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Size-variable zone in V3 region of 16S rRNA
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ABSTRACT
The size distribution of complete 16S-rRNA sequences from the SILVA-database and nucleotide shifts that
might interfere with the secondary structure of the molecules were evaluated. Overall, 513,309 sequences
recorded in SILVA were used to estimate the size of hypervariable regions of the gene. Redundant
sequences were treated as a single sequence to achieve a better representation of the molecular diversity.
Nucleotides found in each position in 95% of the sequences were considered the consensus sequences
for different size-groups (consensus95). The sizes of different regions ranged from 96.7 to 283.1
nucleotides and had similar distribution patterns, except for the V3 region, which exhibited a bimodal
distribution composed of 2 main peaks of 161 and 186 nt. The alignment of Consensuses95 of fractions
161 and 186 showed a high degree of similarity and conservation, except for the central positions (gap
zone), where the sequence was highly variable and several deletions were observed. Structurally, the gap
zone forms the central part of helix 17 (H17), and its extension was directly reflected in the size of this
helix. H17 is part of a multihelix conjunction known as the 5-way junction (5 WJ), which is indispensable
for 30 S ribosome assembly. However, because a drastic variation in the sequence size of V3 region occurs
at a central position in loop H17 without affecting the base of the loop, it has no apparent effect on 5 WJ.
Finally, considering that these differences were detected in non-redundant sequences, it can be
concluded that this is not an uncommon or isolated event and that the V3 region is possibly more likely to
mutate than are other regions.
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Introduction

The 16S rRNA gene is probably the most common molecular
biomarker for the identification of prokaryotes; it has served as
the master key for phylogeny-based identification, microbial
community composition and structure.1-3 16S gene databases
are considered reference frameworks for mapping the fragmen-
tary sequences produced by high-throughput sequencing plat-
forms.1,3 Each particular sequence represents the occurrence of
a prokaryotic taxon in a sampled community.4 This informa-
tion contributes to the understanding of meaningful ecological
patterns and the interrelationships between guests and hosts.
Helical regions of the molecule exhibit considerable variation,
which accumulate through a compensatory mutation process.
These regions are also called hypervariable regions and have
been used as differentiators; however, recent evidence has dem-
onstrated that conserved regions may also exhibit some degree
of variation, thus potentially introducing bias.5,6

Differences in 16S gene size have been detected in different
bacteria species, ranging from »1200 to � 1500 nucleotides;
this can also be confirmed by database sequence mining. How-
ever, it is difficult to obtain larger fractions of partial sequences
because the primers used for in silico tests are not universal.
Recently, a method using k-mers that allows the determination
of the most conserved regions of each rRNA region has been
described.5 Taking advantage of this method, most of the

reported sequences, either partial or complete, could be linked
from robust databases and grouped to be studied.

Several reports have described the compensatory mutation
process of RNA helices as the main factor contributing to
variability in the 16S gene sequence, with AU and UA pairs 7-9

and single insertions and deletions (indel) as the major factors
influencing size.

Despite previous reports that have described indel occur-
rence in different regions of the 16S rRNA gene,10,11 there have
been no reports regarding the effect of these mutations on the
size of the gene and its various internal regions from a universal
perspective. This information could serve not only to broaden
horizons in terms of knowledge about the molecule but also to
detect possible 16S rRNA species, optimize the taxonomic
classifications of prokaryotes and provide information about
mutation processes and patterns.

In contrast, it is important to evaluate if these differences in
size could have any effect on the secondary structure of the 16S
rRNA molecule. Ribosomes consist of 2 asymmetric subunits,
which are both composed of RNA and protein. Previous studies
have revealed that the reference bacterium, Escherichia coli, has
ribosomes composed of a small 30 S subunit consisting of a
complex of 16S rRNA (1542 nucleotides) and 21 proteins. The
structure contains approximately 50 helical elements that are
interconnected by multi-helix junction loops or by single-
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stranded linkers. Each helical element comprises one or more
helices connected by internal loops occurring throughout the
molecule. 12-15 It is important to maintain the structure because
there are segments that play essential roles in ribosome func-
tion. For instance, ribosomal proteins attach to 16S rRNA in a
hierarchical order, which produces a cooperativity effect; 16-19

however, it is possible that structural variations would affect
this process. In this respect, information concerning the size
distribution of the different variable regions would contribute
to identifying and locating mutable fractions within the mole-
cule and evaluating if these affect the structure of the molecule.

Therefore, the aims of this study were (1) to determine the
size distribution of the variable regions of the 16S rRNA gene
using the k-mers strategy, (2) to determine if significant nucleo-
tide fragment shifts could interfere with important components
of the secondary structure of the 16S rRNA and (3) to associate
taxonomic groups with size distribution.

Material and methods

The 513,309 bacteria sequences recorded in the high-quality
rRNA database SILVA SSU Ref NR 99 (release 123), which
contains non-redundant bacterial sequences of at least 1200
bases in length, were used to estimate the size of the 9 hypervar-
iable regions of the 16S rRNA gene. The distance between con-
served regions was calculated using a 12-mers technique, based
on the algorithm reported by Mart�ınez-Porchas et al.5 In short,
primers that had been reported as matches of each conserved
region were assembled to form contigs; sequences of 12 nucleo-
tides (12-mers) were extracted from these contigs and used to
search the entire set of SILVA sequences. If a 12-mer contained
degenerations, each isoform was considered for analysis.

The most frequent 12-mers (Table 1) for consecutive regions
were selected and used to recover the corresponding fragment
from each sequence contained in the SILVA database. Opera-
tions and data manipulation were performed using a home-
made-PHP script.

Recovering sequences

After recovering sequences and eliminating redundant sequen-
ces, size distribution was calculated considering only those cov-
ered with a confidence interval of 99% (mean § 2 Std. Dev.),
and the frequency distribution was estimated. Only non-

redundant (NR) sequences were considered to achieve a better
representation of molecular diversity.

Consensus

Nucleotides that were found at each position in 95% of the
fragments were considered to be a consensus sequence
(consensus95) for the different sequence sets. This method
assigns the nucleotide detected in 95% (or more) of the
sequences as representative of the position. If 2 or more
nucleotides are required to reach 95%, the position is
marked with an asterisk, or the corresponding ambiguity
symbol is assigned.

The Escherichia coli 16S rRNA sequence was used as a refer-
ence to establish nucleotide positions. Thereafter, consen-
suses95 of the 2 most frequent size groups of region V3 (group
161 vs 186 nt) were aligned and compared. Because this region
in E coli is 186 nucleotides long, consensus95 of this size was
manually aligned with the consensus95 of 161 nucleotides. To
confirm the model, all NR sequences were manually aligned
from the ends, leaving gaps in the middle zone. The consen-
sus95 was then determined, indicating ambiguous bases when
necessary.

Taxa distribution

The proportion of the most frequent sizes (161 and 186) of the
V3 region occurring in each phylum was determined. In addi-
tion, the occurrence of different sizes within this hypervariable
region was associated with classes belonging to the phyla Firmi-
cutes and Proteobacteria.

Results

Fragments containing the variable region and parts of the
flanking conserved regions were successfully extracted from the
sequences by using the most frequent 12-mer (Table 1). Despite
having conserved segments, the fragment was assigned as the
variability-containing region.

Size

The size of the different fragments obtained registered mean
values ranging from 96.7 (V1) to 283.1 (V4) nucleotides,

Table 1. 12-mers from each conserved region of the 16 S rRNA gene detected with
the highest frequency and used as markers to recover the variable regions.

Conserved Region Sequence Frequency

1 ATYMTGGCTCAG 195,901 (38.16%)
2 SYGGCGNACGGG 405,570 (79.01%)
3 GGRNGGCNGCAG 500,253 (97.46%)
4 CVGCNGCYGCGG 496,412 (96.71%)
5 TAGAWACCCNNG 493,348 (96.11%)
6 RAATWGRCGGGG 501,792 (97.76%)
7 GYYGYCGTCAGC 499,976 (97.40%)
8 AGGYGGGGAYGA 454,807 (88.60%)
9 GYACWCWCCGCC 388,911 (75.77%)
10 AGTCRTAACAAG 172,918 (33.69%)

Table 2. The sizes of fragments from each region of the 16 S rRNA gene, recovered
from the bacterial sequences recorded in the Silva 123 database. The number of
fragments within the 99% confidence range is indicated, as is the size range.

Region
Number of
fragments

Fragments into
the confidence
range 99% Mean

Standard
Deviation Size (range)

V1 161,482 159,808 96.08 8.62 78.84 – 113.32
V2 397,049 395,814 258.90 7.11 244.67 – 273.12
V3 486,589 485,252 175.08 11.38 152.33 – 197.84
V4 478,491 476,047 283.04 0.78 281.48 – 284.61
V5 483,462 481,755 140.90 1.73 137.44 – 144.37
V6 489,859 488,026 154.53 2.26 150.00 – 159.06
V7 444,220 443,501 132.50 3.11 126.27 – 138.72
V8 343,456 342,108 226.98 2.17 222.63 – 231.33
V9 166,692 166,390 113.56 4.64 104.29 – 122.84
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with their respective variation (Table 2). Fragments of dif-
ferent regions showed similarities in size distribution; i.e.,
they tended to cluster around a central value with the high-
est frequency (Fig. 1). In addition, mean size, median and
mode were quite similar for all of these fragments (Table 3),
except for the fragment containing the V3 region, whose
size distribution did not appear to have a normal distribu-
tion. Instead, the sizes of this fragment exhibited a bimodal
distribution; for example, 2 major peaks of 161 and 186
nucleotides were observed as containing 23% and 29% of all
V3 fragments, respectively. All other different sizes grouped
around either of these 2 peaks.

V3 sequences

Overall, 485,252 fragments containing the V3 region were
recovered from all bacterial sequences deposited in Silva data-
base release 123. From these, and after filtering identical
sequences, 179,049 sequences were non-redundant. This selec-
tion had a slight effect on size distribution, although the same
pattern was present in both total (Fig. 1, V3) and NR (Fig. 2)
fragments. Four main groups of 161, 181, 186 and 187 nucleoti-
des each contained at least 10% of the NR fragments, and
26,046 (14.55%), 18,887 (10.55%), 47,307 (26.42%) and 22,088
(12.34%) NR fragments were registered for each of these
groups, respectively (63.85% in total). Moreover, 95% of the
NR fragments were located in 19 size groups, which were dis-
tributed in 2 non-overlapping ranges: 160–167 and 178–188 nt
(Fig. 2).

Fragments of 161 nucleotides in length were the most fre-
quent of the first group, whereas fragments of 186 nt were
representative of the second group. Moreover, the E. coli 16S
rRNA gene, used as numbering reference, fragment was
186 nt. Therefore, the consensus95 of fractions 161 and 186
were manually aligned. The results showed high degrees of
similarity and conservation between consensuses95 obtained
from short (161 nt) and large (186 nt) fragments of the V3
region, except for the central positions, where the sequence
was highly variable and several deletions were observed

Figure 1. Size distribution of different variable regions of the 16 S rRNA gene calculated as the distance between the 2 most frequent adjacent 12-mers. All bacterial
sequences from the SILVA database (release 123) were considered.

Table 3. Mean, median and mode for each variable region-containing fragment. A
basic feature of the normal distribution is the closeness among these 3 parameters,
which is evident for all regions except the V3 fragment.

Fragment Mean Median Mode Max-Min

V1 96.1 95 93 3.1
V2 258.9 259 257 2.0
V3 175.1 181 186 10.9
V4 283.0 283 283 0.0
V5 140.9 141 142 1.1
V6 154.5 154 154 0.5
V7 132.5 133 134 1.5
V8 227.0 227 227 0.0
V9 113.6 114 114 0.4
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(Fig. 3). Using the numbering from the E. coli 16S rRNA
gene, the permutable and highly variable region was located
within positions 439–478, and the sections flanking this
region (95 nt from 5� to 3�and 51 nt 3� to 5�) exhibited a con-
served pattern (Fig. 3). The model was tested by aligning all
of the NR fragments from the ends and establishing a con-
sensus95. In both cases (from 5 ‘or from 30), a low number
of degeneracies were observed at the beginning, which subse-
quently increased with distance from the ends. As shown in
Fig. 4, the mobile window average (MWA) for 5 and 10 ele-
ments has an inflection point after 87 and 33 nucleotides in
the 5 ‘and 30 alignments, respectively. These positions indi-
cate the boundaries of the hypervariable region, so the frag-
ment contains a semi-conserved region (C3), a hypervariable
region in the middle zone (V3) and a semi-conserved region
(C4), as shown in Fig. 5.

Structurally, the 50 end forms helix 16 (H16), and the 30 end
is part of H18. Therefore, the hypervariable regions forms H17,
and its extension is directly reflected on the size of this helix
(Fig. 6).

Taxa distribution

Fragments of 161 and 186 nt were found in different propor-
tions within each phylum (Fig. 7a). Some phyla contained only
one of the 2 sizes, whereas other exhibited a combination of
both. For example, the sequences belonging to the phyla

Saccharibacteria, Fibrobacteres and Armatimonadetes have
only the 161 nt fragment, whereas a fragment size of 186 nt
predominated in the phyla Tenericutes, Omnitrophica, Chla-
mydiae, Cladiserica and Acetothermia. However, some other
phyla had different ratios of 161 and 186 nt.

Apparently, one or the other fragment was not exclusive for
most phyla. In fact, when the analysis was performed one taxo-
nomic level deeper, a strong association between size and class
was observed. Considering sequence abundance, the frequency
distribution for fragments of 150–200 nt was determined for
each class of the phyla Proteobacteria (Fig. 7b) and Firmicutes

Figure 2. Sizes of non-redundant sequences of fragment V3. The modes are indi-
cated as black- and gray-shaded zones.

Figure 3. Consensuses95 obtained from non-redundant sequences belonging to
the short (161 nt) and large (186 nt) size groups detected in fragment V3. Nucleoti-
des at each position detected in � 95% of sequences (consensus95) are indicated;
otherwise, positions are marked with asterisks and gaps by hyphens. Position num-
bers correspond to E coli rRNA.

Figure 4. Mobile windows average for the number of degeneracies per position in
the 50 (A) and 30 (B) ends of the region containing the V3 fragment. The inflection
point is indicated by a red arrow, and the numbering is from the corresponding
end.

Figure 5. The pattern of the V3 fragment obtained by aligning all NR fragments
from the 5 ‘and 30 ends, leaving the middle part unaligned because of the occur-
rence of gaps and the consequent degeneracies. Bases found at a frequency of �
95% are indicated; otherwise, they are replaced with an asterisk. Sequences con-
taining degeneracies (W, V, R, H, T, B, S, D, M, Y, N) indicates the need for 2 or
more bases to reach 95% consensus. Position numbers correspond to E coli 16 S
rRNA.
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(Fig. 7c). Proteobacteria aproteobacteria and Epsilonproteo-
bacteria sequences had only short fragments (161 nt), whereas
in bproteobacteria and Gammaproteobacteria the larger frag-
ment sequences (186 nt) were highly predominant.

Discussion

The variable regions of the 16S rRNA have been considered an
important source of genomic information for studies of phylog-
eny and taxonomy. According to the literature, the length of
the molecule is approximately 1.5 Kbp. Slight variations have
been reported and are considered, as in many other genes, to
be an inherent part of evolutionary processes. Moreover, the
16S rRNA gene is a very structurally conserved molecule; there-
fore, the variations in sequence and size must be meticulously
integrated. Using a simple strategy based on k-mer analysis, the
sizes and distribution of fragments were determined as the dis-
tance between the most frequent 12-mers of 2 adjacent

constant regions, and the size distribution for the different frag-
ments was calculated (Fig. 1). Almost all fragments registered
low size dispersion; for example, more than 90% of the frag-
ments from the V4 region measured 283 § 1 nt, whereas the
V1 region ranged from 80 to 110 nt. These size variations were
clustered around a central group containing the highest fre-
quency of sequences of the same size, following the expected
pattern that would arise from single nucleotide insertion or
deletion. However, the fragment containing the V3 region did
not show a normal distribution. Instead, at least 2 modes with
defined and separated size ranges were observed. These 2 size
groups were separated by a 25-nucleotide gap and contained
most of the V3 sequences. Interestingly, the ends of the sequen-
ces from both groups aligned, and the gaps were located in the
middle.

The fragment containing the V3 region was located
between nucleotide positions 344 to 529 of the E. coli 16S
rRNA, forming the H16, H17 and H18 helixes on the 16S 50

Figure 6. The amplified fragment forms the H16, H17 and H18 helices that, together with H3 and H4, form the 5-way junction (5 WJ), shown in a yellow circle. The 50end
forms part of H4 and the whole of H16, whereas the 30 end is part of H18. The middle and hypervariable part forms H7, which has a basic section (in blue) and a growth
part (orange) that does not seem to affect the functional structure of 5 WJ and is where modifying-size insertions are accepted.
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domain. These, together with the H3 and H4, form a multihe-
lix conjunction corresponding to the 50 domain, also known
as the 5-way junction (5 WJ), which is indispensable for 30 S
ribosome assembly.18,20,21 The folded 5 WJ is stabilized,18 and
the assembly of ribosome 30 S is stimulated only after binding
the ribosomal protein S4.22,23 In addition, S4 binding pro-
motes the formation of a crucial pseudoknot structure con-
taining a translation initiation region. 24-27 Thus, because
structural characteristics of the V3 region are critical for ribo-
some assembly, variations in sequence and size can only occur
in very specific sites of the molecule to preserve functionality.
In addition, this region (418–554) functions as an additional
site for the Shine Delgarno sequence, which is important for
the binding to translation initiation sequences.28 In this
regard, the drastic variation in sequence size of the V3 region
occurred in a central position of loop H17, without affecting
the base of the loop, and therefore had no apparent effect on
the 5 WJ of the 5�domain. Previous studies have revealed that
similar mutations in these kinds of stranded loops have no
effect on molecule functionality.18 Variations in the length of
H17 were observed among species of the same genus of Clos-
tridium, Pirellula and Mycoplasma (structures in http://www.
rna.icmb.utexas.edu/DAT/3A/Summary/index.php). Other
studies have also revealed that although rRNA primary sequen-
ces exhibit considerable variation, a universal core secondary
structure is maintained by compensatory base changes.8,29,30

Segment insertions usually occur at expansion sites and can still
be superimposed on the conserved secondary structure of
rRNA, whereas the core of the secondary structure remains
highly conserved.31

The variations in the V3 region, which do not seem to affect
the secondary structure of the 16S rRNA, demonstrate the exis-
tence of 2 rRNA families that can be differentiated by the size
of their V3 regions. Considering that the representative sizes of
each size family differ by 25 nucleotides (161 and 186 nt), the
question is whether this difference in H17 is due to an insertion
or a deletion. H17, together with H16 and H18, are considered
parts of regions characterized as Expansion Segments, where
functional insertions have been registered.32,33 Further study
on rRNA structure may help better explain this event.

Regarding taxonomic associations with the different size
groups of the V3 regions, although certain phyla contained
only one fragment size, the absence of a sufficient number of
sequences prevents us from asserting that variations in the size
of the V3 region are associated with taxonomic groups, at least
at the phylum level. However, relevant information was
revealed when class level was considered: size distribution for
classes belonging to the phyla Proteobacteria and Firmicutes
exhibited marked preferences for one fragment size or the
other. Detection of these patterns was possible due to the avail-
ability in Silva database of more than 70,000 Firmicutes sequen-
ces and more than 140,000 Proteobacteria sequences.

Figure 7. Size distribution of V3 fragments among bacterial taxonomic phyla. (a) Proportion of fragments measuring 161 and 186 nt in each of the bacterial phylum, in
order of the relative abundance (descending) of the 161 nt fragment. The distribution of sizes for the classes of the phyla Proteobactyeria (b) and Firmicutes (c) shows
that each class is associated with a particular fragment size.
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The differentiated distribution could be associated with the
complexity levels reported in evolutionary schemes of prokar-
yotes, and elaborated by analysis of 16S rRNA and protein
comparison.34,35 The b and Gamma classes constitute the clades
of major complexity representing that evolutionary line. 36-38

Therefore, it could be assumed that the larger fragment is associ-
ated with organisms that are more complex or those thriving in
complex environmental conditions. Something similar occurs in
the phylum Firmicutes, where most of the V3 fragments of the
Clostridia class registered 161 nt and some others had slightly
larger-sized (162–165) fragments, whereas for the Bacilli class,
the predominant size was 186 nt and, less frequently, 187 nt. In
this particular case, a relationship between the small-sized frag-
ment and the low complexity level of Clostridia was observed,
whereas members of Bacilli and Erysipelotrichia, which are the
most complex groups within the phylum Firmicutes, contained
the larger fragment. 39-41

Finally, these results allow us to conclude that this is not an
event associated with a few isolated cases but is apparently
related to a major proportion of the bacterial world, consider-
ing that a marked difference in size was detected in non-redun-
dant sequences. In addition, important information regarding
the association of different V3 sizes and taxonomic groups at
the class level were detected. This could be useful to understand
evolutionary patterns of bacterial communities, and perhaps for
taxonomic classification.
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