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Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the 

joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self 

proteins and are major drivers of disease. T lymphocytes also promote RA independently of B 

lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that 

promote pathology. While the innate signals that initiate self-reactive adaptive immune responses 

are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration 

and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. 

Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that 

require short-range signals, such as the cytokines MCSF and RANKL, for undergoing 

differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast 

differentiation by chemoattractants is an important point of control for osteoclastogenesis and 

bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol 

were identified as important regulators of osteoclast precursor positioning in proximity to bone 

surfaces, and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases 

like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and 

IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the 

chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease 

and are of great interest. Furthering our understanding of the complex osteoimmune cell 

interactions should provide new avenues of therapeutic intervention for RA.
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Introduction

Risk for inflammatory autoimmune diseases, like rheumatoid arthritis (RA), is influenced by 

genetic variation and environment. Genetic risk loci for autoimmune diseases have been 

identified by GWAS [1] and recently genetic fine mapping studies coupled with epigenomic 

analyzes have begun to identify putative causal variants [2,3]. Multiple disease-associated 

single nucleotide polymorphisms (SNPs) were mapped to genes and regulatory regions that 

are active in a cell-specific manner. These analyses revealed RA-associated SNP enrichment 

in genes and regulatory regions active in B cells, T cells, and to a lesser extent, monocytic 

cells [2,3]. This work provides a contextual framework for understanding the genesis of 

human autoimmune disease that can be applied to present and future studies in animal 

models. It also places the adaptive immune system front and center in the pathogenesis of 

RA.

Pathogenesis of RA

Rheumatoid arthritis is a chronic inflammatory disease characterized by an accumulation of 

inflammatory leukocytes in the synovium and articular tissues, and autoantibodies 

(rheumatoid factor and anti-citrullinated protein antibodies (ACPA)). The disease is also 

comprised of bone and cartilage tissue destruction and by other systemic features 

presumably caused by flares of inflammation. Even though RA is a common autoimmune 

disease that has been studied for several decades now, it is still unclear why articular tissues 

are predominantly attacked. The cellular components of the articular space include cells of 

the innate and adaptive immune system, chondrocytes, fibroblast-like synoviocytes, and 

bone remodeling cells, i.e. osteoclasts and osteoblasts. The accumulation of inflammatory 

leukocytes in articular tissues is a hallmark feature of RA, but this accumulation is thought 

to occur primarily because of cellular recruitment into inflamed tissues rather than as a 

consequence of local leukocyte proliferation [4].

The adaptive immune response in RA has been a focus of intense research over the last 

several decades. The strongest genetic link to RA involves SNPs in the Human Leukocyte 

Antigen (HLA)-DRB1 gene that likely alter T cell repertoire selection and antigen 

presentation, amongst other possibilities. The B cell repertoire is also constrained in RA 

patients, in which defects in early B cell tolerance checkpoints have been described [5], but 

for which there is still little mechanistic insight. Numerous antigens have been described in 

RA patients and in RA mouse models, and they include antibodies against the 

immunoglobulin Fc region (rheumatoid factor) and against citrullinated proteins (ACPA). 

Citrullination is a post-translational modification in which arginines are deiminated by 

peptidylarginine deiminases. ACPA are not only prevalent biomarkers for RA diagnosis, 

they also predict the development of the more debilitating erosive aspects of the disease. To 

date, it still remains unclear if specific autoantigen epitopes are key for the pathogenesis of 

RA, but autoantigens are clearly essential for the adaptive immune response in the 

pathogenesis of RA.

Numerous citrullinated polypeptides have been detected in the synovium of RA patients, 

populating a “citrullinome” that is comprised of both intracellular and extracellular antigens 
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ranging in size from ~14-100 KDa [6]. ACPAs can be detected years before disease onset 

and are likely important for shaping the development of disease [7–9]. In support of this 

possibility it was recently shown that immune complexes with citrullinated histones are 

potent activators of myeloid cells (macrophages and neutrophils) and induce TNFα secretion 

[10].

Evidence from several mouse models of inflammation in the joint and of inflammatory 

arthritis provides valuable insight into the spatio-temporal dynamics of the antibody 

response [11]. The K/BxN transgenic mouse is a model that allows studying the mechanisms 

whereby autoantibodies drive inflammation in the joint. In K/BxN transgenic mice there is 

spontaneous inflammation in the articular space that presents synovial pannus formation and 

bone and cartilage erosions [12]. K/BxN mice spontaneously produce autoantibodies against 

glucose 6-phosphate isomerase (GPI) that selectively deposit in the joints as immune 

complexes and trigger complement fixation [13]. Transfer of serum containing arthritogenic 

anti-GPI antibodies from K/BxN transgenic mice into naïve wild-type mice leads to the 

development of inflamed joints clinically and pathologically similar to what is observed in 

K/BxN transgenic mice [14]. Given that the generation of autoantibodies in the K/BxN 

model is crucial for disease development, effort has been made to identify the anatomical 

location(s) and kinetics of anti-GPI antibody production. The anti-GPI antibody response 

initially localizes to draining LNs and persists until later stages of the disease [15]. This 

indicates that draining LNs are involved in the initiation and perpetuation of the 

inflammatory arthritis antibody response in this model. Evidence in the clinical setting for 

LN involvement in RA patients has long been appreciated, including data showing that 

immune responses develop in draining LNs prior to the appearance of arthritis symptoms 

[16]. Importantly, B cell depletion from the draining LNs (popliteal) ameliorates 

inflammatory arthritis [17,18], and B cell depletion therapies significantly reduce RA 

symptoms in humans [19].

The activation of the B cell antibody response in the LN requires two antigen-driven events 

that are segregated in distinct temporal and anatomical locations: 1.) antigen recognition by 

B cells in follicles 2.) antigen presentation by T-zone dendritic cells and subsequent T cell 

activation in the T cell zone. Relatively small soluble antigens <70 kDa can gain access to B 

and T cell areas of the LN by free diffusion via the follicular conduit network [20–22]. 

Larger antigens are transported into follicles through their initial capture by CD169+ 

subcapsular sinus macrophages from the incoming lymph, and relay to B cells in follicles in 

a complement receptor-dependent manner. These large immune complexes become 

subsequently deposited on follicular dendritic cells (FDCs) where they persist for long 

periods of time [23–26]. The molecular sizes of autoantigens uncovered in arthritis patients 

suggests both mechanisms of antigen delivery to T and B cell niches in secondary lymphoid 

organs are likely to operate in RA. But, T cells can also be activated by DCs that may 

sample antigens in inflamed articular spaces and migrate to the draining LN for T cell 

priming. In RA patients, both mature and immature DCs have long been identified in 

synovium and synovial tissue by histology [27–32]. Plasmacytoid DCs have also been 

identified in rheumatoid synovium and synovial fluid [33–35]. Whether various DC subsets 

are recruited to the joints during the earliest stages of synovial inflammation remains 

unknown.
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Shortly after antigen-engagement, activated B cells increase the expression of the T-zone 

homing chemokine receptor CCR7, and migrate to the T-B border where they interact with a 

subset of activated (cognate) T cells [36]. At this stage, activated B cells receive further 

differentiation signals from cognate T cells mostly through CD40/CD40L interactions. 

Importantly, SNPs in CD40 have been linked to RA [4]. Within 1–2 days after antigen 

engagement and CD40 signaling B cells increase EBI2 (GPR183) expression [37–40] and 

together with activated T cells, migrate to outer and inter-follicular areas in an EBI2-

dependent manner. The oxysterol ligands of EBI2 (mostly 7α, 25-hydroxycholesterol, (7α, 

25-OHC)) are presumably abundant in the follicle perimeter, including interfollicular 

regions [37–40]. Dendritic cells also express EBI2 and migrate to inter-follicular niches, and 

signals or cellular interactions occurring at these sites contribute significantly to the 

development of primary antibody responses by promoting plasmablast differentiation 

[41,42]. Later in the immune response a subset of activated T and B cells initiates germinal 

center responses where antibody affinity maturation, isotype switching, and long-lived 

plasma cell differentiation take place.

The GC reaction is thought to play an important role in RA. Follicular dendritic cells 

(FDCs) are critical for the formation of autoreactive GC reactions and development of joint 

inflammation in the K/BxN model [43]. In RA patients, T and B cells form aggregates in the 

articular space and can form ectopic GCs in about 40% of patients [44]. Given that anti-B 

cell therapy (Rituximab) is inefficient at depleting antibody-secreting plasma cells, and 

variably affects antibody titers [19], its efficacy may be associated with other roles B cells 

play in the organization of ectopic lymphoid follicles and GCs, and in T cell activation 

through cytokine secretion and autoantigen presentation. These tertiary lymphoid structures 

do not form in most experimental mouse models of inflammatory arthritis, the exception 

being in the collagen-induced arthritis (CIA) model [45]. The fact that CIA displays many 

similar histophathological features with human RA has made it one of the most widely 

studied models of inflammatory arthritis [46]. In this model, type II collagen (an abundant 

protein in cartilage), is used as an antigen for immunizing mice, which leads to the 

development of inflammatory arthritis. CIA is often used to evaluate therapeutic 

interventions.

Inflammation in the synovial compartment

Despite many decades of intense research very little is still known about the kinetics of cell 

recruitment into synovial tissues in RA patients and in experimental inflammatory arthritis. 

In a permutation of the K/BxN inflammatory arthritis model, LaBranche et al. transferred 

autoreactive KRN TCR transgenic T cells into T cell-deficient mice (B6.TCR.cα−/−H-2b/g7) 

and were able to induce arthritic lesions that were synchronized and chronic in nature [47]. 

Interestingly, T cells were not detected in the joint but were present in the draining popliteal 

LN. Instead, monocyte/macrophage and neutrophil infiltration occurred early in disease 

progression, and correlated with bone and articular erosions. The influx of monocytes and 

macrophages, whether by recruitment or local differentiation and activation, highly 

correlates with inflammation and tissue damage in RA patients [48–50]. Given that 

monocytes and macrophages secrete numerous chemokines and cytokines, they also could 

be involved in the recruitment of other inflammatory cells into the joint, such as neutrophils. 
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Neutrophils are abundant in synovial tissues and fluid, and mouse models provide clear 

evidence for neutrophil involvement in disease. Neutrophil depleted mice are completely 

resistant to the K/BxN serum transfer model of inflammatory arthritis [51]. A study in an 

anti-type II collagen antibody induced inflammatory arthritis model reported that the initial 

cellular infiltrate to the synovium is mainly composed of neutrophils and macrophages [52], 

and depletion of neutrophils attenuates disease progression [52,53]. However, the 

mechanisms controlled by neutrophils that exacerbate disease remain poorly understood. 

Furthermore, whether macrophages also contribute to the onset of disease remains unclear.

Recruitment of innate immune cells

In the synovium and synovial fluid of RA patients numerous homeostatic and inflammatory 

chemokines with the potential to influence the trafficking of leukocytes into the tissue are 

upregulated. CCR7+ mature DC (CD83+ and DC-LAMP+) present within synovial infiltrates 

of RA patients were found in close association with CCR7-ligand (CCL19 and CCL21) 

expressing cells, suggesting these chemokine pairs may play a role in the recruitment of DCs 

to the synovium [32]. In this study immature DC (CD1a+) expressed CCR6 and were in 

close association with CCL20-producing synovial cells [32]. In humans it was also recently 

reported that pDCs expressed CXCR3 and CXCR4 and accumulated in the inflamed joints 

of RA patients, [34]. Furthermore, the levels of CXCR3 ligands CXCL10, CXCL11, and of 

the CXCR4 ligand CXCL12 in the synovial fluid of RA patients were significantly increased 

when compared to osteoarthritis (OA) patients [34], suggesting the involvement of CXCR3 

and CXCR4 in pDC homing or retention in inflamed joints. Besides pDCs, other DC subsets 

express functional CXCR4 [54], and CXCL12 was found to be highly expressed in synovial 

tissues [55,56] and synovial fibroblasts from RA patients [57].

In the K/BxN serum transfer model, neutrophils are absolutely required for disease 

progression [51]. Neutrophils express CXCR2 and its ligand CXCL2 is abundant in arthritic 

tissues including CXCL2 [58]. Furthermore, CXCR2 was crucial for disease progression in 

this model [58]. Importantly, blockade of CXCR2 in other animal models of arthritis 

quantitatively reduces disease severity and the recruitment of neutrophils [59–61]. Given 

that CXCR2 promotes neutrophil egress from bone marrow cavities [62], it is unclear if 

CXCR2 deficiency reduced inflammatory arthritis by impairing neutrophil recruitment to the 

synovium or by reducing their egress from bone marrow, or both. Using intravital 2-photon 

imaging of LysM-GFP mice and the K/BxN serum transfer model of arthritis, Wang and 

colleagues were able to visualize neutrophil recruitment to the inflamed synovial space [63]. 

Intriguingly, they observed that neutrophils were often associated with monocytes at sites of 

extravasation, and global depletion of monocytes arrested neutrophil extravasation [63].

Recruitment of lymphocytes

Th1, Th17, and Treg cell types are present in inflamed articular tissues in RA patients, with 

Th1 cells being the most prevalent T helper cell subset [64,65]. Studies from mouse models 

in combination with data obtained from RA patients have provided some insight into the 

trafficking mechanisms for T cells in arthritis. CXCR3 and CCR5 are abundantly expressed 

by T cells isolated from the synovial fluid and synovial tissues of RA patients, and both 
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receptors are preferentially expressed on Th1 cells [66–68]. In adoptive transfer experiments 

in a mouse adjuvant arthritis model, T cells deficient in CXCR3 were poorly recruited to 

inflamed joints, and CXCR3 blockade using antibodies inhibited T cell recruitment and 

reduced disease severity [69]. Consistent with these findings, the CXCR3 ligands CXCL10 

and CXCL9 are abundant in the synovial fluid of RA patients [66] and, interestingly, 

myeloid DCs isolated from the synovial fluid of RA patients express higher CXCL9 and 

CXCL10 amounts than myeloid DCs isolated from peripheral blood [70]. CCR5 has also 

been suggested to contribute to the recruitment of T cells to the synovium. Several studies 

have reported that a single nucleotide polymorphism (SNP) resulting in a non-functional 

CCR5 allele was negatively associated with RA [71–74], but this finding was not confirmed 

in other studies [75,76]. In animal models CCR5 deficiency had no effect on disease 

outcome [77].

In RA patients, CXCR4 is expressed on memory CD4+ T cells (CD45RO+) infiltrating the 

synovium [68]. In mice, T cell specific deletion of CXCR4 impaired their infiltration into 

the joints and decreased the severity of collagen-induced arthritis [78].

CX3CR1 is expressed on T cell subsets, and in RA patients the CX3CR1+ fraction of T cells 

is increased when compared to healthy controls [79]. The ligand for CX3CR1, fractalkine 

(CX3CL1), is expressed by synoviocytes and endothelial cells and is elevated in RA patients 

compared to OA patients [80,79,81]. In the collagen induced mouse model of arthritis, 

CX3CR1 is also expressed on T cells infiltrating the synovium and CX3CL1 is also 

upregulated [82]. Given that the depletion of CX3CL1 in synovial fluid in animal models of 

inflammatory arthritis reduced overall chemotactic potency [83], this chemokine receptor 

pair likely guides the recruitment of T cells to inflamed synovium.

Th17 cells play a key role in the pathogenesis of RA and these cells express CCR6 [84]. 

CCR6-expressing cells were identified in synovial tissue from RA patients several years ago 

[85], and the CCR6 ligand CCL20 is robustly secreted by synovial fibroblasts isolated from 

arthritic joints (but not secreted by granulocytes and monocytes) [84,85]. CCR6 blockade 

suppressed the onset and severity of disease and reduced the number of CD4+ T cells that 

infiltrated the joint [84], although the numbers of Th17 cells were not specifically reported.

Administration of FTY720, a high affinity agonist for sphingosine 1-phosphate (S1P) 

receptors that induces receptor internalization and renders targeted cells unresponsive to 

chemotactic gradients of S1P, was protective in mouse models of inflammatory arthritis by 

reducing lymphocytic infiltration into the joints and bone erosions [86–88]. Lymphocytes 

(including T cells) [86–88] and monocytes [87] were sequestrated in secondary lymphoid 

organs and thus, were unavailable to egress into the circulation and migrate to arthritic 

tissues. Although bone marrow populations were not examined in either study, it highlights 

the importance of this pathway in lymphocyte circulation and trafficking in inflammatory 

arthritis. S1P levels are elevated in the synovium and synovial fluid of RA patients (even 

higher than serum levels) and could contribute to cellular recruitment and retention [89,90].

An essential component of the pathogenesis of RA is B cells, highlighted by the efficacy of 

B cell depletion therapy [91,92]. In RA, B cell production of ACPA is strongly predictive of 
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erosive bone disease [93]. B cells can be found in abundant numbers organized into 

follicular structures in the synovium, and in ACPA+ RA patients about 25% of IgG+ B cells 

isolated from articular space encode antigen receptors that are specific for citrullinated 

antigens [94]. Whether self-reactive B cells differentiate within ectopic follicles and 

germinal centers in the synovium, or are recruited from draining LNs is not entirely clear.

The chemokine expression pattern on B cells isolated from the synovium of RA patients 

includes CCR5, CCR6, CCR7, CXCR3, CXCR4, and CXCR5 [95]. The levels of CCL19, 

CXCL12, and CXCL13 are all increased in the serum of RA patients [96], CCL19 is 

increased in the synovium of RA patients [97], and CXCL13 is expressed in ectopic 

germinal centers in the synovium of RA patients [98]. This combination of homeostatic and 

inflammation-associated chemoattractant receptors suggests an active involvement in B 

lymphocyte recruitment and cell organization in synovial spaces.

Inflammation in the subchondral bone marrow

The synovium, and more recently LNs, represent the main focus of the inflammatory 

response in RA, but nearby compartments also develop inflammation including the 

subchondral bone marrow. The subchondral bone marrow is located under the subchondral 

bone that separates the articular cartilage from the bone marrow cavity. The bone marrow 

cavity is an important site of hematopoiesis but the subchondral bone marrow is populated 

by adipocytes and lacking abundant hematopoietic activity under homeostatic conditions. 

However, evidence indicates that subchondral bone marrow participates in the inflammatory 

response in RA. Magnetic resonance imaging data (MRI) from RA patients identifies edema 

throughout the bone marrow, even at stages where there is a low level of synovial 

inflammation [99,100]. Indeed, like synovitis, bone marrow edema is also predictive of 

subsequent pathologic bone erosion [101,102]. Subchondral bone marrow inflammation, 

including ectopic germinal center-like structures, has been found in the CIA mouse model 

[45,103,104]. The subchondral bone marrow undergoes significant changes during the 

course of RA, including infiltrating leukocytes [105–108] and development of bone 

resorbing osteoclasts (OC) on the subchondral surface [109,110]. Collectively, these studies 

indicate that the bone marrow compartment may be important for the pathogenesis of RA, 

but this compartment has not yet been fully integrated into disease models.

Bone erosion in RA

Periarticular bone erosions are highly prevalent in RA and lead to joint deformities and 

impaired function [111]. As the only cell capable of bone resorption in the body, osteoclasts 

have a critical role in inflammatory disorders associated with bone erosions and focal bone 

loss, including RA [112]. In mouse models of inflammatory arthritis numerous studies have 

demonstrated that osteoclasts are absolutely required for bone erosions to occur [113–118]. 

Osteoclasts form early in disease progression in animal models and initially appear at the 

junction of synovial membrane and periosteal lining and within subchondral bone [119]. 

Even though osteoclasts can be detected on both the synovial and subchondral bone marrow 

sides of the joints, osteoblasts (bone synthesizing cells) are only detected on the subchondral 
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side [110,120–122]. Therefore the mechanisms of osteoclast differentiation from these two 

sides may be distinct.

Osteoclast differentiation under homeostasis

Osteoclasts are hematopoietic cells that differentiate from monocyte progenitors through 

sequential developmental stages. Although the exact identity of osteoclast precursors still 

remains unclear, studies have found that cells with osteoclastogenic potential in the bone 

marrow do not express lymphoid cell surface proteins or the aM integrin (CD11b/MAC1), 

and instead express the macrophage colony stimulating factor-1 receptor (Cfms, CSF1R, 

CD115) and the stem cell factor receptor (cKit). These cells overlap with the macrophage/

dendritic cell precursor (MDP) subset [123] and can also differentiate into monocytes, 

macrophages, and dendritic cells [124–127]. More recently, a clonogenic, monocyte- and 

macrophage-restricted progenitor cell (named cMoP) derived from the MDP was identified 

[128], but whether the cMoP subset retains osteoclast differentiation potential has not been 

defined.

The dominant cytokine that governs osteoclast differentiation in vitro and in vivo is 

RANKL, which signals through its receptor RANK [129–131]. Osteoblasts are key sources 

of MCSF (a cytokine required for cell survival and osteoclastogenesis) and RANKL [132], 

and RANKL expressed by osteocytes was recently shown to be critical for osteoclast 

differentiation in vivo [133]. RANKL is a type II transmembrane receptor and as such 

requires cell-cell interactions for engaging its receptor RANK expressed on osteoclast 

precursors. This predicts that positional cues are involved in the recruitment of osteoclast 

precursors to interact with RANKL+ cells. For many years it has been appreciated that 

resorbing bone is chemotactic for osteoclast precursors [134]. Recently, osteoblasts were 

reported to express oxysterol-synthesis enzymes, namely cholesterol 25 hydroxylase (gene 

name Ch25h) and 25-hydroxycholesterol 7-alpha-hydroxylase (gene name Cyp7b1) [135]. 

They also secrete the oxysterol 7a, 25 dihydroxycholesterol (7a, 25-OHC), which acts as a 

potent chemotractant for the pertussis toxin sensitive Gai protein coupled receptor EBI2 

[135].

Furthermore, EBI2 is abundantly expressed in murine osteoclast precursors, and its 

expression increases during osteoclast differentiation [135]. It was reported that EBI2 directs 

the migration of osteoclast precursors to bone endosteal niches and promotes 

osteoclastogenesis in vivo [135]. Besides its role in cell positioning at the endosteum, EBI2 

signaling also contributes to promote osteoclast precursor motility within bone marrow 

parenchyma [135], possibly in synergy with CX3CR1 [136]. Importantly, deficiencies in 

EBI2 or CH25H resulted in similar decreases in osteoclast numbers and increased bone mass 

in vivo [135], indicating that 7a,25OHC is the main EBI2 ligand controlling 

osteoclastogenesis and bone mass homeostasis. In summary, this study provided direct in 

vivo evidence for EBI2 and oxysterols in osteoclast precursor recruitment to endosteal 

surfaces, and consequently in osteoclast differentiation [135].

The chemokine monocyte chemoattractant protein-1 (MCP-1) is also expressed by 

osteoblasts in vitro when cultured in inflammatory conditions [137–139] and the MCP-1 
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receptor, CCR2, is expressed on mouse and human osteoclast precursors [140,141]. These 

findings led to a model where bone proximal MCP-1, produced by osteoblasts, attracts 

osteoclast precursors to sites of osteoclast differentiation [142]. In support of this model, 

CCR2 deficient mice display a mild increase in bone mass and stability, likely due to a 

reduction in osteoclast differentiation [143]. In humans, a polymorphism in CCR2 (V64I) 

was associated with increased bone mineral density in middle aged men and postmenopausal 

women [144], but whether this polymorphism alters CCR2 signaling is unclear [145]. 

Altogether, the bone mass phenotype reported in CCR2 deficient mice is mild and contrasts 

with the essential role of CCR2 in promoting monocyte egress from bone marrow, both in 

homeostasis and during systemic acute inflammation [146–148].

CCR1 and CCR5 have also been reported as abundantly expressed on human, mouse and rat 

osteoclast precursors, upregulated on osteoclasts, and promoting their chemotaxis in 

response to several of their ligands, as reviewed elsewhere [149]. Furthermore, CCR1 and its 

ligands significantly promote osteoclast differentiation in vitro and in vivo (particularly 

CCL9) and CCR1 deficient mice are mildly osteopenic [150,149]. Several CCR1 ligands are 

shared by CCR5, but no bone mass phenotypes in CCR5 deficient mice have been reported.

The chemokine receptor pair CX3CR1 and its ligand CX3CL1 are also functionally 

expressed during osteoclast differentiation, as reviewed elsewhere [149]. Interestingly, 

CX3CL1 is produced by mouse osteoblasts [151] and CX3CR1 deficient mice have a 

reduction in osteoclasts that results in a mild increase in bone mass [152]. Furthermore, 

functional inhibition of CX3CR1 signaling provided protection from bone loss induced by 

irradiation [153], perhaps by disrupting CX3CR1-mediated migration and retention in the 

bone marrow [136]. In summary, while these studies suggest that synergy between multiple 

chemokine receptors controls osteoclastogenesis, only EBI2 was shown to be directly 

required for osteoclast precursor positioning in bone endosteal niches (Figure 1).

In contrast to chemoattractants derived from bone-proximal niches, chemoattractants 

emanating from bone-distal niches can also influence the positioning of osteoclast 

precursors in the bone marrow. Furthermore, the balance between bone marrow retention 

and egress cues is likely an important point of control for osteoclast precursor positioning 

and differentiation. In favor of such a model is the fact that osteoclasts are predominantly in 

close proximity to blood vessels in bone marrow thus making it likely that osteoclast 

precursors encounter bone and blood vessel chemoattractants (Figure 2) [149].

Emerging evidence has provided insight into leukocyte migration and dynamic behavior in 

steady-state conditions, including the mechanisms controlling their egress from bone 

marrow. Leukocytes are thought to egress from bone marrow through a vast network of 

blood vessels often referred to as bone marrow sinusoids. The majority of bone marrow 

sinusoids are characterized by a single layer of endothelial cells often separated by small 

gaps and without a basement membrane. Several hematopoietic cells exit bone marrow 

parenchyma by moving towards bone marrow sinusoids in a chemoattractant-dependent 

manner. For example, natural killer cells, eosinophils and B lymphocytes express S1P 

receptors and migrate towards high concentrations of S1P within sinusoids [154–157]. Other 

hematopoietic cells, such as monocytes and neutrophils depend on chemokine receptors, 
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namely CCR2 and CXCR2, for exiting bone marrow parenchyma, and CCR2 ligands are 

abundant around sinusoids [147,62,146]. Osteoclast precursors have also been shown to use 

S1P receptors for exiting bone marrow, and defects in S1PR signaling alter osteoclast 

precursor differentiation [158,159]. CXCR4 is also expressed in osteoclast precursors and 

directs their migration towards CXCL12 in vitro [160,161]. CXCR4, and its ligand 

CXCL12, have a well-described role in the retention of multiple hematopoietic cell subsets 

in bone marrow, including hematopoietic stem and progenitor cells [162]. Even though 

CXCR4 is one of the most studied chemokine receptors, its role in steady-state 

osteoclastogenesis in vivo remains controversial. Several studies reported that osteoblasts 

express CXCL12 in vivo [163,164] and it was proposed that CXCR4 promotes osteoclast 

precursor migration towards sites of osteoclast differentiation in vivo [158,165]. However, 

studies using CXCR4 deficient and CXCL12 reporter mouse strains provided results that are 

not compatible with this model. For example, CXCL12 expression is highest in rare 

mesenchymal stromal cells capable of multilineage differentiation (osteoblasts, chondrocyte, 

and adipocytes) distributed in parenchyma and some adjacent to blood vessels [166–168]. 

Furthermore, CXCL12 expression is reduced by nearly 100-fold in osteoblasts in vivo [169], 

making it unlikely that CXCR4 would direct osteoclast precursors towards osteoblasts. In 

agreement with this possibility, osteoclast differentiation and bone resorption were increased 

when hematopoietic cells lack CXCR4 expression, [170], which favors a model where the 

balance between responsiveness to bone chemoattractants and to other chemoattractants 

influences osteoclast development in vivo (Figure 1).

Cannabinoid receptor-2 (CB2) is abundantly expressed in various hematopoietic cells, 

including monocytes/osteoclast precursors and it promotes cell migration to its ligand 2-

arachidonoylglycerol (2-AG) [171]. In vivo, 2-AG activity is likely high in (or near) bone 

marrow sinusoids given that CB2 promotes immature B lymphocyte positioning in these 

locations, a process that is also dependent on α4β1 adhesion to VCAM-1 [172]. It is, thus, 

conceivable that monocytes and osteoclast precursors are similarly attracted and/or retained 

within bone marrow sinusoids via CB2 chemotactic activity. In support of this hypothesis, 

CB2 deficient mice exhibit low trabecular bone mass, and CB2 antagonists inhibit osteoclast 

differentiation in vitro [173,174]. Furthermore, in humans a single nucleotide polymorphism 

in CNR2 (encoding CB2) was significantly associated with osteoporosis [175–177].

Leukocytes can exit bone marrow through mechanisms that are independent of pertussis 

toxin-sensitive Gαi protein coupled receptors, and presumably independent of 

chemoattractant gradient sensing and cell intrinsic motility [178]. B-lineage lymphocytes 

enforced to express pertussis toxin or deficient in CXCR4 expression were found to be 

largely non-motile within bone marrow cavities of live mice, and were rapidly mobilized 

from bone marrow parenchyma into blood [178]. It was also noted that the bone marrow 

parenchyma is under shear stress induced by plasma perfusion and interstitial fluid flow 

[178]. It is plausible that the highly fenestrated nature of the sinusoidal network in 

combination with plasma and interstitial fluid flow back to collecting sinusoids allows non-

motile cells (e.g. red blood cells) to exit the bone marrow in a passive manner, and that such 

unconventional exit routes are used by essentially all leukocytes, including osteoclast 

precursors.

Nevius et al. Page 10

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Osteoclast differentiation within inflamed synovial space

The identity of osteoclast precursors in arthritis may be distinct from steady-state osteoclast 

precursors, but presumably belongs to the myeloid cell compartment. Myeloid cells are 

accumulated in synovial tissue and synovial fluid in RA [48,49]. Some studies have 

interrogated the phenotype of osteoclast precursors in inflammatory arthritis models. The 

hTNFα transgenic strain develops synovial hyperplasia and lymphocytic infiltrate, pannus 

formation, articular cartilage destruction, and osteoclast driven bone erosion [179]. In this 

model, a cell population expressing the aM integrin CD11b but not Gr-1 displayed 

osteoclastogenic potential, and this population was increased in the bone marrow and blood 

of hTNFα transgenic mice [180]. Another study utilizing the SKG model of spontaneous 

inflammatory arthritis identified a population of cells with osteoclastogenic potential that 

had low to negative expression for CD11b and expressed high levels of Ly6C [125], and 

these cells may overlap with cMoPs (Nevius and Pereira unpublished observations). 

Dendritic cells have also been reported to contain osteoclast differentiation potential. 

Specifically, immature DCs were able to form osteoclasts in response to MCSF and 

RANKL, and unidentified soluble factors in human synovial fluid increased the DC 

differentiation into osteoclasts. These findings indicate that DCs may contribute to arthritis 

not only by acting as antigen-presenting cells and promoting T cell activation, but also by 

their potential to differentiate into bone-resorbing osteoclasts [181,182]. Collectively these 

studies suggest that multiple myeloid cell populations contain osteoclast differentiation 

potential (Figure 3).

RANKL is expressed on activated T cells, B cells, DCs, and synovial fibroblasts, besides 

bone-producing cells, RANKL expressed on T cells [133,183] and B cells [184] is 

dispensable for osteoclast differentiation and skeletal development and maintenance under 

homeostatic conditions. However, in mouse models of inflammatory arthritis, and in RA 

patients, the expression of RANKL on T cells and synovial fibroblasts is robust [113,185–

187]. In murine inflammatory arthritis it has been established that synovial fibroblasts 

support the conversion of FOXP3+ Tregs into pathogenic Th17 cells, which express higher 

RANKL amounts than other CD4+ T cell subsets [188]. Furthermore, Th17-derived RANKL 

is able to support osteoclastogenesis in vitro [188,189]. That the cytokine IL-17A is an 

important driver of osteoclastogenesis in arthritis has been appreciated for some time now 

[190], but the mechanisms of its action are still being elucidated. Interestingly, IL-17A has 

been shown to induce RANK on human and murine osteoclast precursors and promotes 

osteoclastogenesis [191–193]. In addition, some evidence suggests IL-17A may increase 

RANKL expression on fibroblastic synoviocytes and/or mesenchymal-derived cells [189]. A 

recent study has dissected the relative contributions of RANKL derived from T cells and 

synovial fibroblasts and found that synovial fibroblasts provide the relevant sources of 

RANKL in models of inflammatory arthritis [194]. In humans, RANKL blockade with 

denosumab reduces bone erosion possibly through inhibition of osteoclast differentiation 

and function [195]. In mice, RANKL-expressing Th17 cells have been reported to interact 

directly with osteoclasts in vivo. By fluorescently labeling osteoclasts and Th17 cells it was 

observed that Th17 cells preferentially located in contact with mature osteoclasts and this 

interaction was partially dependent on RANKL [196]. Finally, by using a pH sensitive 
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fluorescent probe and an indicator of local pH decreases associated with osteoclast H+ 

secretion and bone resorption it was observed that Th17 and osteoclast interactions occurred 

in sites of active bone resorption [196]. Collectively through these studies a picture emerges 

in which Th17 derived IL-17A regulates the expression of RANKL on synovial fibroblasts, 

enhances the differentiation of osteoclasts in the inflamed joint, and exacerbates bone 

resorption in vivo (Figure 3).

As mentioned previously, MCSF and RANKL are critical cytokines for osteoclastogenesis, 

and while MCSF is a soluble cytokine, RANKL is a type II membrane protein. Therefore 

osteoclast precursors in the joint presumably receive RANK signaling directly from 

fibroblastic synoviocytes, and possibly from T cells, osteoblasts, or from interaction with 

osteocyte processes at the bone surface (Figure 3). Given that osteoclasts can form bi-

directionally in the joint (synovium and bone marrow), the specific cell type presenting 

RANKL (and other cytokines) on the synovial or bone marrow side may differ, and may be 

under the influence of distinct cell recruitment mechanisms.

RANKL independent osteoclast differentiation in RA

It is now appreciated that in inflammatory settings osteoclast differentiation can occur 

independently of RANKL signaling [197]. Inflammatory cytokines such as TNFα [198], 

TNFα with IL-6 [199], and IL-1α [200] can induce osteoclast differentiation when in the 

presence of MCSF, but non-inflammatory cytokines like TGFβ have also been shown to 

trigger osteoclast differentiation [201]. Collectively these data identify cytokine-driven 

alternative pathways of osteoclast differentiation not dependent on the RANK/RANKL 

signaling pathway. Many of these pro-osteoclastogenic cytokines can be produced by 

macrophages, as reviewed elsewhere [197], and synovial macrophage numbers correlate 

with severity of inflammatory activity in RA [202]. Although pro-osteoclastogenic cytokines 

are not exclusively produced by synovial macrophages, these cytokines are present in the 

synovial milieu and may contribute to alternative pathways of osteoclast differentiation. 

Recent work from Harre and colleagues found that ACPAs enhanced the differentiation of 

osteoclasts in vitro [203]. They further showed that administration of ACPAs to lymphocyte 

deficient Rag1−/− mice was able to increase osteoclast numbers and reduce bone mass in 

vivo [203]. The mechanism by which ACPAs promote osteoclast differentiation is in part 

dependent on the Fc sialylation state of IgG in immune complexes [204]. Alternative 

pathways of osteoclast differentiation, driven by the unique inflammatory cytokine milieu 

(e.g. TNFα) and pathogenic autoantibody responses likely synergize with the dominant 

RANK/RANKL signaling pathway to induce bone erosions associated with RA. Indeed, 

TNFα induces RANKL expression on stromal cells via IL-1α signaling and enhance 

RANKL-dependent pathways of osteoclast differentiation [205].

Recruitment of osteoclast precursors in RA

It is clear in murine inflammatory arthritis and human RA that osteoclast precursors 

populate the synovium and synovial fluid. Conceptually, osteoclast differentiation in RA is 

likely controlled by multiple guidance cues balancing osteoclast precursor retention in bone 

marrow, migration from the bone marrow to egress sites, and migration into tissues, i.e. the 
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synovium (Figure 3). The chemotactic signals guiding cells to these sites are incompletely 

defined and are of great interest. Some studies indicate that the cytokine TNFα, which is 

abundant in synovial tissue, can expand osteoclast precursors in inflammatory arthritis 

models and can also induce the mobilization of osteoclast precursors from the bone marrow 

into the periphery [206,207,180]. Given that in RA patients S1P levels are elevated in the 

synovium and synovial fluid (even higher than serum levels) [89,90], S1P receptor signalling 

could contribute to monocyte recruitment and retention in the joints. Consistent with this 

hypothesis, blockade of S1P signaling by administration of FTY720 reduces lymphocyte 

[86–88] and monocyte [87] migration to the joints.

Human and mouse monocytes/osteoclast precursors and osteoclasts also express functional 

CCR1, CCR5, and CCR2. The CCR2 and MCP-1 chemokine receptor pair not only 

promotes monocyte egress from bone marrow under homeostatic and inflammatory 

conditions [146–148], but MCP-1 expression is increased in inflamed synovial fluids 

[208,209]. Therefore, these collective reports suggest that CCR2 attracts monocytes/

osteoclast precursors from blood circulation to inflamed joints. It remains to be completely 

dissected the relative contribution of CCR2 in the egress of monocytic cells and in the 

recruitment of those cells into tissues like the inflamed synovium. Potential sources for 

MCP-1 include osteoblasts and mesenchymal stromal cells.

Early studies in mouse models showed that the severity of inflammatory arthritis is mitigated 

by administration of receptor antagonists to CCR2 and CCR5 [210,211]. It was subsequently 

elucidated that the kinetics of CCR2 blockade are crucial for a beneficial outcome [212]. 

However, genetic deletion of these receptors had an opposite effect. Mice genetically 

deficient in CCR2 and CCR5 displayed either enhanced severity of inflammatory arthritis 

(including enhanced monocyte recruitment) or had no effect on disease outcome, 

respectively [77]. More recently, inflammatory arthritis induced in CCR2 deficient mice 

were described to have increased Th17 cells, which may partially explain the disease 

exacerbation [213]. The blockade of another GPCR, CCR1, in inflammatory arthritis mouse 

models showed both inhibition of chemotaxis and reduction of inflammation 

[214,215,211,216].

The promising data from mouse models prompted the development and testing of CCR1, 

CCR2, and CCR5 antagonists as a therapeutic approach for the treatment of RA [217–221]. 

However, the results of the clinical trials were variable and did not show an overt efficacy in 

the treatment of RA patients. This could be in part due to the redundancy of the chemokine 

receptor and chemokine system. For example, CCR1 has 13 distinct chemokine ligands, 

some of which are shared ligands for CCR2, CCR3, CCR5, and CCR10. There are 

additional chemokine receptors that have been suggested to regulate the recruitment of 

monocytes/osteoclast precursors in RA.

Other chemokine receptor pairs that may regulate the recruitment of osteoclast precursors to 

the bone surfaces in homeostasis may also play a role in inflammatory conditions, like RA. 

For instance, CXCL12 is highly expressed in synovial tissues [55,56] and synovial 

fibroblasts from RA patients [57] and the migration of monocytes to supernatants from 

synovial fibroblasts was significantly decreased after neutralization of CXCL12 [222]. In the 
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context of RA, CB2 is more abundantly expressed in the synovial tissues of RA patients, and 

administration of a selective CB2 antagonist in a mouse model ameliorated inflammatory 

arthritis and bone destruction [223]. Although the distribution of 2-AG within bone marrow 

has not been exactly defined, the fact that CB2 signaling occurs in the vicinity of (or within) 

bone marrow sinusoids under normal homeostatic conditions, and that it can be detected in 

synovial tissues, suggests that 2-AG may act as a chemoattractant or a retention signal. 

Finally, the neutralization of the CX3CR1 ligand, CX3CL1 (fractalkine), in synovial fluid in 

murine inflammatory arthritis reduced overall chemotactic potency [83]. Blockade of 

CX3CR1 in a murine model decreased the recruitment of monocytic cells to synovial tissues 

and decreased disease incidence and severity [82]. CX3CL1 is elevated in RA patients 

compared to OA patients [81,80] and CX3CL1 has been shown to be upregulated in mouse 

bone marrow endothelial cells in inflammatory conditions, such as full body irradiation 

[153].

CXCR2 and CXCL2 have also been implicated in inflammatory bone remodeling [224]. In 

osteoclast precursors, CXCL2 is induced by RANKL and promotes their chemotaxis to 

CXCL2 [224]. The expression of CXCL2 was increased in the synovial fluid of RA patients 

and CXCL2 significantly enhanced bone resorption in vivo [224]. Therapeutic neutralization 

of this chemokine receptor pair had positive results in animal models of arthritis 

[225,60,226], possibly owing to the inhibition of CXCL2-mediated recruitment of osteoclast 

precursors to inflamed joints. In the K/BxN serum transfer model, the relevant chemokine 

receptor for arthritis progression was shown to be CXCR2, specifically for the recruitment 

of neutrophils [58]. But this study does not preclude an important role for CXCR2 in the 

recruitment of osteoclast precursors [58].

Under homeostasis, EBI2 and CH25H are required for osteoclast precursor recruitment and 

osteoclast differentiation. But, EBI2 and CH25H are also required for the generation of 

antibody responses, and have also been implicated in a variety of inflammatory diseases. 

SNPs in Ebi2 or in regulatory elements of Ebi2 expression are associated with cardiac 

inflammation, type I diabetes and inflammatory bowel disease [227–229]. Furthermore, 

Ch25h is one of the most induced interferon-stimulated genes [230]. Future studies should 

determine if CH25H activity is increased in the inflamed articular space, and if EBI2 ligands 

play roles in inflammatory cell recruitment and osteoclast differentiation in inflamed joints.

While many studies interrogated functional roles for chemoattractant receptors in osteoclast 

differentiation and bone erosions in RA patients, and mouse models of RA, little remains 

understood about the manner in which they contribute to disease. It is likely that osteoclast 

precursor differentiation within inflamed synovium requires sequential chemotactic signals: 

at the first stage cells must be captured from blood circulation and extravasate into the 

synovium. Subsequently, osteoclast precursors likely follow chemotactic gradients that not 

only promote retention within the articular space but may also direct their migration towards 

sites of osteoclast differentiation. It is possible that redundancy between chemokine and 

other chemoattractants control such multi-step process of osteoclast differentiation.

Nevius et al. Page 14

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inflammation induced changes in bone homeostasis

Hematopoiesis has been proposed to be regulated locally by cytokines [231]. Cytokines are 

capable of instructing hematopoietic lineage choice by acting on 1) HSC, 2) Hematopoietic 

progenitor cells (HPC), and 3) mesenchymal stromal cells that support HSC. Furthermore, 

inflammatory cytokines, such as type I interferons may also function as rheostats of HSC 

proliferation [232,233]. During stress response, HSC enter in cycle and self-renew but when 

homeostasis is reestablished, HSC return to a quiescent state [234].

The inflammatory cytokine signature of RA includes several cytokines that have profound 

effects in hematopoiesis by biasing cell lineage choices. Two of the most notorious are 

TNFα and IL-1, and these cytokines can induce hematopoietic shifts that favor the 

production of inflammatory, innate-type cells, such as neutrophils and monocyte-lineage 

cells, at the expense of lymphopoiesis [235,236]. Of note, systemic TNFα increases the 

number of CD11bhigh osteoclast precursors in circulation [237], and this effect may in part 

be due to an increase in osteoclast precursor proliferation and differentiation in bone marrow 

[180]. Such inflammation-induced shifts in hematopoiesis are most likely dependent on 

local G-CSF production, although it is possible that other inflammatory signals contribute to 

this effect [238]. In experimental mouse models of RA, genetic and pharmacologically 

induced G-CSF deficiency prevented acute and chronic arthritis [239], possibly because it 

reduced myeloid cell differentiation in bone marrow.

Concluding remarks

It is becoming increasingly understood that a variety of processes controlled by the adaptive 

immune system are the major determinants of RA. But, adaptive immunity requires 

instructive signals provided by innate immune effector mechanisms, thus leaving open the 

question of which is/are the triggers that inadvertently fire self-reactive lymphocytes. 

Furthermore, even though RA does not develop without lymphocytes, disease only manifests 

when innate immune effector cells infiltrate articular spaces and cause pathology. Of note, 

the resorptive activity of synovial osteoclasts is a hallmark feature of chronic, advanced 

stage RA and is a major contributor to articular damage.

Considering the multiple pathways EBI2 signaling is involved in (namely osteoclast 

development and the generation of adaptive immune responses), which are central to the 

development of inflammation in articular spaces, antagonists of EBI2 signaling may provide 

significant protection against RA. Understanding the multitude of osteoclast differentiation 

pathways and mechanisms of osteoclast precursor recruitment in homeostasis and during 

inflammation is thus of utmost importance.
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Fig. 1. 
Trafficking of osteoclast precursors in the bone marrow (BM), blood, and peripheral tissues. 

Monocytic osteoclast precursor cells (OCP) and inflammatory monocytes (Inf Mono) 

migrate into osteoclastogenic niches where osteoblasts (OB) and osteocytes provide 

important signals for osteoclast differentiation (MCSF and RANKL). EBI2 directs the 

migration of OCP to the endosteum, where the EBI2 ligand 7α, 25-OHC is presumably 

abundant. CX3CR1 promotes the retention of OCP in BM parenchyma, and possibly directs 

cells to the endosteum in response to CX3CL1 produced by OB. OB also express CCR1 

ligands (e.g. CCL9) and CCR1 may also direct OCP to sites of osteoclast differentiation. 

S1PR1 is essential for the egress of monocytic cells in the bone marrow as they follow S1P 

gradients into the circulation and inflammatory monocytes egress via CCR2. CXCR4 is 

likely to guide OCP away from sites of osteoclastogenesis given that its ligand CXCL12 is 

abundant parenchymal and perivacular mesenchymal stromal cells, while it is reduced in 

OBs. The CB2 ligand 2-AG is likely abundant in the BM sinusoids, and may guide OCP 

away from osteoclastogenic niches. Both circulatory OCP and inflammatory monocytes re-

enter into BM by unknown mechanisms.
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Fig. 2. 
Osteoclasts are located in close proximity to blood vessels in the bone marrow. Image 

acquired using two-photon microscopy of calvaria bone marrow of TRAPRed reporter 

mouse. Osteoclasts (white); blood vessels (dashed line) were visualized with injection of 

dextran-FITC; and bone (gray). Scale bar= 30μm
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Fig. 3. 
Trafficking of monocytic osteoclast precursors (OCP) into inflamed joints. Cells with 

osteoclastogenic potential include CD11b−/loLy6Chi, CD11b+GR-1−, and DCs. In RA, 

sinusoidal fibroblastic cells provide RANKL, which can be induced by IL-17 provided by 

Th17 cells. The cytokines TNF-α, IL-1, and IL-6, which may be locally secreted by 

macrophages also promote osteoclast differentiation under inflammatory conditions. S1P 

receptor expression on OCPs possibly directs cells into the synovial tissue where S1P is 

upregulated during inflammation. CXCR4 also likely directs cells into the synovial tissue 

with fibroblasts, and possibly other cells, express high levels of CXCL12. Selective 

antagonism of CB2 inhibits the migration of monocytes into the synovium, indicating that 2-

Ag levels may be present in synovial fluid. CXCR2, CX3CR1, CCR1, CCR2, and CCR5 are 

also implicated in inflammatory cell recruitment into the inflamed articular space.
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