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Abstract

We develop robust targeted maximum likelihood estimators (TMLE) for transporting intervention 

effects from one population to another. Specifically, we develop TMLE estimators for three 

transported estimands: intent-to-treat average treatment effect (ATE) and complier ATE, which are 

relevant for encouragement-design interventions and instrumental variable analyses, and the ATE 

of the exposure on the outcome, which is applicable to any randomized or observational study. We 

demonstrate finite sample performance of these TMLE estimators using simulation, including in 

the presence of practical violations of the positivity assumption. We then apply these methods to 

the Moving to Opportunity trial, a multi-site, encouragement-design intervention in which families 

in public housing were randomized to receive housing vouchers and logistical support to move to 

low-poverty neighborhoods. This application sheds light on whether effect differences across sites 

can be explained by differences in population composition.
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1 Introduction

Multi-site interventions are common in public health, public policy, and economics. Do we 

expect an intervention effect in one site to be the same as the intervention effect in another 

site? In many cases, we would answer “no” for one of two reasons. First, there could be 

differences in site-level variables related to intervention design/implementation or contextual 

variables, like the economy, that would modify intervention effectiveness. Such variables 

suggest that the intervention either is not the same or does not work the same in the two 

sites. Second, there could be differences in person-level variables—population composition

—across sites that also modify intervention effectiveness. This could cause intervention 

effects to differ across sites even if the interventions are structured and implemented in an 

identical fashion.

* kara.rudolph@berkeley.edu.
†Address for correspondence: School of Public Health, 590B University Hall, Berkeley, CA 94720

HHS Public Access
Author manuscript
J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 November 
01.

Published in final edited form as:
J R Stat Soc Series B Stat Methodol. 2017 November ; 79(5): 1509–1525. doi:10.1111/rssb.12213.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



That intervention effects may differ for sites with different population composition motivates 

previous work on transportability (Pearl and Bareinboim, 2011). Transportability (which has 

been discussed as generalizability (Cole and Stuart, 2010) and external validity (Rothwell, 

2005)) is the idea of applying the results of an experiment in one setting/population to a 

target setting/population based on the observed characteristics of that target population. 

Pearl and Bareinboim have formalized this goal by developing transport formulas and 

enumerating the necessary assumptions associated with each transport formula (Pearl and 

Bareinboim, 2011).

These transport formulas can be applied to predict the effect of an intervention in a target 

population based on the observed composition of that population and intervention results 

from the original population. This prediction can be useful for researchers wanting to 

estimate the potential long-term effects of an intervention in a new site based on long-term 

follow-up results in an original site. An example of this would be predicting effects from the 

expansion of home-visiting programs for low-income pregnant women under the Affordable 

Care Act based on long-term follow-up results from the Nurse Family Partnership trials 

(Eckenrode et al., 2010).

Transported predictions may also be useful in determining the extent to which differences in 

intervention effects across sites can be explained by differences in population composition. 

An example of this, which we use to motivate this work, is from the Moving to Opportunity 

(MTO) trial (Kling et al., 2007). MTO is a five-site, encouragement-design intervention in 

which families in public housing were randomized to receive housing vouchers and 

logistical support to move to low-poverty neighborhoods. To date, there has been no 

quantitative examination of the underlying reasons for differences in MTO’s effects across 

sites (Orr et al., 2003).

We are not aware of any literature on the development of estimators incorporating transport 

formulas. However, there is a related literature on generalizing results from randomized 

controlled trials. The simplest of these methods is post-stratification or nonparametric direct 

standardization (Miettinen, 1972), but this method breaks down when there are many 

population characteristics to control for or if those characteristics are continuous. Previous 

model-based approaches have involved Horvitz-Thompson weighting, propensity score 

matching, and principal stratification (Stuart et al., 2011; Cole and Stuart, 2010; Frangakis, 

2009). These are important contributions but may be limited by their reliance on correct 

model specification. In addition, with the exception of principal stratification, we know of no 

extensions of these methods to encouragement-design interventions. Model-based 

approaches for such an intervention design would involve models relating 1) site (or 

population) to covariates, 2) instrument to exposure conditional on covariates and relevant 

effect modifiers, and 3) exposure to outcome conditional on covariates and relevant effect 

modifiers.

We address this research gap by first extending Pearl and Bareinboim’s transport formulas to 

the case of an encouragement design intervention such as MTO. Next we develop and 

evaluate targeted maximum likelihood estimators (TMLEs) for transporting three estimands: 

the intent-to-treat average treatment effect (ITTATE), the average causal effect of the 
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exposure on the outcome, ignoring the instrument (henceforth referred to as the EACE), and 

the complier average causal effect (CACE) (Imbens and Rubin, 1997). This estimation 

approach has several advantages. First, it is robust to multiple model misspecification 

scenarios. Second, TMLE is efficient. Third, we target marginal population quantities, which 

are most relevant to policy and program leaders, while allowing for potential effect 

modification across a high-dimensional vector of covariates. Fourth, these estimators can 

easily incorporate machine learning algorithms, thereby reducing bias due to model 

misspecification.

The paper is organized as follows. In Section 2, we introduce notation and define the 

structural causal model. In Sections 3–5, we develop a TMLE for each of the three 

estimands of interest. The ITTATE is discussed in Section 3, the EACE is discussed in 

Section 4, and the CACE is discussed in Section 5. A reader who is interested in one of the 

three estimands can skip the other two sections without compromising understanding. For 

each estimand, we present the identification result, robustness properties, influence function-

based inference, and steps for computing the TMLE. In Section 6, we present results from a 

simulation study in which we demonstrate consistency, efficiency and robustness of each 

TMLE estimate under different model specification scenarios and degrees of practical 

positivity violations. In Section 7, we apply these methods to the MTO example. Section 8 

concludes.

2 Notation and Structural Causal Model

We observe the following vector of data for each of n participants: O = (S, W, A, Z, S × Y). 
S is an indicator of the site; S = 1 for the site for which we have long-term follow-up data 

and S = 0 for the site for which we do not have follow-up data. W is a vector of covariates, 

the distribution of which depends on S. A is a binary instrument, which is randomized. Z is 

the binary exposure of interest. Y is the outcome of interest, which we only observe for 

those in the site with long-term outcome data (S = 1).

We assume that each participant’s data vector O is an independent, random draw from the 

unknown true data distribution P0 on O. We use a subscript 0 to denote values under P0. In 

contrast, P is any probability distribution in the statistical model, , where  is the 

collection of probability distributions under which an estimand is identifiable and is defined 

for each of the estimands that follow. Values under a particular P are given without a 

subscript for brevity. Estimates are denoted with subscript n.

The objective is to develop a TMLE to estimate each of three target parameters: the ITTATE 

= ψ1, the EACE = ψ2, and the CACE = ψ3. TMLE is a semiparametric estimation approach 

that has been described previously (van der Laan and Rubin, 2006). It results in a 

substitution estimator for a particular parameter of interest. TMLEs can be implemented as 

regular asymptotically linear semiparametric estimators that are locally efficient in their 

class. This often results in double or multiple robustness, meaning that the estimator is still 

consistent under certain types of model misspecification. Its consistency and efficiency 

properties derive from the fact that it solves the efficient influence curve estimating 

equation. Thus, to develop a TMLE, we first need to identify the parameter of interest and 
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derive that parameter’s efficient influence curve. We go through each step in Sections 3–5 

that follow.

3 ITTATE

The intent-to-treat average effect of the instrument on the outcome for participants in the site 

without follow-up data (S = 0) is defined as ψ1 = E(Y1 − Y0|S = 0), where for each a ∈ {0, 

1}, Ya denotes the counterfactual outcome that would be observed if instrument A = a were 

assigned and if Y were observed for participants with S = 0.

3.0.1 Identification

Under the assumptions given below, the causal effect, ψ1 equals the statistical estimand, 

Ψ1(P). Ψ1(P), given in Equation 1 below, is defined as a mapping  that takes 

a probability distribution P in statistical model , and maps it to a real number. The true 

value is obtained by applying Ψ1 to the true distribution, P0. The statistical model, , is the 

collection of probability distributions of O that satisfy assumption 3 (below) and possibly 

put restrictions on P(A = a|W, S = 0). The other two assumptions do not put restrictions on 

the data, so they do not affect the statistical model.

(1)

The assumptions needed to identify ψ1 from the statistical target parameter Ψ1 are:

1. E0(Y | S = 0, W, A, Z) = E0(Y | S = 1, W, A, Z). This means that there is a 

common outcome model across the two sites. In other words, it assumes that the 

expectation of the outcome conditional on its parents—the instrument, exposure, 

and covariates (including those needed to guarantee exchangeability of A)—must 

be equal between the two sites. Relating this to Pearl and Bareinboim’s transport 

causal diagrams (Pearl and Bareinboim, 2011), this assumption means that there 

is no S node that points into the Y node.

2. A is independent of (Za, Ya), given W, S = 0. This is an exchangeability 

assumption and means that A is independent of the potential outcomes Za and Ya 

conditional on W and S = 0.

3. This is the positivity assumption 

and means that every P(S = 1, A = a|W, Z) that one could draw from the true 

joint distribution of W, Z given A = a and S = 0 must be greater than 0. In other 

words, it means that selection into a site and instrument category are 

nondeterministic given W and Z—that there is a nonzero, positive probability of 

every site-instrument combination given any W, Z.

The proof of this identifiability result is in the supplementary Web Appendix.
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3.0.2 Efficient influence curve and robustness properties

Let , where Ψ1(P) is defined in Equation 1 and for each a ∈{0, 1}, 

 denotes the counterfactual mean outcome one would observe if instrument A = a 
were assigned and if Y were observed for participants with S = 0. In addition, let 

, let gA(A = a | s, W) = P(A = a | S = s, W), and let gZ(Z 
= z | a, s, W) = P(Z = z | A = a, S = s, W).

Result 1—The efficient influence curve of  on the model  that makes at 

most assumptions about P(A = a | W, S = 0) and positivity is given by:

where

We note that

(2)

There are three scenarios under which an estimator that solves the efficient influence 

equation will be consistent (robustness result). First, the Y model may be misspecified if all 

other models are correct. Second, the S and A models may be misspecified if the Y and Z 
models are correct. Third, the S and Z models may be misspecified if the Y and A models 

are correct.

We provide the derivation for the robustness properties in the supplementary Web Appendix.

3.0.3 Targeted maximum likelihood estimator

There are two TMLEs that can be computed to estimate the transported ITTATE. In this 

section, we describe how to compute one of them and describe how to compute the other in 

the supplementary Web Appendix. The TMLE described in this section can be computed in 

one-step and is particularly suitable when Z is high dimensional.
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Let  be an initial estimate of , and let gZ,n, gS,n, and gA,n be estimators of gZ(Z = z | a, s, 

W), gS(S = s | W), and gA(A = a | s, W), respectively. Consider submodel 

, where

noting again Equation 2.

The above estimators can be calculated as follows. The predicted values of Y from a 

regression of Y on A, Z, W among participants with Si = 1 can estimate . Alternatively, 

one could use a machine learning approach, but we will use regression terminology for 

simplicity. Similarly, gA,n(A = a | W, S = 1) can be estimated by the predicted probabilities 

from a logistic regression model of A = a on W among participants with Si = 1, and gS,n(S = 

s|W) can be estimated by the predicted probabilities from a logistic regression model of S = 

s on W. For binary Z, gZ,n(Z = z|a, s, W) can be estimated by the predicted probabilities 

setting A = a from a logistic regression model of Z = z on A and W among strata of 

observations with Si = s.

Let  be the fitted coefficient for CY in the univariate logistic regression model of Y on CY 

using  as an offset, using the binary log-likelihood loss function multiplied by I(S = 

1, A = a) (i.e., only using the observations with Si = 1, Ai = a). If Y is not on the [0, 1] scale, 

it can be bounded as previously recommended (Gruber and van der Laan, 2010). The 

updated estimator is denoted with .

Next, run a regression of  by regressing the predicted 

values  on W among strata of observations with Ai = a, Si = 0. Denote this 

estimator of  with . Consider the submodel

where,

Let ε1,n be the fitted coefficient for this univariate logistic regression model that uses the 

binary log-likelihood loss function treating  as the outcome and  as 

an offset, restricted to the observations with Si = 0, Ai = a. Denote this update with 

.
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The TMLE of  is given by . This is the empirical mean of  among the 

observations with Si = 0 and setting A = a. QW,n|S=0 is the empirical distribution of W 
among those with Si = 0 — a function of the participant’s covariates. So, our final estimator 

of  is . This is the empirical mean of the difference 

in  setting a = 1 versus a = 0 among observations with Si = 0. This TMLE solves the 

efficient influence function , where 

 (the empirical mean of function f(O)).

We can estimate the variance of the TMLE with , 

which is the sample variance of the efficient influence curve, which was given in Result 1.

4 EACE

The average effect of the exposure on the outcome for participants in the site without long-

term follow-up data (S = 0) is defined as ψ2 = E0(Y1 − Y0 | S = 0), where for each z ∈ {0, 

1}, Yz denotes the counterfactual outcome that would be observed if exposure Z = z were 

assigned and if Y were observed for participants with S = 0.

4.0.4 Identification

Under the assumptions given below, the causal effect ψ2 can be identified from the statistical 

estimand Ψ2(P). Ψ2(P), given in Equation 3 below, is defined as a mapping . 

The statistical model, , is the collection of probability distributions of O that satisfy 

assumption 3 (below). The other two assumptions do not put restrictions on the data, so they 

do not affect the statistical model.

(3)

The assumptions needed to identify ψ2 from Ψ2 are:

1. E0(Y|S = 0, W, Z) = E0(Y|S = 1, W, Z). As in Section 3.0.1, this means that there 

is a common outcome model across the two sites. In other words, it assumes that 

the expectation of the outcome conditional on the exposure and covariates 

(including those needed to guarantee exchangeability of Z) must be equal 

between the two sites. Relating this to Pearl and Bareinboim’s transport causal 

diagrams (Pearl and Bareinboim, 2011), this assumption means that there is no S 
node that points into the Y node.

2. Z is independent of Ya given W. This exchangeability assumption means that Z 
is independent of the potential outcome Ya conditional on W.

3.  This is the positivity assumption and means 

that every P(Z = z W, S = 1) that one could draw from the true distribution of W 

given S = 0 must be greater than 0. In other words, it means exposure is 

Rudolph and van der Laan Page 7

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nondeterministic given W —that there is a nonzero, positive probability of every 

exposure given any W for those in the site where Y is observed.

The proof of this identifiability result is trivial and known from the average treatment effect 

literature.

4.0.5 Efficient influence curve

Let , where Ψ2(P) is defined in Equation 3 and for each z ∈ {0, 

1},  denotes the counterfactual mean outcome one would observe if exposure Z = z 
were assigned and if Y were observed for participants with S = 0. Unless otherwise 

specified, we use the same notation as in Section 3.

Result 2—The efficient influence curve of  on the model  that at most 

makes assumptions about P(Z = z|W, S = 0) and positivity is given by

We have two scenarios under which an estimator that solves the efficient influence curve 

will be consistent (robustness result). First, the S and Z models may be misspecified if the Y 
model is correct. Second, the Y model may be misspecified if the S and Z models are 

correct. We provide the derivation of the robustness properties in the supplementary Web 

Appendix.

4.0.6 Targeted maximum likelihood estimator

Consider the submodel , where

The components of CY can be calculated as described in Section 3. Let  be the fitted 

coefficient for this clever covariate CY in the univariate logistic regression model of Y on CY 

using  as an offset, using the binary log-likelihood loss function multiplied by I(S = 

1, Z = z) (i.e., only using the observations with Si = 1, Zi = z). Again, if Y is not on the [0, 1] 

scale, it can be bounded as recommended previously (Gruber and van der Laan, 2010). The 

updated estimator is denoted with .

The TMLE of  is given by , which is the empirical mean of  among the 

observations with Si = 0 setting Z = z. So, our final estimator of  is 

, which is the empirical mean of the difference in  setting z = 
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1 versus z = 0 among the observations with Si = 0. This TMLE solves the efficient influence 

function .

Again, we can estimate the variance of the TMLE with 

, which is the sample variance of the efficient influence 

curve, which was given in Result 2.

5 CACE

The complier average effect of the exposure on the outcome in the site without long-term 

follow-up data is defined as ψ3 = E(Y1 − Y0|Z1 − Z0 = 1, S = 0), where for each a ∈ {0, 1}, 

Ya denotes the counterfactual outcome that would be observed if instrument A = a were 

assigned and if Y were observed for participants with S = 0, and Za denotes the 

counterfactual exposure that would be observed if instrument A = a were assigned. The 

CACE is also called the instrumental variables (IV) estimand and the local average 

instrument effect (LATE), even in the case of a binary instrument and binary exposure 

(Angrist et al., 1996).

5.0.7 Identification

Under the assumptions given below, the causal effect, ψ3, equals the statistical estimand, 

Ψ3(P). Ψ3(P), given in Equation 4 below, is defined as a mapping . The 

statistical model, , is the collection of probability distributions of O that satisfy 

assumption 5. Ψ3(P) is a ratio of two statistical estimands:

(4)

where Ψ1(P) is defined in Equation 1, and  is the statistical estimand of the non-

transported average effect of the instrument on the exposure for participants with S=0:

The assumptions needed to identify ψ3 from Ψ3 are:

1. E0(Y | S = 0, W, A, Z) = E0(Y | S = 1, W, A, Z). As in Sections 3.0.1 and 4.0.4, 

this means that there is a common outcome model across the two sites. In other 

words, it assumes that the expectation of the outcome conditional on its parents

—the instrument, exposure, and covariates (including those needed to guarantee 

exchangeability of A)—must be equal between the two sites. Relating this to 

Pearl and Bareinboim’s transport causal diagrams (Pearl and Bareinboim, 2011), 

this assumption means that there is no S node that points into the Y node.
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2. A = fA(UA) is independent of (Za, Ya), given W, S = 0. This is an 

exchangeability assumption and means that A is independent of the potential 

outcomes Za and Y a conditional on W and S = 0.

3. Yaz = Yz, which is the exclusion restriction assumption, stating that the 

instrument A only affects the outcome Y through the exposure Z. In other words, 

it assumes that there is no direct effect of A on Y – only its indirect effect 

through Z.

4. Z1 − Z0 ≥ 0, which is the monotonicity assumption, meaning that the instrument 

A cannot decrease exposure.

5.  and E0(Z1 − Z0|S = 0, W) ≠ 0. This 

first part means that every P(S = 1, A = a|W, Z) that one could draw from the true 

joint distribution of W, Z given A = a and S = 0 must be greater than 0. In other 

words, it means that selection into a site and instrument category are 

nondeterministic given W and Z—that there is a nonzero, positive probability of 

every site-instrument combination given any W, Z. The second part means that 

the nontransported average effect of the instrument on the exposure of 

participants with S = 0 does not equal 0.

These assumptions have analogs in Angrist and Fernandez-Val’s work extrapolating LATE 

(Angrist and Fernandez—Val, 2013). Specifically, assumptions 2–5 correspond to Angrist 

and Fernandez-Val’s Assumption 2, ‘Conditional LATE’. Our assumption 1 is similar to 

their Assumption 3, ‘Conditional Effect Ignorability’, except we assume that heterogeneity 

in predicted outcomes values (instead of causal effects) across sites (instead of across 

instruments) is entirely due to differences in measured variables.

5.0.8 Efficient Influence Curve

For the efficient influence curve of Ψ3, we first need to give the efficient influence curve of 

. Recall from above that  is the statistical estimand of the ATE of the effect of A 
on Z among those with S = 0. The TMLE estimate of an ATE has been given previously in 

van der Laan and Rubin (2006). For each a ∈ {0, 1},  denotes the counterfactual mean 

exposure one would observe if instrument A = a were assigned for participants with S = 0. 

The efficient influence curve of  on the model  that at most makes 

assumptions about P(A = a|W, S = 0) and positivity is given by 

.

Let , where Ψ3(P) is defined in Equation 4 and for each a ∈ {0, 

1},  denotes the counterfactual mean outcome one would observe if instrument A = a 
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were assigned and if Y were observed for participants with S = 0. Unless otherwise 

specified, we use the same notation as in Section 3.

Result 3—The efficient influence curve of  on the model  that at most 

makes assumptions about P(A = a|W, S = 0), P(Z = z|a, W, S = 0), and positivity is given by

An estimator that solves the above efficient influence curve will be consistent (robustness 

result) if both the numerator and denominator from Equation 4 are correct. So, applying the 

robustness results from Ψ1 and  (see van der Laan and Rubin (2006) for  robustness 

results), there are three scenarios under which this will happen. These scenarios are the same 

as those for Ψ1. First, the Y model may be misspecified if the S, Z, and A models are 

correct. Second, the S and A models may be misspecified if the Y and Z models are correct. 

Third, the S and Z models may be misspecified if the Y and A models are correct. We 

provide the derivation for the efficient influence curve in the supplementary Appendix.

5.0.9 Targeted maximum likelihood estimator

This TMLE is estimated as the ratio of two TMLEs: the TMLE detailed in Section 3.0.3 

over the TMLE for the average effect of A on Z as detailed previously (van der Laan and 

Rubin, 2006). A limitation of this estimator is that it does not constrain the ratio to be 

between −1 and 1 when Y is binary. An area for future work is to develop a TMLE directly 

targeting this ratio, which would constrain the estimate to lie within the parameter space.

We refer to Section 3.0.3 for the steps to estimate the TMLE in numerator. The TMLE in the 

denominator can be estimated as follows (van der Laan and Rubin, 2006).

Consider the submodel , where

The components of CZ can be calculated as described in Section 3.

For binary Z, let  be the fitted coefficient for this clever covariate CZ in the univariate 

logistic regression model of Z = z on CZ using  as an offset, using the binary log-

likelihood loss function multiplied by I(S = 0, A = a) (i.e., only using the observations with 

Si = 0, Ai = a). The updated estimator is denoted with .

The TMLE in the denominator is , which is the empirical mean of 

the difference in  setting a = 1 versus a = 0 among the observations with Si = 0.
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The CACE TMLE solves the efficient influence function . We can estimate the 

variance of the CACE TMLE with the sample variance of its efficient influence curve, which 

was given in Result 3. Alternatively, the variance can be estimated using the multivariate 

delta method, which we show in the supplementary Web Appendix.

6 Simulation Study

6.1 Overview and set-up

We conduct a simulation study to examine finite sample performance of the TMLE 

estimators for ψ1, ψ2, and ψ3. We consider two data-generating mechanisms (DGMs) from 

the same structural causal model, shown in Table 1. The magnitude of several coefficients 

increases in the second DGM compared to the first, which results in practical positivity 

violations. Practical positivity violations are a potential issue for each estimator—

specifically, in the estimation of gZ,n and gS,n. Because of the transport component, this is 

even the case for the ITTATE estimator with an instrument A as the intervention of interest

—seen in the clever covariate in Table 2. Comparing performance between the two DGMs 

allows us to examine sensitivity to the positivity assumption.

For each of the ITTATE, EACE, and CACE we show TMLE estimator performance in terms 

of mean percent bias, closeness to the efficiency bound (mean estimator standard error (SE, 

estimated from the sample variance of the EIC) × the square root of the number of 

observations), 95% confidence interval coverage, and mean squared error (MSE) across 

10,000 simulations for a sample size of N=5,000. We evaluate performance under correct 

model specification and various model misspecifications where misspecification of the S and 

Z models involved specifying a null model and misspecification of the Y included a term for 

Z only.

6.2 Results

As seen in Table 3, the TMLE estimators are consistent under the robustness properties 

derived for each estimand. Specifically, the TMLE estimators have less than 1% bias for all 

model specifications except when all of the models (site, exposure, and outcome models) are 

misspecified. The 95% CI for the TMLE estimator results in coverage of about 95% for 

unbiased estimates. Table 3 gives results for N=5,000; results for N=500 are in Table 1 in the 

supplementary Web Appendix.

Performance of these estimators in the presence of practical positivity violations is of 

interest for several reasons. First, the sites involved may have very different covariate 

distributions, which could contribute to such violations. Second, the sites may differ in how 

the instrument, A, is related to the exposure of interest, Z, which could also contribute to the 

violations. Third, predicted probabilities from these two models are multiplied together in 

the clever covariate, which may compound positivity violations from the first two sources. 

When there are practical violations of the positivity assumption, theory no longer guarantees 

consistency of the estimators (Petersen et al., 2010).
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As compared to the results in Table 3 without positivity violations, Table 4 shows that in the 

presence of such violations even the estimators using correctly specified models are slightly 

biased. Table 4 gives results for N=5,000; results for N=500 are in Table 2 in the 

supplementary Web Appendix. MSE is particularly compromised due to increased 

variability across the simulations. This variation is likely due to a combination of the 

positivity issues and increased variance of the baseline covariates (which were increased to 

add positivity violations when estimating gS). Coverage for the TMLE EACE is also 

compromised because of this variability. The standardized TMLE EACE estimates are 

slightly skewed with heavier tails. Calculating the 95% CI coverage using the percentile 

method from bootstrapping corrects this under-coverage (results not shown but available 

upon request).

The presence of these positivity violations exacerbates sensitivity to model misspecification 

of the TMLE estimator. This is largely due to increased variability in the estimates across the 

simulations and non-normally distributed standardized estimates—the consequences of 

which are seen in the lower coverage and greater MSE.

Weight truncation is a common and easy-to-implement strategy that may lessen sensitivity to 

practical positivity violations. Although truncation has the potential to improve both bias and 

variance due to positivity violations, it may also increase bias due to misspecification 

(Petersen et al., 2010; Cole and Hernán, 2008; Bembom and van der Laan, 2008). We 

repeated the simulations under DGM 2 truncating the clever covariate at several different 

lower bound/upper bound truncation levels: 0.01/100, 0.05/20, and 0.1/10. We compare the 

untruncated results to the truncated results in Table 3 in the supplementary Web Appendix. 

Truncation resulted in the expected improvements in terms of reduced variance and MSE but 

compromised confidence interval coverage for all estimands. Truncation also resulted in 

increased bias for the EACE.

7 Application

7.1 Overview and set-up

We now apply the transport estimators to an example from the Moving to Opportunity trial 

(MTO). MTO is a large-scale social policy experiment that has been described in the 

Introduction and previously (Kling et al., 2007). In discussing potential differences in effects 

across sites, MTO researchers concluded:

…if it had been possible to attribute differences in impacts across sites to 
differences in site characteristics, that would have been very valuable information. 
Unfortunately, that was not possible…to disentangle the underlying factors that 
cause impacts to vary across sites. (Orr et al., 2003, p.B11)

We ask whether our transport estimators can shed light on this previously intractable 

problem. Taking two MTO sites, Boston and Los Angeles (LA), we test the null hypothesis 

that the predicted effect of the intervention on school dropout for LA equals the true effect 

for LA, where the predicted effect borrows the conditional outcome model from Boston and 

makes use of differing distributions of population characteristics between the sites through 

transport formulas. If we fail to reject the null hypothesis that the predicted effect equals the 
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true effect, this suggests that the intervention may be transportable based on the covariates 

included in the transport formula. If we reject the null, it suggests that the intervention is not 

transportable given our measured covariates.

We use the same school dropout outcome as reported previously for adolescents 15–19 years 

(completed less than 12 years of school, did not receive high school diploma or GED, and is 

not enrolled in school) (Sanbonmatsu et al., 2011). We define a binary instrument as has 

been done previously: randomized receipt of a voucher to move versus no voucher (Osypuk 

et al., 2012). The exposure of interest is defined as moving to a low-poverty neighborhood 

during follow-up. Neighborhoods were defined based on participant addresses geocoded to 

Census tracts. Neighborhood poverty was calculated as the percent of residents living at or 

below the federal poverty line based on the 2000 Census. A low-poverty neighborhood was 

defined as less than 25% of residents living below poverty based on theory and breakpoints 

in the site-specific distributions. Population composition characteristics included an 

extensive set of baseline characteristics spanning several domains: sociodemographic 

characteristics of the adolescent and adult family member, behavior and learning 

characteristics of the adolescent, neighborhood characteristics, and reasons for participation. 

A full list of the characteristics included is in the supplementary Web Appendix. We 

consider two sites for simplicity. For the purpose of this illustration, we ignore MTO study 

weights and only consider participants with non-missing data (n=260 in Boston; n=270 in 

LA). A more in-depth analysis of this and other MTO effects is the topic of a future paper.

Because we do not know the true models relating instrument to exposure, exposure to 

outcome, and covariates to site, we use nonparametric methods instead of the standard 

parametric regression models. Specifically, we use the nonparametric, ensemble machine 

learning method, Superlearner (van der Laan et al., 2007), to generate the predicted 

probabilities needed for the TMLE transport estimators. Briefly, Superlearner weights 

multiple machine learning algorithms to minimize the cross-validated mean squared 

prediction error. We conducted a simulation showing that incorporating Superlearner into the 

TMLE transport estimators did not change estimator performance relative to using 

parametric regression models (results not shown but available upon request). The clever 

covariate for the ITTATE TMLE estimator ranges from 0.83 × 10−2 to 21.77 (Table 2). This 

suggests that practical positivity violations may be a minor problem.

7.2 Results

Figure 1 shows the ITTATE, EACE, and CACE estimates. We see that the true site-specific 

ITTATE and CACE estimates for Boston and LA differ. For Boston, the ITTATE estimate is 

statistically significant, which suggests that the MTO intervention was successful in 

reducing high school dropout. We see no effect of the intervention on high school dropout 

for the LA site.

Our goal is to determine if the differences in the ITTATE and CACE estimates between sites 

can be explained by population characteristics. Specifically, we transport the effects 

estimated for Boston to LA using the population characteristics in LA but no outcome data. 

Figure 1 compares the TMLE transported ITTATE, EACE, and CACE estimates to the site-

specific estimates. We see that the transported estimates for LA are similar to true LA 
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estimates for each of the 3 estimands. This means that the difference in ITTATE and CACE 

estimates between Boston and LA could be largely explained by population composition if 

the identifying assumptions hold. The strongest of these assumptions is that the outcome 

model is the same for Boston and LA.

8 Conclusion

In this paper, we developed robust TMLE estimators for transporting average treatment 

effects from a study population to a target population. This complements graphical work on 

the subject of transportability and fills the key gap in estimation strategies in this area (Pearl 

and Bareinboim, 2011). These transport estimators are applicable for encouragement design 

interventions as well as randomized experiments and observational studies.

Development of new estimators is useful insofar as they are practical and easy to implement. 

To facilitate the use of these estimators, we provide step-by-step instructions for 

implementing each transport TMLE in the article. In the supplementary Web Appendix, we 

provide R code for each estimator as well as sample code for application.

A limitation of these estimators is their sensitivity to practical violations of the positivity 

assumption. This limitation is not unique to these estimators, but applies to broad classes of 

estimators that rely on weights either exclusively or partially outside the  model, e.g., 

TMLE estimators, inverse probability of treatment weighted (IPTW) estimators, and 

augmented IPTW (A-IPTW) estimators (Robins et al., 2007). Truncation of the clever 

covariate, which is related to the general strategy of weight truncation, is a common strategy 

to deal with this limitation (Petersen et al., 2010; Cole and Hernán, 2008; Bembom and van 

der Laan, 2008), but we found that it did not appreciably improve performance in our 

simulations. Although it slightly improved MSE, the trade-off was increased bias and 

reduced CI coverage. An area for future work is to optimize estimator performance in the 

presence of such practical positivity violations. We are currently pursuing two strategies. 

The first is to reduce instances of practical positivity violations by drawing on the screening 

and pruning strategies employed in collaborative TMLE (van der Laan and Gruber, 2010). 

The second is reduce the influence of practical positivity violations by moving part of the 

clever covariate into the  model (Stitelman et al., 2012). This is a middle ground between 

TMLE and weighted G-computation, the latter of which has been shown to be robust to 

practical positivity assumptions (Kang and Schafer, 2007; Robins et al., 2007; Rudolph et 

al., 2014).

Another limitation is that the first identifiability assumption for each of the estimators—of a 

common outcome model across sites—is a strong assumption that may not hold in some 

cases. A nonparametric omnibus test has recently been developed that can test such an 

assumption if outcome data are available (Luedtke et al., 2015). However, this paper is 

written for the more general scenario—and more likely real-world scenario—where we only 

observe outcome data for one site (e.g., E(Y|W, A, Z, S = 0) cannot be modeled). In this 

scenario, the assumption is not testable. Strategies to relax this assumption are desirable and 

an area for future work. In addition, the assumption of a common outcome model may be 

sensitive to the variables included in W. Variable selection for W is based on assumptions 
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about the structural causal model. In the illustrative example, we selected variables included 

in W that theory and previous research suggest act as confounders of the relationship 

between neighborhood poverty and adolescent risk behavior. We then applied Superlearner 

(van der Laan et al., 2007) using this full set. Algorithms included in the SuperLearner 

library removed some variables through pruning and added others through interactions and 

higher order polynomials.

In an era of shrinking budgets, it is important to recognize that what works in one population 

may not work for another so that resources can be targeted optimally. Applying these TMLE 

estimators to examine site differences in multi-site epidemiologic studies and large-scale 

policy or program interventions contribute to achieving that goal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Effect estimates and 95% confidence intervals using data from the Moving to Opportunity 

Interim Follow-up. The ITTATE is interpreted as the effect of being randomized to one of 

the voucher groups on risk of dropping out of high school. The EACE is interpreted as the 

effect of moving to a low-poverty neighborhood on the risk of dropping out of high school. 

The CACE is interpreted as the effect of moving to a low-poverty neighborhood on the risk 

of dropping out of high school among compliers.

Rudolph and van der Laan Page 18

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rudolph and van der Laan Page 19

Table 1

Simulation DGMs.

DGM 1: no positivity violations generated DGM 2: positivity violations generated

S ~ Ber(0.5) S~ Ber(0.5)

W1 ~ Ber(0.4 + 0.2S) W1 ~ Ber(0.3 + 0.5S)

W2 ~ N(0.1S, 1) W2 ~ N(0.5S, 1)

W3 ~ N(1 + 0.2S, 1) W3 ~ N(1 + S, 2)

A ~ Ber(0.5) A ~ Ber(0.5)

Z ~ Ber(−log(1.6) + log(4)A − log(11)W2 − log(1.3)W3) Z ~ Ber(−log(1.6)+log(4)A − log(2)W2 + log(2)W3)

Y ~ Ber(log(1.6) + log(1.9)Z − log(1.3)W3 − log(1.2)W1 + 
log(1.2)AW1)

Y ~ Ber(log(1.6) + log(1.9)Z − log(1.3)W3 − log(1.2)W1 + 
log(1.2)AW1)
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Table 3

Simulation results from DGM 1 without positivity violations. N=5,000. 10,000 simulations. The estimator 

standard error  should be compared to the efficiency bound, which is 1.49 for the ITTATE, 4.50 for the 

CACE, and 1.60 for the EACE.

Specification %Bias
SE× 

95%CI Cov MSE

ITTATE

All models correct −0.67 1.50 95.01 0.0004

S model misspecified −0.49 1.37 95.34 0.0004

Z model misspecified −0.67 1.49 95.00 0.0004

Y model misspecified −0.71 1.52 95.36 0.0005

S,Z models misspecified −0.49 1.37 95.29 0.0004

S,Z,Y models misspecified 6.05 1.38 94.84 0.0004

EACE

All models correct −0.31 1.60 94.94 0.0005

S model misspecified −0.38 1.46 93.68 0.0005

Z model misspecified −0.31 1.48 93.01 0.0005

Y model misspecified −0.29 1.62 95.09 0.0005

S,Z models misspecified −0.43 1.36 92.95 0.0004

S,Z,Y models misspecified 14.46 1.37 76.27 0.0009

CACE

All models correct −0.13 4.54 95.17 0.0041

S model misspecified 0.04 4.15 95.50 0.0034

Z model misspecified −0.13 4.53 95.20 0.0041

Y model misspecified −0.17 4.54 95.00 0.0042

S,Z models misspecified 0.05 4.14 95.37 0.0034

S,Z,Y models misspecified 6.60 4.18 94.76 0.0036
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Table 4

Simulation results from DGM 2 with positivity violations. N=5,000. 10,000 simulations. The estimator 

standard error  should be compared to the efficiency bound, which is 2.68 for the ITTATE, 11.33 for the 

CACE, and 4.09 for the EACE.

Specification %Bias
SE× 

95%CI Cov MSE

ITTATE

All models correct −0.88 2.68 94.85 0.0015

S model misspecified 0.32 1.38 95.19 0.0004

Z model misspecified −0.88 2.77 95.61 0.0015

Y model misspecified −0.41 2.85 95.81 0.0015

S,Z models misspecified 0.34 1.39 95.28 0.0004

S,Z,Y models misspecified 18.34 1.42 94.06 0.0004

EASE

All models correct 0.18 3.60 91.36 0.0029

S model misspecified 1.98 1.96 86.33 0.0012

Z model misspecified 0.18 2.67 82.93 0.0029

Y model misspecified 2.09 4.17 96.05 0.0027

S,Z models misspecified 2.18 1.38 79.27 0.0009

S,Z,Y models misspecified −52.11 1.41 2.49 0.0065

CACE

All models correct 2.57 11.42 94.96 0.0265

S model misspecified 3.73 5.84 95.42 0.0068

Z model misspecified 2.57 11.85 95.86 0.0265

Y model misspecified 3.06 11.42 94.85 0.0270

S,Z models misspecified 3.98 5.93 95.60 0.0069

S,Z,Y models misspecified 23.00 6.12 94.23 0.0085
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