information without being dominated by the noisy baseline. The contribution of this effect 

will be examined by comparing the performance of leading edge and CNN-based time-of-

flight estimation over a range of signal-to-noise levels, both electronic noise as well as noise 

resulting from lower collection of scintillation photons.

The primary future application of this method is not yet obvious from this proof-of-concept 

study. Possibly, estimating time-of-flight with CNNs may remove the need for dedicated 

timing ASICs to obtain the timing pick-offs for each event. By using the raw waveforms in 

the CNNs to estimate time-of-flight, we do not require a precise time-to-digital converter, 

only a relative small number of digitized waveform values along the rising edge. Another 

benefit of this approach is that minimal pre-processing is required: here the only pre-

processing is to baseline correct the waveforms, combine the pair of waveforms for each 

coincident event into a two-dimensional array, and crop the waveform pair to capture only 

the rising edges.

It is not clear how this method will perform with other detectors. That is, if used with current 

state-of-the-art detectors using bright scintillators with fast SiPMs, will CNN-based time-of-

flight estimation provide a complementary effect to the fast timing provided by the detector 

hardware leading to similar improvements in timing resolution to those shown here? 

Alongside this, CNN-based time-of-flight estimation may provide a robust solution for 

detectors making use of prompt photons, such as Cerenkov emissions (Kwon et al 2016, 

Brunner and Schaart 2017), since these timing methods are based on low number of detected 

photons in addition to the scintillation light, and CNNs may be well suited to best make use 

of this information. These topics will be investigated in future experimental and simulation 

studies.

Aside from investigating CNN-based time-of-flight estimation in other detectors and further 

attempts to optimize the convolutional neural network architecture, there are many areas of 

the use of CNNs for time-of-flight PET that are beyond the scope of this work, but which 

warrant further investigation, including the effect of sampling rate, type of photodetector, 

influence of noise properties in the waveform (electronic and statistical noise), and how to 

make use of the waveforms from multiple photodetectors in a light sharing block detector. In 

future work, we will investigate these topics with both simulations and further experiments.
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It is beyond the scope of this proof-of-concept study to investigate or discuss the practical 

feasibility of implementing CNNs for waveform processing in a PET system, or developing 

methods of how to train a CNN for a large number of detectors (i.e. acquiring stepped point 

source for all detector pairs in the scanner). However, there likely exists efficient methods 

that may facilitate this, which will also be investigated in future work.

5. Conclusion

The feasibility and benefit of using convolutional neural networks to estimate time-of-flight 

directly from PET detector waveforms was demonstrated in this proof-of-concept study. 

Compared to conventional methods such as leading edge and constant fraction 

discrimination, CNN-based time-of-flight estimation improved coincidence timing 

resolution up to 23%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the detector setup used to acquire 511 keV coincidence waveforms. The point 

source was automatically stepped between the detectors (5 mm step size) using a motor-

controlled translation stage. The red circles indicate the 29 source positions used for data 

acquisition.
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Figure 2. 
(a) Sample of a digitized waveform pair for a 511 keV coincidence event. (b) Rising edges 

of the waveforms after applying the 3.5 ns crop. (c) Two-dimensional array of the coincident 

waveform pair used as the input to the CNN. The ground-truth time-of-flight (TOF) is stored 

for each waveform pair and used when training the CNNs.
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Figure 3. 
(a) Comparison of coincidence timing resolution with all convolutional neural network 

configurations listed in Tables 1 and 2, leading edge discrimination, and constant fraction 

discrimination (CFD). Error bars are omitted since the standard deviation for all 

configurations was < 5 ps. (b) Sample timing spectra for the central source position for 

leading edge, CFD, and the tapered 6-layer CNN.
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Figure 4. 
Time-of-flight spectra for the five central point source positions, obtained with the 5-layer 

tapered CNN. The legend provides the mean time-of-flight for each of the five source 

positions, obtained from the Gaussian fits.
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