Table 5.
A comparison of our AMP prediction method with state-of-the-art methods on AUC-ROC, AUC-PR, MCC, and κ by means of datasets Ctrain and Ctest.
Method | ML algorithm | Number of features | AUC-ROC | AUC-PR | MCC | κ |
---|---|---|---|---|---|---|
iAMPpred# | SVM | 66 | 0.98 | 0.99 | 0.91 | — |
iAMP-2L# | FKNN | 46 | 0.95 | — | 0.9 | — |
AmPEP (DF) | RF | 105 | 0.995 | 0.957 | 0.920 | 0.962 |
AmPEP (DF_PCC < 0.7) | RF | 80 | 0.994 | 0.950 | 0.914 | 0.913 |
AmPEP (DF_PCC < 0.6) | RF | 43 | 0.994 | 0.934 | 0.919 | 0.918 |
AmPEP (DF_PCC < 0.5) | RF | 23 | 0.995 | 0.905 | 0.924 | 0.923 |