
Incorporating functional genomic information to enhance 
polygenic signal and identify variants involved in gene-by-
environment interaction for young adult alcohol problems

Jessica E. Salvatore, Ph.D.1,2,*, Jeanne E. Savage, Ph.D.2,*, Peter Barr, Ph.D.1, Aaron R. 
Wolen, Ph.D.3, Fazil Aliev, Ph.D.1,4, Eero Vuoksimaa, Ph.D.5, Antti Latvala, Ph.D.5, Lea 
Pulkkinen, Ph.D.6, Richard J. Rose, Ph.D.7, Jaakko Kaprio, M.D.5, and Danielle M. Dick, 
Ph.D.1

1Department of Psychology, Virginia Commonwealth University, PO Box 842018, Richmond, VA 
23284-2018, United States 2Virginia Institute for Psychiatric and Behavioral Genetics, Virginia 
Commonwealth University, PO Box 980126, Richmond, VA 23298, United States 3Center for 
Clinical and Translational Research, Virginia Commonwealth University, P.O. Box 980261, 
Richmond, VA 23298-0261, United States 4Faculty of Business, Karabuk University, 78050 
Karabuk, Turkey 5Institute for Molecular Medicine FIMM, University of Helsinki, PO Box 20 
(Tukholmankatu 8), FI-00014 Helsinki, Finland 6Department of Psychology, University of 
Jyväskylä, PO Box 35, 40014 University of Jyväskylä, Jyväskylä, Finland 7Department of 
Psychological & Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, 
United States

Abstract

Background—Characterizing aggregate genetic risk for alcohol misuse and identifying variants 

involved in gene-by-environment interaction (G×E) effects has so far been a major challenge. We 

hypothesized that functional genomic information could be used to enhance detection of polygenic 

signal underlying alcohol misuse, and to prioritize identification of single nucleotide 

polymorphisms (SNPs) most likely to exhibit G×E effects.

Methods—We examined these questions in the young adult FinnTwin12 sample (n=1170). We 

used genome-wide association estimates from an independent sample to derive two types of 

polygenic scores for alcohol problems in FinnTwin12. Genome-wide polygenic scores included all 

SNPs surpassing a designated p-value threshold. DNase polygenic scores were a subset of the 

genome-wide polygenic scores including only variants in DNase I hypersensitive sites (DHSs), 

which are open chromatin marks likely to index regions with a regulatory function. We conducted 

parallel analyses using height as a non-psychiatric model phenotype in order to evaluate the 
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consistency of effects. For the G×E analyses, we examined whether SNPs in DHSs were 

overrepresented among SNPs demonstrating significant G × E effects in an interaction between 

romantic relationship status and intoxication frequency.

Results—Contrary to our expectations, we found that DNase polygenic scores were not more 

strongly predictive of alcohol problems than conventional polygenic scores. However, variants in 

DNase polygenic scores had per-SNP effects that were up to 1.4 times larger than variants in 

conventional polygenic scores. This same pattern of effects was also observed in supplementary 

analyses with height. In G×E models, SNPs in DHSs were modestly overrepresented among SNPs 

with significant interaction effects for intoxication frequency.

Conclusions—These findings highlight the potential utility of integrating functional genomic 

annotation information in order to increase the signal-to-noise ratio in polygenic scores and 

identify genetic variants that may be most susceptible to environmental modification.
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Introduction

Alcohol misuse (i.e., risky drinking and alcohol use disorder) is a top public health problem 

worldwide (World Health Organization, 2014), and reflects a complex interplay of genetic 

and environmental influences across development (Pagan et al., 2006). Twin and adoption 

studies have been critical in demonstrating that genetic influences account for roughly half 

of the variation in the risk for alcohol use disorder (Verhulst et al., 2015) and other alcohol 

use behaviors (Dick et al., 2011). Translating findings from family-based research designs of 

unmeasured genetic variance (i.e., inferred based on resemblance among different types of 

relatives) into a measured genetic framework to identify the specific variants associated with 

alcohol outcomes has been challenging (Hart and Kranzler, 2015). Although a few 

individually important genes and genetic variants have been identified, results from genome-

wide association studies (GWAS) of alcohol use disorder underscore its highly polygenic 

nature (Yang et al., 2014, Hart and Kranzler, 2015, Mbarek et al., 2015). This high level of 

polygenicity is consistent with emerging findings from GWAS of psychiatric disorders more 

broadly (Geschwind and Flint, 2015), as well as findings that psychiatric conditions also 

share much of their polygenic underpinnings (Anttila et al., available online April 2016).

Characterizing Aggregate Genetic Risk for Alcohol Outcomes

In recent years, polygenic approaches have emerged as one method to characterize aggregate 

measured genetic risk (Wray et al., 2014). These efforts were motivated by the growing 

recognition that many genes and genetic variants, each of small individual effects, contribute 

to complex disorders; as well as the practical, clinical goal of being able to accurately 

predict disease and disorder from genetic information. Most commonly, polygenic scores are 

created by summing the number of “risk” alleles an individual carries across a selected set of 

single nucleotide polymorphisms (SNPs), weighted by empirical information from genetic 

association results obtained from an independent discovery sample. In effect, polygenic 

scores capture the composite additive effect of these multiple variants. This approach was 
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initially used in the study of schizophrenia (The International Schizophrenia Consortium, 

2009) and has since been applied to numerous complex traits (Dudbridge, 2013). As 

reviewed by Hart & Kranzler (2015), several recent studies have successfully used polygenic 

score approaches to predict alcohol-related outcomes (Yan et al., 2014, Vrieze et al., 2013, 

Frank et al., 2012, Kos et al., 2013, Levey et al., 2014).

Polygenic scores can encompass thousands of individual genetic variants spread throughout 

the genome and include a mixture of true genetic association signal and noise from 

statistical artifact and stochastic error (Maher, 2015). Conventional polygenic scoring 

methods have typically accounted for less than 2% of the genetic liability underlying 

complex traits, although this improves as the discovery sample sizes increases. Simulations 

indicate that tens of thousands of subjects may still be needed to achieve clinically 

meaningful prediction with these methods (Dudbridge, 2013). Efforts to amplify true genetic 

signal and reduce noise could enhance the predictive power of polygenic scores. Although 

some methods have been developed to improve polygenic scores, as of yet there has been no 

attempt to use information beyond the discovery GWAS (i.e. p value thresholds for filtering 

the inclusion of SNPs or linkage disequilibrium structure for weighting SNPs) to further 

refine the creation of such scores.

The past decade of genomic research has provided a wealth of information about the genetic 

variants that are being aggregated in these polygenic scores, including information about 

which variants are more or less likely a priori to have functional consequences on human 

traits and behaviors (ENCODE Project Consortium, 2012). In the same way that functional 

genomic information is important for understanding the biological coherence underlying 

GWAS results, it may also inform better ways to characterize individuals’ aggregate genetic 

risk for alcohol outcomes. Recent large-scale efforts have established that genetic variants 

associated with a variety of complex diseases and traits are not randomly distributed 

throughout the genome, but rather are stratified based on their genomic context (Schork et 

al., 2013, Finucane et al., 2015). Across many complex diseases and traits, there is modest 

evidence for an overrepresentation of SNPs with significant GWAS signals in or near 

protein-coding regions, and even stronger evidence for overrepresentation of SNPs in certain 

noncoding regions (Hindorff et al., 2009). Once considered “junk DNA”, it is now known 

that many regions outside of the exons that code for proteins have an indirect biological 

effect through the regulation of when, in what tissue, and under what circumstances a gene 

is expressed (ENCODE Project Consortium, 2012). Epigenetic factors near the transcription 

start site of a gene and in other key regulatory regions can influence gene expression by 

changing the physical conformation of the DNA, thus changing how accessible the DNA is 

to the cellular machinery responsible for transcribing genes into proteins.

In particular, GWAS signals are enriched within regions of open chromatin identified by 

deoxyribonuclease I (DNase I) mapping (Maurano et al., 2012). These so-called DNase I 

hypersensitive sites (DHS) are regions where DNA is highly accessible (Bell et al., 2011), 

and likely serves some cis-regulatory function (Thurman et al., 2012). The location of DHS 

signals overlaps that of many other regulatory markers, indicating that they are a broad, non-

specific marker of sites of active regulatory DNA, capturing many different ongoing 

biological processes affecting gene expression. The enrichment of significant GWAS 
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associations in these regions provides some biological coherence for interpreting the 

functional impact of variation in these non-coding variants, and also suggest that SNPs 

located in DHSs (referred to as DHS SNPs) may be more likely to be “true” signals and less 

likely to be false positives. For this reason, we hypothesized that functional annotation 

information like DHS location could be used to improve the predictive ability of polygenic 

scores. Using alcohol problems as our primary outcome, we expected that polygenic scores 

based on SNPs in regulatory regions (DHSs) would provide stronger predictive power (i.e., 

account for more variance) compared to conventional, unselected, genome-wide polygenic 

scores that included a mixture of DHS SNPs and non-DHS SNPs. We focus specifically on 

localization in DHSs in view of recent evidence that SNPs with lower p values in our 

discovery sample GWAS were more likely to be in DHS regions (versus non-DHS regions) 

(Edwards et al., 2015), as well as broader evidence from genomic partitioning analyses that 

DHS SNPs accounted for the majority (79%) of the heritability across 11 common diseases 

(Gusev et al., 2014). Additionally, in the absence of existing knowledge about what specific 

functional annotations would be most advantageous to inform polygenic scores, DHS status 

provides a non-specific tool for a first look into whether this approach holds promise.

Identifying Genetic Variants Involved in Gene-by-Environment Interaction Effects

Unlike Mendelian disorders such as cystic fibrosis or Huntington’s disease, where a 

mutation in a single gene is sufficient to cause disorder, the pathway from genotype to 

phenotype for alcohol outcomes is not necessarily straightforward. Alongside advances in 

characterizing genetic risk, research has suggested that a number of environmental factors 

can alter the importance of genetic influences on alcohol outcomes (Young-Wolff et al., 

2011), and it has also been suggested that G×E effects may harbor some of the ‘hidden 

heritability’ for complex behavioral outcomes (Manolio et al., 2009). Despite strong 

evidence for G×E effects from twin studies (Young-Wolff et al., 2011), the study of G×E 

using measured genotypes has been controversial (Duncan and Keller, 2011, Dick et al., 

2015).

Among the major criticisms is the focus on “usual suspect” candidate genes in the serotonin 

or dopamine pathways (e.g., SLC6A4 or MAO-A) (Dick et al., 2015). Thus, the field is in 

need of answers to the question of which SNPs are worth carrying forward into studies of 

G×E using measured genotypes. One way to answer this question is to examine whether 

certain types of SNPs (based on genomic information) are overrepresented among SNPs 

with G×E effects. Thus, in an effort to move away from the candidate gene approach, we 

tested the exploratory hypothesis that SNPs in regulatory regions would be more likely to 

have significant G×E effects. We believed DHS SNPs would be enriched for G×E interaction 

effects given that the DNA variants in DHS regions may be more likely to affect the 

chromatin structure around a gene that determines whether the DNA is accessible to 

transcription factors (i.e., the proteins responsible for transcribing DNA to RNA and 

determining gene expression levels) (Cockerill, 2011). Environmental exposures are known 

to affect epigenetic processes, and can further drive gene expression or repression via 

alterations to the availability of transcription factors (Meaney, 2010, Lopez-Maury et al., 

2008). For these reasons, we hypothesized that allelic variation in DHS SNPs may be 
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particularly impactful for responsiveness to environmental cues that alter gene expression 

(Liu et al., 2008).

We examined romantic relationship status as the environmental moderator for these analyses 

in view of evidence that (1) involvement in a romantic relationship in young adulthood is 

associated with lower alcohol use (Fleming et al., 2010) and (2) that romantic relationship 

status changes the degree to which genetic influences are important for alcohol outcomes 

(Heath et al., 1989, Prescott and Kendler, 2001). Of particular relevance for this exploratory 

G×E hypothesis, recent analyses of the FinnTwin12 sample indicated that genetic variance 

for intoxication frequency was attenuated for those in a romantic relationship compared to 

those not in a romantic relationship (Barr et al., in press). This implies that genetic 

influences on intoxication frequency are less important for those who are in a relationship, 

and more important for those who are single. The results from these twin studies suggested 

that romantic relationship status would be a particularly good “candidate environment” when 

testing our hypothesis that SNPs in regulatory regions would be enriched for G×E effects. 

Twin studies of G×E effects using inferred genotypes typically show a fan-shaped pattern of 

effects, whereby additive genetic factors have more influence in certain environments, and 

less in others. Detecting a latent G×E effects with inferred genotypes implies that the 

majority of measured genes are likely to be moderated in the same way, such that the effect 

of measured genotypic influences on a phenotype varies across levels of the environment.

The Current Study

We examined two research questions related to the incorporation of functional genomic 

information to understand the genetic and G×E influences on alcohol use outcomes in a 

population-based sample of young adult Finnish twins (Kaprio, 2013, Kaprio et al., 2002): 

1) Do polygenic scores informed by DHS annotation predict lifetime alcohol problems 

better than conventional polygenic scores that include a mixture of DHS and non-DHS 

SNPs? And 2) Are DHS variants overrepresented among SNPs with G×E effects for alcohol 

misuse in a model where romantic relationship status is the environmental moderator? As a 

set, these questions contribute to efforts to enhance polygenic signal and empirically 

prioritize variants likely to be involved in G×E effects.

Materials and Method

Sample

Our sample comes from the youngest cohort of the Finnish Twin Cohort Study 

(FinnTwin12), which was established to examine genetic and environmental factors 

influencing health-related behaviors (Kaprio, 2013), including the development of alcohol 

misuse. Participants were recruited from Finland’s Population Registry, permitting 

comprehensive and unbiased nationwide ascertainment of all twins born across five birth 

cohorts in Finland from 1983 to 1987. Baseline collection occurred when twins were aged 

approximately 12 years old, with a sample of some 5600 twins and their families (Kaprio, 

2013) and an overall participation rate of 87%. Follow-up surveys occurred at ages 14, 17.5, 

and 22 years. Of the original epidemiological sample, 1035 families were chosen as part of 

an intensive subsample, from which 1852 twins (89% participation) completed the 
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adolescent version of the Semi-Structured Assessment for the Genetics of Alcoholism 

(SSAGA; Bucholz et al., 1994) interview at age 14. Follow up of the intensive subsample 

when twins were, on average, age 22 (n=1347) included the adult SSAGA. DNA from blood 

or saliva samples was collected from 1295 twins. Data for the present study is drawn from 

the psychiatric assessment at age 22 among participants for whom genotypic data were 

available (n=1170). The sample was 53.6% female (N = 627) and the age range varied from 

20–26, with a mean age of 22.42 years (SD=0.72). Participants were fully informed of study 

procedures and gave written consent to participate. The Helsinki University Central Hospital 

District’s Ethical Committee and Indiana University’s Institutional Review Board approved 

the FinnTwin12 study.

Measures

Lifetime alcohol dependence symptoms—The alcohol dependence symptoms 

(ADsx) measure was the count of the number of lifetime DSM-IV criteria that respondents 

endorsed from the SSAGA (Bucholz et al., 1994). Responses ranged from 0 to 7. ADsx was 

natural log-transformed after adding 1 to adjust for the positive skew and to retain 

participants who endorsed zero symptoms. Individuals who never initiated alcohol use were 

coded as missing (n = 35).

Frequency of intoxication—For the G×E analyses, we expected that the moderating 

effect of relationship status would be on a contemporaneous alcohol misuse outcome rather 

than a cumulative lifetime alcohol misuse outcome, such as ADsx. Accordingly, we used a 

time-delimited measure of frequency of intoxication for the G×E analyses. Frequency of 

intoxication was assessed at age 22 by the single item, “How often do you use alcohol in 

such a way that you get really drunk?” Response options included “never” (0) to “daily” (8). 

Response categories were transformed to reflect the number of days per month participants 

were intoxicated and natural log-transformed after adding 1 to adjust for the positive skew 

and to retain participants who reported “never” (Dick et al., 2001).

Relationship status—Participants were asked, “How long (in years) have you been 

together with your present partner?” Those who indicated they were not dating were coded 

as 0. Those who indicated they were in a romantic relationship (dating, married, or living in 

a common law relationship) of any length were coded as 1.

Genotyping

Genotyping was conducted using the Human670-QuadCustom Illumina BeadChip (Illumina, 

Inc., San Diego, CA, USA) at the Wellcome Trust Sanger Institute (Kaprio, 2013). Quality 

control steps included removing SNPs with minor allele frequency < 1%, genotyping 

success rate < 95%, or Hardy-Weinberg equilibrium p < 1 × 10−6, and removing individuals 

with genotyping success rate < 95%, a mismatch between phenotypic and genotypic gender, 

excess relatedness (outside of known families), and heterozygosity outliers. Genotypes were 

imputed to the 1000 Genomes Phase I (v3) reference panel using ShapeIT (Delaneau et al., 

2012) for phasing and IMPUTE2 (Howie et al., 2009) for imputation. Prior analyses 

indicated a single dimension of ancestry in the sample (Meyers, 2012). Although a single 

dimension of ancestry does not preclude variation along this dimension, we note that fine-
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scale population substructure is less of an issue for common variants (versus rare variants), 

especially in the present sample given the relatively longer LD blocks that make the Finnish 

population more homogenous than other populations of mixed European ancestry. We also 

note that in supplementary analyses of the first 10 ancestry principal components and the 

ADsx and frequency of intoxication measures, we found no substantial evidence of 

population stratification. Out of 20 possible associations, only a single PC had a p-value of 

less than 0.10 (PC3 for ADsx, p = 0.04). These converging pieces of evidence suggested that 

it was not necessary to correct for population stratification, and informed our decision to not 

include ancestry principal components in our analyses.

Analytic Plan

Polygenic score creation—Summary association statistics used to create the polygenic 

scores for alcohol problems come from a previously reported GWAS of an alcohol problems 

factor score conducted in 4,304 Caucasian young adults from the Avon Longitudinal Study 

of Parents and Children (Edwards et al., 2015); this is the largest GWAS to date of alcohol 

problems in European young adults. Genotypes in this discovery sample were also imputed 

to the 1000 Genomes Phase I (v3) reference panel. From this discovery sample, we selected 

a list of 4,415,289 SNPs also available in FinnTwin12 and with a minor allele frequency > 

5% and imputation quality R2 > .90 in both samples, and pruned this SNP set to obtain 

212,718 autosomal SNPs (4.8% of the common SNPs) in approximate linkage equilibrium 

(R2 < .25). This list was further filtered to create two sets of score SNPs with nominal 

GWAS association p values in the discovery GWAS (thresholds of p < .05 and p < .01, 

NSNPs = 10,693 and 2,221, respectively), based on preliminary analyses as well as previous 

work showing these thresholds have the best signal-to-noise ratio/predictive power for 

polygenic scores (Yang et al., 2014).

Scores were calculated in FinnTwin12 using the score procedure in PLINK version 1.9 

(Chang et al., 2015) summing each individual’s total number (imputed dosage) of minor 

alleles from the score SNPs, with each SNP weighted by the negative log of the GWAS 

association p value and sign of the association (beta) statistic. As illustrated in Figure 1, 

identical procedures were used to create a set of DNase I-restricted polygenic scores, except 

that the final list of LD-pruned SNPs described above was further restricted to SNPs located 

in DHS sites. The locations of DHSs were based on narrow peak hotspots identified across 

53 consolidated epigenomes by the RoadMap Epigenomics Project (http://

www.roadmapepigenomics.org). The 53 epigenomes are summarized in the Supplementary 

Information (Table S1). SNPs were considered to be DHS SNPs if they directly overlapped a 

DHS or were in perfect linkage disequilibrium (LD) with another SNP overlapping a DHS. 

Of the 212,718 genome-wide score SNPs, 78,948 (37%) were located in a DHS site, and 

3,946 (37%) and 789 (36%) of the DHS score SNPs fell under the GWAS p value thresholds 

of p < .05 and p < .01, respectively. Hereafter we will use the terms “GW-scores” to refer to 

polygenic scores created from the genome-wide set of SNPs and “DHS-scores” to refer to 

polygenic scores from SNPs located in DHS sites only.

Polygenic scores for alcohol phenotypes have had very modest effects in previous studies. 

Thus, in an attempt to conceptually validate findings coming out of the primary alcohol 
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analyses, we also compared the predictive power of DHS- and GW-scores for height as a 

secondary outcome. We selected height as a model phenotype given that its molecular 

genetic etiology is further advanced (relative to alcohol problems) and polygenic scoring 

methods have already demonstrated substantial success (Wood et al., 2014). We used the 

same procedure to calculate the polygenic scores for height, with discovery GWAS summary 

statistics coming from the GIANT Consortium meta-analysis results of ~250,000 adults of 

European ancestry (Wood et al., 2014; available at http://portals.broadinstitute.org/

collaboration/giant). Genotypes from the GIANT study were imputed to the HapMap2 CEU 

reference population, so the LiftOver tool (http://genome.sph.umich.edu/wiki/LiftOver) was 

used to harmonize SNP IDs and genomic locations with those of the 1000 Genomes-imputed 

FinnTwin12 dataset. There were 1,831,837 SNPs in common after filtering, pruned for LD 

to 193,884 SNPs (31,358 and 15,239 below p thresholds of .05 and .01, respectively). Of 

these, 76,913 (39.7%) SNPs were located in a DHS, of which 13,593 (43.3% of GW) and 

6,918 (45.4% of GW) met p value thresholds of .05 and .01. Height (in centimeters) was 

measured in the FinnTwin12 sample by a self-report survey item at age 22.

Predictive ability of DHS-scores versus GW-scores—In order to compare the 

relative strength of the DHS- and GW-scores, we fit a series of separate linear mixed-effects 

models incorporating each of the GW- and DHS-scores to predict ADsx and height. Each 

model also included sex (and, for height, age) as covariates. To account for clustering at the 

family level, we fit mixed models with random intercepts using the lmer function from the 

lme4 package (version 1.1.11) in R (version 3.2.3). Models were fit with risk scores 

calculated using SNPs at the p < .01 and p < .05 thresholds from the discovery GWAS. We 

examined the relative predictive ability of DHS- and GW-scores in two ways. First, we 

compared the significance of association and the overall variance accounted for (R2) by each 

score. However, because the number of SNPs included in the polygenic scores differed 

substantially between the GW-scores and DHS-scores, a direct comparison of the 

magnitudes of their association statistics may not be meaningful. Thus, as a second approach 

we calculated an average “per-SNP” effect to facilitate comparisons on the same metric. To 

do this, we divided the variance accounted for each by each score (R2) by the number of 

SNPs in that score.

G×E analyses—We examined whether SNPs in regulatory regions were enriched for G×E 

effects using a chi-square test that compared the proportion of DHS SNPs among the set of 

SNPs with significant (p < .05) G×E effects relative to the proportion of DHS SNPs in the 

full genome. For these analyses we used a contemporaneous measure of alcohol misuse, 

intoxication frequency. We focused on a contemporaneous measure of alcohol misuse in 

order to ensure that our romantic relationship status environmental moderator and alcohol 

misuse outcome were temporally matched1. For these analyses, we selected a set of top 

SNPs in the ALSPAC GWAS (p < 0.005) from the set of 212,718 LD-pruned autosomal 

1Our measure of intoxication frequency was moderately correlated with ADsx (r = .42 p < .001). Comparisons of GW and DHS scores 
in predicting intoxication frequency showed that GW scores at the p < .001, p < .05, and p < .01 thresholds were significantly 
associated with intoxication frequency in the expected direction (i.e., higher polygenic score associated with more frequent 
intoxication). DHS-scores at the p < .001 and p < .01 thresholds were significantly associated with intoxication frequency. Overall, 
both GW- and DHS-scores predicted intoxication frequency, though less strongly than ADsx (GW-scores: R2 = .000 – .008; DHS-
scores: R2 = .000 – .004).
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SNPs common across the ALSPAC and FinnTwin12 samples, resulting in 1137 SNPs. We 

focused on the set of the more highly associated SNPs in view of evidence that G×E effects 

are most likely to be observed for SNPs with smaller p-values (Thomas, 2010). This 

threshold was arbitrary, but was selected in an attempt to balance testing a large enough 

number of “top” SNPs with the computational resources required for such tests. For each 

SNP, we then examined gene-environment interaction effects in a linear model where 

relationship status was the moderator and frequency of alcohol intoxication was the 

outcome. G×E models were run using the lme4 package in R in order to account for familial 

nesting. G×E was tested using a parameterization method that takes into account effects 

between three gene levels in order to accurately capture interactions that can otherwise be 

misrepresented when using a single cross-product term (Aliev et al., 2014). The method 

checks the additive interaction between any two of the three gene levels and corrects for the 

number of tests. The resulting p-value corresponds to the difference between at least two of 

the gene levels. Sex and age were included as covariates. Preliminary analyses indicated 

only a modest association between relationship status and intoxication frequency (r = −.10), 

and no association between the GW- and DHS-scores and relationship status (range rpb = 

−0.04 to 0.004, all p > 0.14). The latter null associations, in particular, minimized concerns 

about gene-environment correlation as a potential confounder when testing G×E effects. 

Regarding multiple testing concerns, we note that the inferential test of interest for this 

research question was a chi-square test of the proportion of DHS SNPs among the set of 

SNPs with a significant (p < .05) G×E effects relative to the overall proportion of DHS 

SNPs, thus representing a single statistical test for enrichment.

Results

Descriptive Statistics

Table 1 provides an overview of the distributions of the key measures in the FinnTwin12 

sample. On average, participants endorsed 1.03 ADsx criteria, and reported being 

intoxicated 1.52 days per month (SD= 1.79). With respect to relationship status, of the 1,148 

nonmissing responses, 58% (n=664) of the twins reported being involved in a relationship, 

of which 567 (84.8%) had been involved in that relationship for one year or more.

Do DHS- Scores Predict Outcomes Better than GW-scores?

ADsx—Regression results for GW-scores and DHS-scores predicting ADsx are shown in 

Table 2. The GW-scores predicted ADsx at both the p<.01 and p<.05 inclusion thresholds (β 
=.0006, p<.001 and β =.0003, p<.001, respectively). The DHS-scores also predicted ADsx 

at the p<.01 and p<.05 inclusion thresholds (β =.0008, p=.009 and β =.0004, p=.022, 

respectively). The overall effect sizes were relatively small, with each GW-score explaining 

about 1% of the variance in ADsx. Effect sizes for the DHS-scores were also modest, with 

each explaining ~0.5% of the variation in ADsx. The GW- and DHS-scores included 

different numbers of SNPs; accordingly, we compared the per-SNP effect sizes for the two 

types of polygenic scores. Ratios of the DHS to GW per-SNP effect were 1.1 to 1.4 for the 

per-SNP variance accounted for (R2). This indicates that, on average, each SNP in DHS-

scores accounted for 1.1–1.4 times more variance in ADsx compared to each SNP included 

in the GW-scores.
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Height—Regression results for GW-scores and DHS-scores predicting height are shown in 

Table 3. The GW-scores significantly predicted height at both the p<.01 and p<.05 inclusion 

thresholds (β =0.0028, p=1×10−47 and β =0.0025, p=3×10−48, respectively). Likewise, the 

DHS-scores significantly predicted height at the p<.01 and p<.05 inclusion thresholds (β 
=0.0042, p=1×10−37 and β =0.0040, p=3×10−39, respectively). Compared to polygenic 

prediction of ADsx, the predictive power of polygenic scores for height was much stronger 

and the total phenotypic variance accounted for was considerably larger, ranging from 8.6 – 

8.9% for GW scores and 6.4 – 6.9% for DHS scores. The per-SNP ratios for DHS to GW 

effects ranged from 1.6 to 1.8 for R2, indicating that each SNP included in the DHS-scores 

accounted for, on average, 1.6–1.8 times the variance in height compared to SNPs in GW-

scores.

Are DHS SNPs Enriched for Significant G×E Effects?—Of the top independent 

1137 SNPs, 55 (4.8%) showed significant evidence for interaction (p < .05 in the interaction 

model). In total, 27 of the 409 DHS SNPs showed significant G×E effects (7%) compared to 

28 of 728 non-DHS SNPs (4%). A chi-square test of independence indicated that DHS SNPs 

were overrepresented among significant G×E effects relative to expectation, χ2(1) = 3.92, p 
= 0.05. This indicates that gene-environment interaction effects for this particular 

environment were modestly enriched for DHS SNPs.

In supplementary analyses, we also examined whether relationship status moderated the 

main effect of the aggregate GW- and DHS-scores in predicting alcohol intoxication. None 

of these interaction effects were significant (all p > 0.05).

Discussion

We tested two hypotheses related to the incorporation of functional genomic information to 

understand genetic and G ×E effects on alcohol use outcomes. We found that DHS-scores 

were more parsimonious compared to the GW-scores while capturing the majority of the 

same signal. The per-SNP effects for variants in the DHS-scores were 1.1 to 1.4 times larger 

than the per-SNP effect for variants in the GW-scores. We found a similar pattern of effects 

for a second non-psychiatric phenotype, height. We also found that DHS SNPs were 

modestly enriched for G×E effects compared to non-DHS SNPs in a model looking at 

romantic relationship status as the moderator.

These findings add to a growing literature demonstrating that incorporation of functional 

information about SNPs can advance our understanding of genetic contributions to complex 

diseases and disorders (Schork et al., 2013, Edwards et al., 2015, Maurano et al., 2012, 

Finucane et al., 2015). There was minimal loss in predictive power when polygenic scores 

were limited to variants in DHS regions, which is an encouraging sign that the included 

variants may be etiologically relevant given their higher a priori probability of having 

functional consequences. These results also provide some evidence that, like other complex 

traits (Maurano et al., 2012, Gusev et al., 2014), regulatory mechanisms appear to play a 

large role in the genetic factors impacting alcohol use outcomes. We should note, however, 

that the clinical utility of polygenic scoring methods for alcohol problems remains modest: 

both DHS- and GW- polygenic scores accounted for < 1% of the variance in alcohol 
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dependence symptoms. It was for this reason that we repeated the analyses with height, 

where there is greater predictive ability associated with polygenic risk scores calculated 

from large meta-analyses. We were encouraged to find a parallel pattern of results.

Our findings also provide initial evidence that DHS variants are more likely (compared to 

non-DHS variants) to be involved in gene-by-environment interaction effects. The study of 

measured gene-by-environment interaction is controversial, in part owing to problems 

surrounding the selection of the handful of SNPs in “usual suspect” candidate genes 

commonly examined (Dick et al., 2015, Duncan and Keller, 2011). Our results provide 

evidence for an empirically based approach that builds on findings from twin studies, 

GWAS, and functional genomics to select SNPs for studies of measured G×E. Thus, there 

may be a biologically and empirically justifiable way forward to identify the variants likely 

to be moderated by environmental factors. Important questions remain about the specific 

mechanisms underlying these statistical interactions, and where in the pathway from genes 

to behavior an environmental factor is likely to exert its moderating effect (Moore and 

Thoemmes, 2016). We speculate that DHS SNPs may be especially responsive to 

environmental inputs given their involvement in gene regulation (Liu et al., 2008).

Limitations

Our results should be considered in the context of several limitations. First, there was 

imperfect correspondence between the study populations and alcohol problems measures 

across the ALSPAC and FinnTwin12 samples. This concern is lessened in view of the 

genetic overlap evident between multiple dimensions of alcohol use (Dick et al., 2011). 

Second, the sample sizes of ALSPAC and FinnTwin12 are relatively small given the growing 

recognition of the large sample sizes needed to precisely estimate small effect sizes. We 

recognize that there are larger GWAS of alcohol-related behaviors (e.g., Schumann et al., 

2016). Several factors guided our choice to use ALSPAC as our discovery sample, including 

the greater similarity between the ALSPAC and FinnTwin12 sample populations and alcohol 

problems phenotypes (in contrast to the aging-related cohorts included in the Schumann et 

al. (2016) study, as well as that study’s focus on an alcohol consumption phenotype). Third, 

the polygenic scores derived here include only common variants in regions well tagged by 

the variants in the 1000 Genomes panel. Fourth, there are alternative enrichment (Finucane 

et al., 2015) and alternative polygenic scoring methods (e.g., LDpred; Vilhjalmsson et al., 

2015). Some combination of these may provide additional avenues for optimizing the 

predictive ability of polygenic scores in the future.

Fifth, we did not take into account the tissue specificity of regulatory markers when 

delineating DHS SNPs, as all variants located in (or in perfect LD with) a DHS site in any of 

the RoadMap tissue lines was considered a DHS SNP. Therefore, SNPs that have only a 

regulatory function in tissues that are not relevant to alcohol use would have been included 

in the DHS-scores along with true important functional variants, diluting the magnitude of 

the per-SNP association and the difference in association between SNPs included in the 

DHS versus non-DHS scores. We performed supplementary analyses using scores that 

included DHS SNPs limited to brain tissue samples and DHS SNPs present in two or more 

tissue samples to determine whether SNPs from certain samples were more relevant. Neither 
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of these scores at either p-value threshold predicted ADsx. This may be due to the very 

small number of markers included in both the brain tissue score (p<.01 = 139; p<.05 = 653) 

or the two tissue score (p<.01 = 495; p<.05 = 2,571).

Sixth, our environmental moderator (romantic relationship status) captures only one of many 

relationship features previously implicated in studies of gene-environment interplay for 

alcohol use and problems (Jarnecke and South, 2014), and our measure of it was rather 

crude. Although we detect modest evidence that SNPs in DHSs were enriched for G × E 

effects, we note that these statistical interactions do not in themselves illuminate the 

biological processes through which these effects occur. Furthermore, as with all studies of 

G×E with measured genotypes, power is a concern and the results should be interpreted with 

appropriate caution. We conducted post-hoc power analyses using Quanto (Gauderman, 

2002), and when the G×E effect was very small (R2 = 0.0005), we had very low power to 

detect effects (12%). However, when the G×E effect was somewhat larger (R2 = 0.005) we 

had 72% power to detect interactions. On a more conceptual level, we note that previous 

analyses using the FinnTwin12 data have established latent G×E effects for relationship 

status and intoxication frequency (Barr et al., in press). This gives us more confidence in the 

G×E results using measured genotypes. Finally, as with other tests of enrichment, the focus 

of this analysis was not on interpreting the direction of any of the SNP × Relationship Status 

effects themselves, but rather examining whether there was overall enrichment to inform 

future studies about “which SNPs and which genes” are worth carrying forward into studies 

of GxE using measured genotypes.

Conclusions and Future Directions

These findings highlight the potential utility of integrating genomic annotation information 

in order to increase the signal-to-noise ratio in polygenic scores, and identify genetic 

variants that may be most susceptible to environmental modification. This work can be 

expanded in several ways, including extensions to jointly consider multiple annotation 

categories (Pickrell, 2014) and to make use of alternative weighting schemes to up- and 

down-weight variants across a range of regulatory marks rather than the blunt filtering tool 

applied here. Such advancements, in conjunction with ongoing efforts to increase power in 

gene identification studies, have the potential not only to provide biological insights into the 

etiology of alcohol misuse and other complex psychiatric disorders, but also to one day 

provide clinical utility to identify and treat at-risk individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of DHS- and GW-polygenic score creation in the FinnTwin12 sample using an 

illustrative p-value of p < 0.01. The GW-score is the weighted linear combination of all 

SNPs meeting p < 0.01 in the discovery sample (ALSPAC) GWAS (Edwards et al., 2015). 

The DHS-score is the weighted linear combination of the subset of SNPs meeting p < 0.01 

in the discovery sample GWAS that were also located in a DHS site. Abbreviations: DHS = 

DNase I hypersensitive site; GWAS = Genome-wide association study; LD = linkage 

disequilibrium; SNP = single nucleotide polymorphism.
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