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Objective. To provide an alternative to propensity scoring (PS) for the common situa-
tion where there are interacting covariates.
Setting. We used 1.3 million assessments of residents of the United States Veterans
Affairs nursing homes, collected from January 1, 2000, throughOctober 9, 2012.
Design. In stratified covariate balancing (SCB), data are divided into naturally occur-
ring strata, where each stratum is an observed combination of the covariates. Within
each stratum, cases with, and controls without, the target event are counted; controls
are weighted to be as frequent as cases. This weighting procedure guarantees that
covariates, or combination of covariates, are balanced, meaning they occur at the same
rate among cases and controls. Finally, impact of the target event is calculated in the
weighted data. We compare the performance of SCB, logistic regression (LR), and
propensity scoring (PS) in simulated and real data. We examined the calibration of
SCB and PS in predicting 6-month mortality from inability to eat, controlling for age,
gender, and nine other disabilities for 296,051 residents in Veterans Affairs nursing
homes. We also performed a simulation study, where outcomes were randomly gener-
ated from treatment, 10 covariates, and increasing number of covariate interactions.
The accuracy of SCB, PS, and LR in recovering the simulated treatment effect was
reported.
Findings. In simulated environment, as the number of interactions among the covari-
ates increased, SCB and properly specified LR remained accurate but pairwise LR and
pairwise PS, the most common applications of these tools, performed poorly. In real
data, application of SCB was practical. SCB was better calibrated than linear PS, the
most commonmethod of PS.
Conclusions. In environments where covariates interact, SCB is practical and more
accurate than commonmethods of applying LR and PS.
Key Words. Balancing databases, propensity scoring, confounding, causal impact,
prognosis

This article calculates the impact of a target event on outcomes after
removing the influence of other co-occurring events (covariates). When
two events co-occur, their impact is confounded and statistical procedures
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can be used to separate out the effect of each event. Statisticians typically
address confounding through randomization. In 1983, Rosenbaum and
Rubin proposed methods for removing confounding in observational data.
They proposed the use of propensity scoring (PS) to balance rates of
occurrence of covariates among treated and untreated subjects (Rosen-
baum and Rubin 1983). Since then, different methods of PS have been
proposed, including methods for matching (Rosenbaum and Rubin 1985;
Rosenbaum 1989; Abadie and Imbens 2006), subclassification (Rosen-
baum and Rubin 1984; Rosenbaum 1991; Hansen 2004), weighting
(Rosenbaum 1987; Robins, Hernan, and Brumback 2000; Hirano, Imbens,
and Ridder 2003), regression (Heckman, Ichimura, and Todd 1998), likeli-
hood (Imai and Ratkovic 2014), or combinations of approaches (Robins,
Rotnitzky, and Zhao 1995; Ho et al. 2007; Abadie and Imbens 2011). On
June 28, 2016, a search on PubMed identified 10,050 articles referencing
propensity scoring. Analysis of year of publications showed that the num-
ber of articles that used PS has grown exponentially (number of arti-
cles = 0.43e0.35 Years Since1987, R2 = 0.98).

Despite widespread use, misspecification of PS remains a concern.
Simulation studies have shown that misspecification can have a large
impact on study findings, in many situations reversing the conclusions of
the study (Kang and Schafer 2007). When the number of covariates is
large, as it is in many health care studies, the typical linear combination
of covariates can fail to balance all of the individual confounders. Nonlin-
ear models are needed. Austin and colleagues recommended that in these
situations, one should use interactions terms to balance residual unbal-
anced covariates (Austin 2009b, 2011a,b). Few investigators do so. On
June 28, 2016, we reviewed a sample of 50 of the most recent publica-
tions using PS. Among these, 39 (78 percent) used no interaction terms, 9
(18 percent) used pairwise interactions terms, and 2 (4 percent) used select
quadratic interaction terms. Despite recommendations to use interaction
terms, no investigators included all interaction terms, perhaps because the
sheer effort to do so is prohibitive or because introducing new interaction
terms could make other covariates go out of balance. Investigators’ selec-
tive approach to inclusion of interaction terms makes the effort
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haphazard. No clear analytical solution is available except to exhort inves-
tigators to put more effort into modeling interaction among covariates.
Some investigators have designed computer programs that automatically
search for a model that can balance all terms in PS (McCaffrey, Ridge-
way, and Morral 2004). We propose an alternative approach that does
not rely on the investigators’ effort and reduces chances for misspecifica-
tion of the PS.

A good example of how misspecification of PS can occur can be seen in
analysis of inpatient data. There are many interactions present among the
comorbidities of hospitalized patients (Extermann 2007; Ferdinandy et al.
2014; Alemi et al. 2016). For typical inpatient data, at least five diagnoses from
a possible list of 14,000 diagnoses are listed for each hospitalization. To esti-
mate the efficacy of a particular treatment, the influence of comorbidities that
affect (confound) the outcome must be accounted for. This is not easy to do as
this situation creates a factorial design where all first-, second-, third-, and
fourth-order interaction terms are missing and fifth or more interaction terms
are present. In this environment, balancing the main effects of covariates is
not sufficient as many higher order interacting diagnoses are also present. We
propose a new way of balancing covariates that works well with extensive
interactions among the covariates.

PROPOSEDMETHOD

Step One: Identify Naturally Occurring Strata

The proposed method of analysis is based on a growing literature on design of
covariate balanced randomized clinical trials (Pocock and Simon 1975; Wei
1978; Atkinson 1982; Signorini et al. 1993; Frangakis and Rubin 2002; Scott
et al. 2002; Heritier, Gebski, and Pillai 2005; Yuan, Huang, and Liu 2011)
and stratification procedures available since the 1950s (Tripepi et al. 2010).
Like these methods, the first step in our proposed procedure is to stratify the
data. In any database, certain events co-occur, creating naturally occurring
strata. For example, in analysis of comparative effectiveness of medications,
diagnoses are used as covariates, and many diagnoses (e.g., diabetes and renal
disease) co-occur, creating natural strata.

The procedure for finding the natural strata is not statistical in nat-
ure. A standard query language (SQL) code to search the data for natu-
rally occurring strata and calculate weights for balancing the data
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(a concept discussed in a later section) is available in the Appendix S2
and follows this algorithm:

% E = {A,B,. . .,R} and F represent events
% S represents a sample

For eachE in S %Analysis done for each combination
F E union {X = 0} %Select control combinations, X = 0
f 0[E ] count(F ) % Count of Controls
Y0[E ] sum(y(F ))/count(F ) % Prob Y for Controls
For eachE in S %Analysis done for each combination
F E union {X = 1} %Select Case combinations, X = 1
f 1[E ] count(F ) % Count of Cases
Y 1[E ] sum(y(F ))/count(F ) % Prob Y for Cases
For eachE in f 0 %Weights for Control combinations
if E in f 1
thenw 0[E ] f 1[E ]/f 0[E ] %Matched
elsew 0[E ] 0 %Not matched

For eachE in f 1 %Weights for Case combinations
if E in f 0
thenw1[E ] 1 %Matched
elsew1[E ] 0 %Not matched

Here, we provide an intuitive understanding of the procedure. The ana-
lyst searches within the data, for all combinations of occurrences of covariates
and treatment. Each unique combination of covariates is considered one stra-
tum or subgroup. Within each stratum, the levels of covariates are fixed and
cases are treated and controls are not. This allows cases and controls to be con-
trasted while holding covariates constant and the average impact of treatment
on outcome calculated. The procedure organizes the data into a partial facto-
rial design where cases and controls are examined at different factorial combi-
nations of covariates.

One immediate question is how practical it is to search for combination
of covariates. Theoretically, the possible combination of k binary covariates
is 2k, which depending on the size of k may be computationally hard to do.
However, the observed combinations of covariates are typically significantly
lower than the theoretically possible combinations. Most combinations do
not occur in the data. Extensive research on Apriori algorithm shows that the
number of possible strata, even in large multidimensional data, is relatively
small (Agrawal, Imieli�nski, and Swami 1993; Agrawal and Srikant 1994;
Bayardo 1998). Readers, for example, may be surprised to know the number
of observed combinations in the data analyzed in this paper. There were 1.3
million records of 11 variables. Theoretically, there should be 211 = 2,048
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possible strata, but we observed only 418 unique combinations of 10 covari-
ates and the treatment variable. Nearly 79 percent of possible combinations
of covariates never occurred in the data, despite the large size of the data.

Step Two: Matched Estimation of the Effect

Once natural strata have been organized, the estimation of impact follows
statistical procedures known since the 1950s for analysis of stratified
case–control design (Cochran 1950; Mantel and Haenszel 1959). The chi-
square test for homogeneity is used to see whether, across strata, a com-
mon odds ratio exists. If cases and controls are counted as in Table 1,
then the test of homogeneity of treatment impact across strata is calcu-
lated as:

Table 1: Top 20Most Frequent Strata

k Age Male Disabilities

Cases Unable to Eat,
X = 1

Matched Controls Able to Eat,
X = 0

Total,
ai + bi

# Dead,
∑Y

Total,
ci+ di

# Dead,
∑Y

Weight,
wi0

1 65–85 M SGTBWDL 36,677 12,831 17,862 4,253 2.053
2 40–65 M SGTBWDL 19,317 9,787 10,739 3,512 1.79
3 65–85 M SGTBWD 14,494 3,118 7,456 1,153 1.944
4 85+ M SGTBWDL 11,336 3,951 22,220 5,436 0.51
5 40–65 M SGTBWD 10,987 3,263 6,318 1,358 1.739
6 65–85 M GTBWD 6,386 3,275 3,032 1,121 2.106
7 65–85 M GTBWDL 5,101 2,192 9,524 2,544 0.536
8 40–65 M GTBWD 4,592 982 7,283 1,226 0.631
9 40–65 M GTBWDL 4,465 3,210 2,002 1,017 2.23
10 40–65 M 4,113 762 11,173 1,695 0.368
11 85+ M GTBWDL 4,035 2,016 26,189 7,938 0.154
12 85+ M GTBWD 4,027 2,031 9,406 3,167 0.428
13 65–85 M GTBD 3,362 871 6,647 1,209 0.506
14 85+ M SGTBWD 2,475 1,196 5,033 1,749 0.492
15 65–85 M 2,305 918 13,097 2,990 0.176
16 65–85 M GB 1,744 607 9,122 1,897 0.191
17 40–65 M GB 1,629 647 3,186 666 0.511
18 65–85 M GBW 1,534 566 4,038 998 0.38
19 40–65 M GBW 1,406 362 782 124 1.798
20 65–85 M B 1,317 384 100,237 12,786 0.013

Note. M = male; B = unable to bathe; W = unable to walk; G = unable to groom; D = unable to
dress; T = unable to toilet; L = bowel incontinent; S = unable to transfer; U = urinary incontinent.
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Outcomes in ith stratum, i = 1,. . ., k Li ¼ logðaidi
bi ci
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If a homogenous common odds ratio, dOR , exists, then its statistical sig-
nificance is tested as:

Mantel–Haenszel test of Significance of
Impact of X on Yover Different Strata

Estimate of CommonOdds Ratio of Impact
of X on Y
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If the Y variable is continuous, then paired t-test (Anderson, Kish, and
Cornell 1980) can be used:

Zi ¼ ðai þ biÞPk
1ðai þ biÞ

�Yi ;t¼1 ¼
P

i Yi ;t¼1
ðai þ biÞ

�Yi ;t¼0 ¼
P

i Yi ;t¼0
ðci þ diÞ

di ¼ �Yi ;t¼1 � �Yi ;t¼0 �d ¼
X
i

Zidi Sd ¼
P

i Zi di � �d
� �2
k � 1

The average treatment effect, �d , has a student’s t-distribution with k-1
degrees of freedom and the t-statistic is calculated as follows:

t ¼
�d

Sd=
ffiffiffi
k
p

Some investigators (e.g., Rosenbaum and Rubin 1985; Austin 2009a)
recommend using difference in means in units of the pooled standard devia-
tion. Such an approach is not influenced by sample size, which in PS applica-
tions can be arbitrarily set depending on whether 1 to 1 or 1 to many matches
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are made. We prefer the paired t-statistic because it takes advantage of the nat-
ural strata within the data.

Step Three: Weighted Estimation of the Effect

In calculation of treatment effect, first weights are used to balance the
data; then, the average weighted treatment effect is calculated. The weights
are chosen so that the rate of occurrence of covariates stays the same
when treatment is present or absent. In an implausibly fortunate scenario,
for example, when a study has been carefully designed, the original sam-
ple would include all factorial combinations of the covariates, with equal
observation of cases and controls within each combination of covariates.
This will provide a full factorial design, from which the estimate of impact
of treatment on outcome can be readily estimated, with no consideration
of confounding. This is almost never the case in observational studies.
One can imagine repeated sampling until the desired pattern occurs and
by luck a balanced factorial design is obtained. Alternatively, if one thinks
of resampling as weighting, then one can select weights that accomplish
the needed study design, thus removing the need for luck. In resampled
data, the new count of cases and controls are shown as a weighted product
of the original sample counts. Thus, in the strata “i”, the resampled counts
are as follows: wi1(ci + di) for cases and wi0(ai + bi) for controls. Weights
are chosen so that we can remove the effects of co-occurring covariates
A,. . ., R. In the stratified sample, this idea can be expressed as selecting
weights wi0 and wi1 such that there are no differences in probability of
occurrence of any particular combination of covariates:

p A; . . .;RjX ¼ 1ð Þ ¼ p A; . . .;RjX ¼ 0ð Þ 8 combinations of A; . . .;R ð1Þ

Note that the above equation must hold for every strata or combination
of covariates. Thus, equation (1) is not one equation but a large number of dif-
ferent equations. Let Z be an event defined as the combination of all mutually
exclusive co-occurring events, that is, the strata, excluding X, from some
record in S. Let Zi be an indicator variable that equals 1 when a unique combi-
nation of covariates is present. Thus, if all combination of covariates must be
equally frequent among cases and controls, then equation (1) can be written
as:

P Zi ¼ 1jX ¼ 1ð Þ ¼ P Zi ¼ 1jX ¼ 0ð Þ 8i ð2Þ
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Note also that equation (2) does not specify what the rate should be
but that the two rates on the two sides of the equation should be the
same. Equation (2) holds if, and only if, the following equation is true for
all Zk: P

i wi1 ai þ bið ÞZiP
k wi1 ai þ bið Þ ¼

P
i wi0 ci þ dið ÞZiP
k wi0 ci þ dið Þ ð3Þ

In the stratified sample, any combination of events occurs at most once
with X = 1 and once with X = 0. Equation (3) has at most one term in the
numerator of the summation and holds if:

wi1 ai þ bið Þ ¼ wi0 ci þ dið Þ 8i ð4Þ
To find a choice of weights for equation (4), suppose that we wish to

exclude from analysis any case or control that is not matched, then if cases
are absent, that is, ai + bi = 0, then assign control weight of wi0 = 0. If
controls are absent, that is, ci + di = 0, then assign cases the weight of
wi1 = 0. Further assume, as typically is the situation, that cases are fewer
than controls, then to create as little distortion in the data as possible, we
assign weight of 1 for every case, wi0 = 1, given that the weight is not
already assigned a 0. A weight of 1 makes sure that all matched cases are
included in the analysis without any change. The sample weight for con-
trols should then be set so that the rates of co-occurring events are the
same. Then, weights can be assigned as follows:

wi1 ¼ 0 ci þ di ¼ 0 or ai þ bi ¼ 0
1 Otherwise

�

wi0 ¼ 0 ci þ di ¼ 0 or ai þ bi ¼ 0
aiþbi
ciþdi Otherwise

�

In this fashion, one can identify weights that balance the data for all com-
bination of covariates. As each stratum is mutually exclusive, the weights
assigned in this fashion will not contradict each other. As cases and controls
within any combination of covariates are set to have equal frequency, then
any subset of these combinations including the subset with just one covariate
will occur with equal frequency. Finally, for the situation where all cases are
weighted as 1, the proposed set of weights for controls is optimal because if
any combination of the covariates among the controls is weighted in another
fashion, then in at least one combination of covariates, the two samples are not
balanced.
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RESULT

Test in Simulated Data

In the simulation, the outcomewas calculated as a function of 1 treatment variable,
10 covariates, and 210 = 1,024 combinations of covariates. All variables were gen-
erated using random binomial distributions. Multiple datasets were simulated,
each time including a different number of combinations of covariates. The initial
simulation calculated the outcome as a linear combination of treatment and the 10
covariates. This simulated the situation where impacts of covariates on the out-
come were independent. Thereafter, progressively more interaction terms were
included, simulating the situation where the impact of one covariate depends on
another. The last simulation indicated the situation where the outcome variable
was simulated as a function of a full factorial combination of covariates.

In all simulations, the impact of treatment on the outcome was set to be
2 and the impact of the covariate or the combinations of covariates was ran-
domly chosen to be uniformly between 5 and �5. In each simulation, 10,000
observations were randomly generated. Four approaches were used to recover
the treatment effect from the simulated data:

• In the first approach, called pairwise logistic regression (LR), the simu-
lated outcome was regressed on covariates, pairwise interaction
among covariates, and the treatment variable. The coefficient of the
treatment variable was used to estimate the treatment effect.

• In the second approach, called pairwise propensity scoring (PS), first
treatment was regressed on covariates, and pairwise interaction
among the covariates. Then, the inverse PS was used to weigh the out-
come. Treatment effect was calculated in the weighted data.

• In the third approach, called proper LR, the simulated outcome was
regressed on covariates, a priori known number of interaction among
covariates, and treatment variable. To clarify, suppose the outcome
was simulated from main effects, all two-way, all three-way, and a
number of four-way interactions. Then, the LR would include all main
effects, all two-way, all three-way, and all four-way interactions among
the covariates. As before, the coefficient for treatment variable was
used to estimate the treatment effect.

• In the fourth approach, the naturally occurring strata within the data
were identified and the method proposed in this article was used to
balance covariates. No effort was made to match interactions among
the covariates.
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The findings of the simulation study are summarized in Figure 1. The Y-
axis shows the percent of error in estimating the impact of treatment on out-
come. For simplicity, the percent of error is calculated as absolute value of dif-
ference of the actual and estimated effect divided by the actual estimate. The
X-axis shows the number of interaction terms included in generating the out-
come. Initially, when the outcome was generated from a linear combination of
the covariates, or when the outcome was based on pairwise interaction among
the covariates, all four methods (pairwise LR, LR, pairwise PS, and SCB) per-
form similarly. In these initial comparisons, both the PS function and the logis-
tic function were properly specified; they reflected the way the outcome was
generated. As higher order interaction terms were used to generate the out-
come, the SCB method and proper LR maintained their accuracy but both
pairwise LR and the pairwise PS methods had increasing error. The simula-
tion confirmed that SCB maintains its accuracy, even when the outcome was
generated from higher order interaction terms. Nomatter howmany and what
type of interaction terms were used to generate the outcome, SCB was able to
relatively accurately estimate the impact of treatment. LR and PS were not
able to do so. When there was a mismatch between how the outcome was gen-
erated and how the variables were modeled, both PS and LR had higher error
rates. In both LR and PS, one has to rely on the investigator’s effort to incorpo-
rate the interaction terms. Often, they cannot incorporate all interaction terms
and at best have been including only pairwise interactions. SCB does not rely
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Figure 1: Percent Error in Estimating Impact of Treatment [Color figure can
be viewed at wileyonlinelibrary.com]

Notes. Percent of error = |Estimated�Actual|/Actual. LR, logistic regression; PS, propensity
scoring; SCB, stratified covariate balancing.
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on the investigator’s effort and removes the confounding that results from
pairwise or higher order interaction terms.

Test in Real Data

To demonstrate the use of SCB in a large dataset, we examined the relation-
ship between feeding disability and 6-month mortality for nursing home resi-
dents. The sample included 296,051 residents in Veterans Affairs nursing
homes examined from January 1, 2000, through October 9, 2012. The mean
age of the residents was 74.36 years (SD = 11.44) at time of first assessment.
The majority were white (79.88 percent) and male (96.34 percent), typical of
VA studies. An average resident had 6.15 (SD = 8.76) assessments that
included information on nine disabilities. These included Bathing (B), Walk-
ing (W), Grooming (G), Dressing (D), Toileting (T), Bowel Continence (L),
Transfer (S), Urinary continence (U), and Feeding (F) disabilities. The depen-
dent variable was 6-monthmortality. Across the residents, there were a total of
1,329,260 assessments. After excluding negative values, missing age value, or
age <40 years, 1,039,080 assessments were left.

Table 1 describes the top 20most frequent cases that were matched. The
Appendix S3 provides the full 418 matched strata. Each row in the table shows
one naturally occurring stratum. These strata describe the types of residents
within the data. Note that within each row, cases and controls occur with
different frequency; the weighting procedure resets these frequencies so that
the cases and controls have the same frequencies. Within the row, the
mortality rate for cases and controls can be compared, as these values are cal-
culated for the same type of resident, indicating same age, same gender, and
same disabilities.

Figure 2 shows the odds of various events co-occurring with “unable to
eat.” When the sample was not weighted, these odds varied and were seldom
1 to 1. After the sample was weighted, the odds of all the co-occurring events
were 1 to 1, and they were all balanced. For example, before weighting, resi-
dents who were unable to eat were more likely to also have transfer disabilities
than residents who were able to eat. The weighting procedure removed the
differences in transfer disabilities. After weighting, both residents who were
able and those who were not able to eat had the same rate of transfer disabili-
ties, yielding an odds ratio of 1 to 1. Even though Figure 2 does not show it,
we also examined other combinations of the listed covariates and these combi-
nations also had odds ratio of 1 to 1. The SCB procedure had removed con-
founding from not only the main effects of covariates but also from any
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combination of the covariates and SCB weights had balanced all variations in
the covariates and interactions of the covariates.

Given that the data were balanced, the next step was to calculate the
unconfounded odds of mortality for residents who were unable to eat. Note that
in the estimation section, the weighting procedure does not change the calcula-
tion of the common odds ratio, as the weights in the denominator and the
numerator cancel each other out. But these weights do change the calculation of
the confidence interval. The results indicate that in the original sample, the odds
for mortality in 6 months for residents who were “unable to eat” was 2.56 to 1.
After weighting the sample, so that confounded effects of age, gender, and other
disabilities were removed, the odds of mortality was reduced to 1.86 to 1.

Calibration of Propensity Scores in Real Data

The stratification of the data allows us to examine whether the PS is well cali-
brated and not poorly specified. First, we estimated the PS by regressing “un-
able to eat” on the linear combination of the covariates, the most common
way PS is used. The following equation was estimated:

Unable to Eat ¼� 4:79� 0:05 � [65 to 85 Years]

� 0:04 � [85 or More Years]þ 0:08 � [Male]

þ 1:35 � [Unable to Sit]þ 0:88 � [Unable to Groom]

þ 0:93 � [Unable to Toilet]� 0:43 � [Unable to Bathe]

þ 0:15 � [Unable to Walk]þ 1:37 � [Unable to Dress]

þ 1:04 � [Unable to Bowel]þ 0:07 � [Unable to Urinate]
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Figure 2: Odds of Occurrence of the Covariate for Able and Unable to Eat
Residents [Color figure can be viewed at wileyonlinelibrary.com]
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As we are working with a large amount of data, it was not surprising that
all coefficients in the logistic regression were statistically significant (alpha
levels <0.001).

Second, for each stratum with at least 10 data points, we also calculated
the observed probability of being unable to eat. This allowed us to compare the
calibration of the PS and the observed probability of feeding disability.
Figure 3 shows the results. The PS is shown as the dotted line
(Observed = 0.3342 Predicted + 0.1846). If the PSwas well calibrated, all points
would fall around the 45 degree line (Observed = 0.45 Predicted), shown as the
solid line. This is not the case. The PS is overestimating probability of being
unable to eat in low probability strata and underestimating it in high probability
strata. It is only well calibrated in strata with approximately 0.3 probability of
being disabled. We conclude that the linear combination of the covariates used
in balancing these data leads to a misspecified PS. In contrast, for each stratum,
SCB used the weights calculated from the observed frequency of events; thus, it
was perfectly calibrated. Our simulation presented earlier and simulation studies
by others (Pirracchio, Resche-Rigon, and Chevret 2012) have shown that mis-
specification of PSmatters and could lead to wrong study conclusions.

Partial Matches and Sensitivity Analysis

At the end of the covariate balancing procedure, 164,003 of 164,017 cases were
matched to 865,849 of 875,063 controls. This shows that on average, 99.99
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Figure 3: Calibration of Propensity Scores [Color figure can be viewed at
wileyonlinelibrary.com]
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percent of cases were matched and 98.94 percent of controls were used. A
total of 9,214 controls were not used in the analysis. In this example, the data-
set was large and the number of covariates relatively small. So, most of the
data were used. This may not be the situation in other datasets. As the number
of covariates increases, the number of cases per strata decreases, and combina-
tions of covariates become quite rare. In these circumstances, it is possible that
a large portion of the cases may not have matching controls, and therefore not
used, reducing the generalizability of the findings. The findings will still be
accurate for cases that were matched but perhaps not valid for other types of
cases. In these situations, the analyst should progressively drop covariates
from the analysis and examine the sensitivity of the estimates. Each time a
covariate is dropped, a partial match is made. In partial matches, a larger num-
ber of patients fall within each strata. The important analytical issue is to
examine whether the reduction in covariates changes the study finding, for
example, by removing the statistical significance of the impact of the treat-
ment. This approach allows one to test the sensitivity of the study conclusions
to the percent of cases matched.

Table 2 provides the estimated odds, when one of the covariates is left
unmatched. The first row in the table shows the estimated unconfounded odds
ratio using all covariates. The remaining rows remove one covariate at a time.
The number of cases matched increases when fewer covariates are used. For
example, exclusion of “unable to urinate” increases the number of cases
matched to 100 percent. At the same time, the exclusion of “unable to urinate”
does not change the estimated odds of mortality by much. After dropping any
of the covariates, the odds of mortality for residents who are unable to eat

Table 2: Sensitivity of Odds of Mortality for Residents Unable to Eat

Covariate Removed Cases Unable to Eat n (%) Controls Able to Eat n (%) Odds of Mortality

None 164,003 (99.9%) 865,849 (98.9%) 1.86
Age 164,009 (99.9%) 868,818 (99.2%) 1.87
Gender 164,016 (99.9%) 873,160 (99.7%) 1.85
Unable to bathe 164,003 (99.9%) 865,849 (98.9%) 1.86
Unable to walk 164,009 (99.9%) 868,818 (99.2%) 1.87
Unable to dress 164,016 (99.9%) 873,160 (99.7%) 1.85
Unable to bowel 164,017 (100%) 873,954 (99.8%) 1.79
Unable to urinate 164,017 (100%) 874,624 (99.9%) 1.81
Unable to groom 164,017 (100%) 874,624 (99.9%) 1.81
Unable to toilet 164,017 (100%) 875,063 (100%) 1.83
Unable to sit 164,017 (100%) 873,954 (99.8%) 1.79
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ranges from 1.79 to 1.87. The conclusion that residents who are unable to feed
themselves are at increased risk of mortality does not change despite dropping
one of the covariates from the analysis. This sensitivity analysis shows that (1)
partial matches can increase the number of cases matched and (2) address sen-
sitivity of conclusions to dropping any one of the covariates.

DISCUSSION

SCB removes the impact of covariates by dividing the data into strata, where
all patients falling into the strata share the same levels of the covariates. Within
the strata, the covariates are held constant. Scientists refer to variables that are
held constant as ceteris paribus events. Ceteris paribus events play important
roles in scientific theories and in analysis of data to verify these theories. The
approach could be used to evaluate the comparative effectiveness of treatment
from observation data. In such an application, patients’ medical histories are
held ceteris paribus and the impact of treatment on outcome is calculated. In
our discussions with clinicians, we have found that most clinicians understand
the concept of stratification, perhaps easier than regression analysis used for
PS, which to some clinicians is a black box. Stratification seems to make intu-
itive sense to clinicians. Furthermore, they may value information SCB pro-
vides about treatment effectiveness in subsets of patients who fall within
different strata.

By way of an example, the paper showed that SCB is computationally
practical. This paper showed that SCB was able to remove confounding
between feeding disability, age, gender, and other disabilities in a large data-
set. A plot of odds of the covariates showed that we had successfully balanced
the data; in addition, we reported that confounding caused by combination of
covariates was also removed. After weighting the data, all co-occurring covari-
ates were equally likely to occur among residents with and without feeding dis-
ability. These data led us to conclude that SCB was practical and can balance
the data without extensive search for a properly specified statistical model for
PS.

Besides being easy to understand and computationally practical, when
interaction terms were present, SCB was also more accurate than pairwise PS
or pairwise LR. Typically, the PS or LR is calculated from linear combinations
of the covariates, occasionally from pairwise combination of covariates. In
simulated data, pairwise PS and pairwise LR performed poorly when higher
order interaction terms were present; SCB consistently performed well even
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when higher order interaction terms were present. This simulation pointed
out that correct specification of the PS is important in accurate estimation of
impact of treatment. The misspecification of PSwas also observed in real data,
where PSwas poorly calibrated.

One way to improve calibration of PS models is to include more interac-
tion terms (Pirracchio et al. 2013). However, investigators may arrive at differ-
ent set of weights depending on the extent of their effort to include interaction
terms. In contrast, SCB does not depend on the effort of investigators. Using
the proposed SCB method, all investigators will arrive at the same set of
weights, whether they are concerned with interaction terms.

R Package

We recommend the use of SCB because of ease of understanding, computa-
tion considerations, and accuracy. To assist the use of SCB, on July 15, 2016,
we provided a free R package online (search online for StratifiedBalancing R
Package).

Limitations and Future Research

The procedure described here ignores cases that do not match to any controls.
Failure to match all cases might affect the ability to generalize the findings to
relatively rare subsets of the population. Investigators may wish to make par-
tial matches between cases and controls so that their findings are relevant to a
larger subset of the population. One way to make partial matches is to reduce
the number of covariates used in constructing the strata. Analysts should
always conduct sensitivity analysis of their findings to partial matches; one can
do so by progressively dropping covariates from the analysis, examining treat-
ment impact, and checking whether the study conclusions change. Besides
progressively dropping covariates, two other strategies are also available for
partial matching:

• Analysts could use the Apriori algorithm (Bayardo 1998) to identify
combinations with significant “support” (e.g., more than 29 cases) in
the data.

• Analysts could use classification and regression trees to predict partici-
pation in treatment from a subset of covariates. Such an approach
would construct strata from smaller set of covariates that are most pre-
dictive of treatment.
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All three approaches use fewer covariates (in other words make partial
matches), provide a smaller number of strata, include more cases per strata,
and are more likely to find a matching control for every case. The relative
value of these three methods is not clearly understood, and more research is
needed on optimal methods of constructing strata, especially in large multidi-
mensional problems.

This paper compared the performance of SCB to inverse weighting of
PS. Other methods of PS, reviewed earlier, are also available. The relative per-
formance of SCB and these variants of PS is not known. Theoretically, at the
core of all the variants of PS is a parametric model that may be misspecified.
Therefore, we suspect that SCB will remain more accurate than variants of PS.
Exceptions may exist, especially in recently proposed approach, where the PS
model and the prediction of outcomes are carried out in one step (Imai and
Ratkovic 2014). Future research can clarify conditions under which SCB and
variants of PS perform best.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Appendix SA1: AuthorMatrix.
Appendix SA2: Standard Query Language for Stratified Covariate

Balancing.
Appendix SA3: Strata for Predicting Impact of “Unable to Feed” on

Mortality.
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