

HHS Public Access

Chem Commun (Camb). Author manuscript; available in PMC 2019 January 25.

Published in final edited form as:

Author manuscript

Chem Commun (Camb). 2018 January 25; 54(9): 1097–1100. doi:10.1039/c7cc09067f.

Oxidation of a [CU2S] Complex by N2O and CO2: Insights into a Role of Tetranuclearity in the Cuz Site of Nitrous Oxide Reductase†

Sharareh Bagherzadeha and **Neal P. Mankad**^a

^aDepartment of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA

Abstract

Oxidation of a $[Cu_2(\mu-S)]$ complex by N₂O or CO₂ generated a $[Cu_2(\mu-S0_4)]$ product. In the presence of a sulfur trap, a $\left[\text{Cu}_2(\mu-\text{O})\right]$ species also formed from N₂O. A $\left[\text{Cu}_2(\mu-\text{Cs}_3)\right]$ species derived from $CS₂$ modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu_z catalytic site of nitrous oxide reductase is to protect the crucial S^2 ligand from oxidation.

> Because nitrous oxide (N_2O) is harmful as a greenhouse gas and ozone layer destroyer,^{1,2} it is critical to understand the mechanisms by which nature regulates its atmospheric concentrations. Notably, during the terminal step of bacterial denitrification, N_2O undergoes two-electron reduction catalyzed by nitrous oxide reductase (N₂OR), generating benign N₂ + H_2O as products.³ The active site for catalytic N₂O reduction in N₂OR is a tetranuclear copper cluster, Cu_z .⁴⁻⁶ The kinetically competent form of Cu_z that participates in enzymatic catalysis has a $\text{[Cu}_4(\mu_4\text{-S})\text{]}$ structural core,⁷ which activates N₂O upon reduction to the 4Cu^I state.⁸ Computational studies indicate that the reaction coordinate for N-O cleavage involves μ -1,3 binding between two of the Cu centers, labeled Cu_I and Cu_{IV} (Scheme 1), with crucial assistance from hydrogen bond donation by a protonated lysine residue in the secondary coordination sphere.⁹ Thus, only two Cu centers, Cu_I and Cu_{IV}, participate directly in N₂O binding and reductive N-O cleavage. The other two Cu centers, Cu_{II} and Cu_{III} , do not interact directly with the N_2O substrate according to this model. Furthermore, within the synthetic copper-sulfur model literature, it is clear that dicopper species are capable of mediating two-electron reduction of N_2O , ¹⁰⁻¹² and thus that tetranuclearity is not a requirement for N_2O reduction with copper-sulfur clusters.¹³ However, it should be noted that none of the synthetic copper- sulphur clusters with activity towards $N₂O$ feature an unprotected S^2 -ligand.

> An intriguing question, then, is what are the roles of the "spectator" Cu_{II} and Cu_{III} centers in the function of N₂OR. In other words, why is the catalytic site of N₂OR tetranuclear as opposed to dinuclear if only two Cu centers are required for the two-electron reduction of

[†]Electronic Supplementary Information (ESI) available: Experimental procedures, spectral data, and crystallographic data. Correspondence to: Neal P. Mankad.

Conflicts of interest: There are no conflicts to declare.

 N_2O ? Two possible roles for Cu_{II} and Cu_{III} have been proposed in the literature. First, the two electrons that ultimately transfer from Cu_z to $N₂O$ are delocalized over all four Cu centers via the covalent μ_4 -S²⁻bridge, which serves to lower the energetic barrier for electron transfer.⁹ Second, a computational study indicates that a putative $[Cu_2(\mu-S)]$ core would be susceptible to deactivation by protonation of the S^2 ligand under catalytic conditions.¹⁴ Thus, the conventional wisdom is that while the Cu_{II} and Cu_{III} sites do not interact directly with substrate, they serve to facilitate electron transfer and to protect against protonation.

Studying the small-molecule activation chemistry of a model $[Cu_2(\mu-S)]$ complex could add further insight into possible roles of tetranuclearity in Cu_z. An excellent candidate for such studies is the complex $[(IPr*)Cu]_2(\mu-S)$ (1), which was published posthumously by Hillhouse in 2015.15 Reactivity studies of **1** with organic substrates established the nucleophilic character of its bridging S^2 -ligand, but no reactivity studies with small molecules such as $N₂O$ were reported. In this study, we have examined the small-molecule activation chemistry of 1 towards N_2O and its isoelectronic analogue, CO_2 . Our results lead us to propose that additional roles of tetranuclearity in Cu_Z that have not been appreciated before might include protection of the S^2 -ligand against oxidation by N₂O and against expulsion from the active site during N_2O reduction.

Exposing 1 to N_2O (1 atm, room temperature) resulted in a mixture of six different compounds, according to ${}^{1}H$ NMR analysis (Scheme 1a). The major product of the reaction was found to be $[(\text{IPr}^*)\text{Cu}]_2(\mu\text{-SO}_4)$ (2), which exhibits a diagnostic ¹H NMR resonance for the IPr* para-methyl group at 1.75 ppm (Figure 1). The identity of **2** was confirmed by generating it independently from $(IPr^*)CuCl + Ag_2SO_4$, from observing the $[M+H]^+$ ion by ESI-MS, and by X-ray crystallography^{\ddagger} (Figure 2a). A minor product was found to be [$(IPr^*$)Cu]₂(μ -O) (3) when the reaction was continued to >36 h; this species has a diagnostic ¹H NMR resonance at 1.78 ppm. The identity of **3** is tentatively proposed by noting that it was generated independently from the dehydration of (IPr*)CuOH^T by heating over molecular sieves, and from observing the $[M+H]^+$ ion by ESI-MS. We have been unable to grow X-ray quality crystals of **3** even after repeated attempts. A third species, yet unidentified, was determined to be an intermediate that converts to **2** upon further reaction with $N₂O$. This conclusion was reached by observing that this species, which has a diagnostic 1H NMR resonance at 1.74 ppm (Figure 1), converted to **2** when the reaction was continued beyond 24 h to 60 h under N_2O . In contrast, no further conversion of this intermediate to 2 was evident even at 5 d when the N₂O atmosphere was replaced with N₂ at the 24-h time point. The other three components of the product mixture (1.82, 1.69, 1.68 ppm in Figure 1) have not been identified but formed in only small quantities. These three products also formed when **1** was exposed to air, but no formation of **2** or **3** from either air or $O₂$ was evident.

 ‡ Crystal data for (IPr*)CuOH: C73H65CuN2O2, M = 1065.71, Monoclinic, a = 12.7160(14), b = 18.419(2), 24.254(2) Å₃ β = 92.238(3)°, $V = 5676.3(10)$ \AA^3 , $T = 100$ K, P_1/c , $Z = 4$, 9141 reflection measured, 7300 unique, $(R_{int} = 0.0583)$, $wR(F^2) = 0.099$ (all data). Crystal data for 2: C₁₆₃H₁₆₄Cu₂N₄O₈S, *M* = 2232.60, Triclinic, *a* = 22.1927(19), *b* = 22.3352(19), 26.585(2) Å, α = 103.713(2), β = 92.238(3), γ = 90.105(2)°, *V* = 12202.4(18) Å³, *T* = 100 $(R_{int} = 0.3306)$, $wR(F^2) = 0.4568$ (all data). Crystal data for **4**: C_{158.50}H₁₅₄Cu₂N₄S₃, *M* = 2200.99, Monoclinic, *a* = 26.864(10), *b* = 28.131(11), 18.999(7) Å, β = 90°, V = 14358(9), T = 293 K, C2/c, Z = 4, 17085 reflection measured, 7281 unique, (R_{int} = 0.2106), $wR(F^2) = 0.2875$ (all data).

Interestingly, when N_2O was added to a mixture of 1 and PPh₃, the products 2 and 3 formed in roughly equimolar amounts products rather than **2** being the major product (Scheme 2b). The formation of Ph3P=S was detected by ${}^{31}P$ NMR analysis, indicating that the byproduct of $1 + N₂O$ converting to 3 is likely elemental sulfur. It is important to note that no reaction was observed between 1 and PPh₃ under N_2 , and that Ph₃P=S was not observed when PPh₃ was added to the product mixture after 24 h of exposing 1 to N_2O as opposed to having PPh₃ present from the beginning.

Exposing 1 to CO_2 (1 atm, room temperature) provided similar results to the N₂O reaction (Scheme 2a). Once again, the major product was **2**. The same three unidentified byproducts formed in small quantities, although no obvious intermediate was observed. An additional minor product was the $(IPr*)$ -CO₂ adduct, whose identity was established by independently exposing the free IPr* carbene to $CO₂$ (1 atm, room temperature) as is well known for related carbenes.¹⁶ Unlike in the N₂O case, the presence of PPh₃ in the reactant mixture did not impact the nature of the product distribution, and neither compound **3** nor $Ph_3P=S$ were observed from $CO₂$ under any conditions we examined.

To gain insight into the initial interaction between 1 and N_2O/CO_2 , we examined the reactivity of 1 with CS₂ as a model substrate. A rapid reaction was observed between 1 and CS2, generating pink-colored [(IPr*)Cu]2(μ-CS3) (**4**) quantitatively (Scheme 2c). The identity of 4 was confirmed by X-ray crystallography^{\ddagger} (Figure 2b) and by observation of the [M+H]+ ion by ESI-MS. Using the structure of **4** as a starting point, we were able to optimize the structure of a DFT model, [(IMe)Cu]₂(μ-CS₃) (**4'**), whose [Cu₂CS₃] core closely resembles the experimentally determined structure of **4** (IMe = N , N' dimethylimidazol-2-ylidene). Then, using the **4**′ structure as a starting point, we located energy minima for the DFT models $[(Ime)Cu]_2(\mu-SCO_2)$ (5[']) and $[(Ime)Cu]_2(\mu-SN_2O)$ (6[']), which are shown in Figure 3. Unlike **4**′, the **5**′ and **6**′ structures exhibit unsymmetrical bridging within the dicopper core. In both cases, one Cu center is engaging in Lewis acid activation of an oxygen atom from the small molecule, with multiple bond character being evident from the optimized C-O/N-N bond distances distal to this Lewis acid activation. Loss of CO and N₂ from $5'$ and $6'$, respectively, would generate $[(\text{Im}e)Cu]_2(\mu$ -SO) (7[']), which we also were able to optimize (Figure 3). The optimized structure of **7**′ places the sulfur and oxygen centers clearly within bonding distance (1.80 Å) and features an unsymmetrical, puckered $[Cu_2(\mu-SO)]$ core. We propose that 7' is a reasonable approximation for an early intermediate that ultimately is either exhaustively oxidized by the small-molecule oxidant to generate 2 or trapped by PPh₃ to generate 3.

Based on the experimental and computational observations outlined above, our preliminary mechanistic proposal is outlined in Scheme 3. Initial insertion of the small-molecule heteroallene into a Cu-S bond of 1 produces intermediate A , which in turn evolves N_2 or CO to generate intermediate **B**. From here, presumably there are two distinct pathways. One involves further oxidation of **B** by three sequential equivalents of the heteroallene oxidant to produce **2**. The other involves reversible expulsion of elemental sulfur to produce **3**. In the case of N_2O , the formation of **3** can be accelerated by trapping the elemental sulfur with PPh₃. In the case of CO_2 , the formation of 2 is sufficiently rapid that 3 does not form even in

the presence of PPh₃. Further studies will be required to understand the conversion of \bf{A} to \bf{B} and to elucidate how **B** is further oxidized by N_2O and CO_2 .

These studies reveal the chemistry of a $\left[\text{Cu}_{2}(\mu_{2}-\text{S})\right]$ core towards small molecules including N_2O . If one were to imagine the catalytic site of N_2OR having such a dinuclear core instead of a tetranuclear $\left[\text{Cu}_{4}(\mu_{4}-\text{S})\right]$ core, productive catalysis would be hampered or prevented by oxidation and/or expulsion of the S^2 -ligand. Thus, in addition to participating in electron delocalization and preventing protonolysis, another role of the two "spectator" Cu centers in Cu_z may be to prevent these unproductive side reactions of the bridging $S²$ -ligand from competing with productive N_2O reductase reactivity. In this context, it is intriguing to note that a "protected" tricopper analogue of **1**, $\{[(\text{IPr})\text{Cu}]_3(\mu_3-S)\}+ (5)$,¹⁷ was found to be inert towards N_2O and CO_2 under conditions where 1 undergoes the reactions described in this manuscript (Scheme 2d).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding was provided by NIH/NIGMS (R01 GM116820). DFT calculations were performed at the UIC Extreme Computing facility. Dr. Cina Foroutan-Nejad provided useful suggestions on DFT calculations. Prof. Don Wink assisted with X-ray crystallography. We are grateful for inspiration provided by research of the late Prof. Gregory Hillhouse.

Notes and references

- 1. Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ. Philos Trans R Soc Lond, B, Biol Sci. 2012; 367:1157–1168. [PubMed: 22451101]
- 2. Ravishankara AR, Daniel JS, Portmann RW. Science. 2009; 326:123–125. [PubMed: 19713491]
- 3. Pauleta SR, Dell'Acqua S, Moura I. Coord Chem Rev. 2013; 257:332–349.
- 4. Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C. Nat Struct Biol. 2000; 7:191–195. [PubMed: 10700275]
- 5. Pomowski A, Zumft WG, Kroneck PMH, Einsle O. Nature. 2011; 477:234–237. [PubMed: 21841804]
- 6. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev. 2014; 114:3659–3853. [PubMed: 24588098]
- 7. Johnston EM, Dell'Acqua S, Ramos S, Pauleta SR, Moura I, Solomon EI. J Am Chem Soc. 2014; 136:614–617. [PubMed: 24364717]
- 8. Ghosh S, Gorelsky SI, Chen P, Cabrito I, Moura I, Solomon EI. J Am Chem Soc. 2003; 125:15708– 15709. [PubMed: 14677937]
- 9. Johnston EM, Carreira C, Dell'Acqua S, Dey SG, Pauleta SR, Moura I, Solomon EI. J Am Chem Soc. 2017; 139:4462–4476. [PubMed: 28228011]
- 10. Bar-Nahum I, Gupta AK, Huber SM, Ertem MZ, Cramer CJ, Tolman WB. J Am Chem Soc. 2009; 131:2812–2814. [PubMed: 19206272]
- 11. Esmieu C, Orio M, Torelli S, Le Pape L, Pécaut J, Lebrun C, Ménage S. Chem Sci. 2014; 5:4774– 4784.
- 12. Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI. J Am Chem Soc. 2014; 136:3522–3529. [PubMed: 24524659]
- 13. For N₂O reduction by a $\left[\text{Cu}_{4}(\mu_{4}-S)\right]$ model complex, see: Johnson BJ, Antholine WE, Lindeman SV, Graham MJ, Mankad NP. J Am Chem Soc. 2016; 138:13107–13110.

- 15. Zhai J, Filatov AS, Hillhouse GL, Hopkins MD. Chem Sci. 2016; 7:589–595. [PubMed: 28791108]
- 16. Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD. Chem Commun. 2002:28–29.
- 17. Zhai J, Hopkins MD, Hillhouse GL. Organometallics. 2015; 34:4637–4640.

Figure 1.

The poro-methyl region of the ¹H NMR spectrum from reaction of **1** and N₂O (1 atm) in the absence of PPh₃

Figure 2.

Solid-state structures of (a) $[(IPr*Cu)_2]([µ-SO_4) (2)$ and (b) $[(IPr*Cu)_2]([µ-CS_3) (4)$ determined by X-ray crystallography. The IPr* ligands are shown as wireframes, the inorganic cores are shown as 50%-probability thermal ellipsoids, hydrogens are omitted, and only one of two molecules from the asymmetric unit of 2 is shown. Selected bond distances (Å) and angles (°) for **2**: Cu(3)-O(5), 1.937(11); Cu(4)-O(6), 1.883(10); S(2)-O(5), 1.444(12); S(2)-O(6), 1.479(12); S(2)- O(7), 1.454(14); S(2)-O(8), 1.488(14). For **4**: Cu(1)- S(1), 2.1627(17); Cu(1)-S(2), 2.905(2); S(1)-C(70), 1.677(4); S(2)-C(70), 1.708(7); S(1)- C(70)-S(2), 119.4(2); S(1)- C(70)-S(1#), 121.1(4).

Figure 3.

DFT-optimized structures (BVP86/LANL2TZ(f)/6-311+(d)) of dicopper complexes relevant to the small-molecule activation chemistry of $[(IPr*)Cu]_2(\mu-S)$. Bond distance labels are in units of Å.

Scheme 1. N_2 O reduction at Cu_z.

Small molecule activation experiments with $[(IPr*)Cu]_2(\mu-S)$ (1) and $\{[(IPr)Cu]_2(\mu_3-S)\}$ {BF4} (**5**).

Scheme 3. Hypothetical mechanism.