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Structural insight into molecular mechanism of poly
(ethylene terephthalate) degradation
Seongjoon Joo1, In Jin Cho 2, Hogyun Seo1, Hyeoncheol Francis Son1, Hye-Young Sagong1, Tae Joo Shin3,

So Young Choi 2, Sang Yup Lee 2 & Kyung-Jin Kim1

Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics

and thus are widely used in daily life. However, non-biodegradability, once thought to be an

advantage offered by plastics, is causing major environmental problem. Recently, a PET-

degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in

degradation and/or recycling of PET. However, the molecular mechanism of PET degradation

is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å

resolution. IsPETase has a Ser–His-Asp catalytic triad at its active site and contains an optimal

substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moi-

eties of PET. Based on structural and site-directed mutagenesis experiments, the detailed

process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested.

Moreover, other PETase candidates potentially having high PET-degrading activities are

suggested based on phylogenetic tree analysis of 69 PETase-like proteins.
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P lastics are essential materials in our lives due to their
desirable properties, such as lightness, durability, low price,
easy processibility into many different forms, and non-

degradability. However, non-degradability, which had been con-
sidered to be a great advantage of employing plastics, has been
reconsidered as a major cause of environmental problems, in
particular due to the accumulation of waste plastics in landfill and
ocean. Plastics production has continuously increased and about
320 million tons of plastics were produced globally in 20151.
Because most plastics are resistant to biodegradation and require
a long time to degrade, the amount of plastic wastes to be
accumulated is expected to reach 33 billion tons by 20502.
Therefore, much effort has been exerted to reduce plastic wastes.
To remove plastic wastes and recycle plastic-based materials,
several chemical degradation methods such as glycolysis,
methanolysis, hydrolysis, aminolysis and ammonolysis have been
developed3. However, these methods generally require high
temperature and often generate additional environmental pollu-
tants4. Alternatively, biocatalytic degradation might be applied as
an ecofriendly method. Microbes can degrade plastics with ester
bond via enzymatic hydrolysis through colonization onto the
surfaces of materials. The degree of biodegradability of plastics
depends on their chemical and physical properties5.

Poly(ethylene terephthalate) (PET) is an extensively and widely
used polyester and is also resistant to biodegradation. According
to a report by the US National Park Service, PET bottles require
approximately 450 years to be decomposed6. PET comprises
terephthalate (TPA) and ethylene glycol (EG), which are poly-
merized through ester linkage. Various bacterial hydrolases, such
as cutinases7, lipases, carboxylesterases, and esterases8, have been
shown to degrade PET, although to different extents9. Among the
PET-degrading enzymes identified to date, TfH and TfH BTA-2
from Thermobifida fusca DSM43793, TfCut1 and TfCut2 from T.
fusca KW3, LC cutinase from the metagenome in plant compost,
cutinase from Saccharomonospora viridis AHK190, HiC from
Thermomyces insolens, and lipase B from Candida antarctica have
been shown to possess relatively higher degradability. However,
the degradation activities are still too low for industrial
applications9, 10.

To enhance enzymatic activity, several strategies have been
adopted. Through site-directed mutagenesis of the active site,
cutinases exhibit higher hydrolysis activity11, 12. Moreover, the
introduction of Ca2+ or Mg2+ ions to esterases13 or the addition
of disulfide bonds to esterases14 improves the thermal stability of
the enzymes, leading to enhanced PET degradability. Recently, a
dual enzyme system consisting of Tfcut2 from T. fusca KW3 and
LC cutinase15 or lipase from C. antarctica and cutinase from
Humicola insolens16 was found to have synergistic effects. Despite
these attempts, the PET degradation activity still remains low.

Recently, a new bacterial species, Ideonella sakaiensis, which
can use PET as a carbon source, was isolated17–20. The PETase of
I. sakaiensis (IsPETase) can degrade PET at a moderate tem-
perature (30 °C) and has relatively higher activity than other PET-
degrading enzymes, such as cutinases and lipases17. In addition,
IsPETase showed higher specificity for PET. The superior cap-
ability of IsPETase for PET degradation has been receiving much
attention. However, the detailed enzyme mechanism has not been
elucidated, hampering further studies. Here we report the crystal
structure and key structural features of IsPETase. While we
determined the crystal structure (Protein Data Bank accession
code, 5XJH) and this manuscript was under revision, another
group independently determined the crystal structure of IsPETase
(Protein Data Bank accession code, 5XG0)21. In this study, based
on structural and biochemical studies of IsPETase, we propose the
detailed molecular mechanism of IsPETase, so far the most effi-
cient and more specific PET degrading enzyme, compared with

other PET-degrading enzymes. In addition, we constructed the
IsPETase variant with enhanced PET-degrading activity by
structural-based protein engineering.

Results
Overall structure of IsPETase. For structural determination of
IsPETase, the signal peptide sequences (Met1-Ala33) were
removed for the production of the core domain of the protein.
The recombinant IsPETase protein had additional amino-acid
residues at both N and C-termini (Met13–Met33 and
Leu291–Gln312) due to the use of the pET15b vector. To eluci-
date the molecular mechanisms of IsPETase, its crystal structure
was determined at 1.5 Å resolution (Fig. 1 and Supplementary
Fig. 1). The structure reported here comprises residues Ser31-
Gln292 visible in the electron density map. The refined structure
was in good agreement with the X-ray crystallographic statistics
for bond angles, bond lengths, and other geometric parameters
(Supplementary Table 1). The asymmetric unit in the P212121
space group contains one molecule of IsPETase, indicating that
IsPETase exists as a monomer. The size-exclusion chromato-
graphy experiment also confirms that IsPETase functions as a
monomer (Supplementary Fig. 2). The IsPETase structure
belongs to the α/β hydrolase superfamily22–24, and the central
twisted β-sheet is formed by nine mixed β-strands (β1–β9) and
surrounded by seven α-helices (α1–α7; Fig. 1b). As observed in
other α/β hydrolase superfamily proteins such as lipases and
esterases, IsPETase contained the conserved serine hydrolase
Gly–x1–Ser–x2–Gly motif (Gly158–Trp159–Ser160–Met161–
Gly162) located at the active site (Fig. 1a).

Active site of IsPETase. IsPETase has been shown to degrade
PET into monomers such as bis(2-hydroxyethyl) terephthalate
(BHET), mono(2-hydroxyethyl) terephthalate (MHET), and
TPA17 (Supplementary Fig. 3). IsPETase also hydrolyzes BHET,
which is a commercial monomer having similarity with the core
structure of PET and has been widely used for studying PET.
BHET is hydrolyzed by IsPETase to MHET with no further
decomposition17. In order to elucidate the substrate binding
mode of IsPETase, we first attempted to determine its structure in
complex with BHET. However, neither co-crystallization nor
soaking of BHET into the IsPETase crystal was successful,
potentially because we could not use high concentration of BHET
in co-crystallization and soaking due to its low solubility. Alter-
natively, we speculated the substrate binding mode of the enzyme
by covalent docking calculation using 2-hydroxyethyl-(mono-
hydroxyethyl terephthalate)4, 2-HE(MHET)4, a four-MHET
molecule mimicking PET (Supplementary Fig. 3). At the active
site of IsPETase, three residues Ser160, His237, and Asp206 form
a catalytic triad and Ser160 is postulated to function as a covalent
nucleophile to the carbonyl carbon atom in the scissile ester bond,
as in other carboxylesterases (Fig. 2a). Oxyanion of the tetra-
hedral intermediate is stabilized by an oxyanion hole that consists
of nitrogen atoms of Tyr87 and Met160 with distances of 2.90
and 2.83 Å, respectively (Fig. 2a). The substrate binding site is
simulated to form a long, shallow L-shaped cleft on a flat surface
with dimensions of approximately 25 and 29 Å (Fig. 2b–d). The
surface of the substrate binding cleft is mainly hydrophobic and
the length of the cleft is ~40 Å (Fig. 2b). Based on the scissile ester
bond of 2-HE(MHET)4, the substrate binding site can be divided
into two subsites, subsite I and subsite II, where one and three
MHET moieties are bound, respectively (Fig. 2b,e). For binding of
the first MHET moiety in the subsite I, the benzene ring is
positioned on a ravine between the two aromatic residues of
Tyr87 and Trp185 (Fig. 2b, e). The π–π interactions between
Trp185 and the benzene ring of the first MHET moiety with a
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distance of ~3.6 Å seem to be a main contributor to the stabili-
zation of the ligand (Fig. 2e). Met161 and Ile208 are also pre-
dicted to assist the binding of the first MHET by providing a
hydrophobic surface at the bottom and the side of subsite I,
respectively (Fig. 2e). Subsite II tends to form a longer and
shallower cleft than subsite I and accommodates three MHET
moieties (the second, third and fourth MHET moieties of 2-HE

(MHET)4) (Fig. 2b–d). Based on the binding of MHET, the
subsite II is further divided into three parts, subsite IIa, IIb, and
IIc (Fig. 2b, e). Subsite II is composed of residues including
Thr88, Ala89, Trp159, Ile232, Asn233, Ser236, Ser238, Asn241,
Asn244, Ser245, Asn246, and Arg280. Although the interaction
between subsite II and three MHET moieties seems to be mainly
mediated through hydrophobic interactions, carbonyl oxygen
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Fig. 1 Crystal structure of IsPETase. a Amino-acid sequence alignment of PET-degrading enzymes. Amino-acid sequences of six PET-degrading enzymes,
two each of type I, type IIa, and type IIb, are compared. Secondary structure elements are drawn on the basis of the IsPETase structure and shown with a
purple-colored arrow (β-sheet) and blue-colored helix (α-helix). The Gly–x1–Ser–x2–Gly motif and the extended loop are highlighted as purple and red color
boxes, respectively. Residues involved in enzyme catalysis and constitution of subsite I and subsite II are indicated by red-, blue- and purple-colored
triangles, respectively. The disulfide bond found in all six enzymes is indicated with an orange-colored line and labeled with ‘Disulfide bond 1’. The
additional disulfide bond found only in IsPETase is also indicated with an orange-colored line and labeled with ‘Disulfide bond 2’. Is, Ad, Pp, Oa, Tf, and Sv are
representations of PET-degrading enzymes from Ideonella sakaiensis, Acidovorax delafieldii, Pseudomonas pseudoalcaligenes, Oleispira antarctica, Thermobifida
fusca, and Saccharomonospora viridis, respectively. b Structure of IsPETase. The monomeric structure is shown as a ribbon diagram. The three residues of
Ser160, Asp206 and His237 forming a catalytic triad are shown as cyan-colored sticks, and the two disulfide bonds are as light-blue-colored sticks. The
simulated 2-HE(MHET)4 molecule at the active site is shown as an orange-colored stick. The right side figure is rotated 90° horizontally from the left side
figure
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atoms in the fourth MHET moiety also form polar interactions
with a main chain of Ser236 and a side chain of Asn246 in the
subsite IIc (Fig. 2b, e). Arg280 is located at the end of subsite IIc
and the residue seems to hinder the extension of the substrate
binding site due to its positive charge and slightly protruding

structure (Fig. 2b, c, e); this residue was further examined by
protein engineering (see below).

In order to confirm the residues involved in enzymatic catalysis
and substrate binding, site-directed mutagenesis experiments
were conducted. First, three catalytic residues, Ser160, Asp206
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and His237, were replaced with Ala, and hydrolytic activities were
measured using BHET as a substrate. All three variants,
IsPETaseS160A, IsPETaseD206A, and IsPETaseH237A, showed
almost complete loss of the activity (Fig. 3a), indicating that
these three residues were involved in catalysis. Next, Tyr87,
Trp185, Met161, and Ile208 residues, which constitute subsite I,
were replaced with Ala. Two mutants, IsPETaseY87A and
IsPETaseW185A, showed only 5% BHET hydrolytic activity
compared with IsPETaseW/T (Fig. 3a). This result indicates that
abolishment of the π–π interactions of these residues with the
benzene ring of the first MHET moiety severely decreases
stabilization of the first MHET moiety. The IsPETaseM161A and
IsPETaseI208A variants exhibited 52% and 46% activity, respec-
tively, compared with IsPETaseW/T (Fig. 3a). It indicates that
these residues also contribute to the constitution of subsite I,
although these residues are not as crucial as Tyr87 and Trp185
residues. We also replaced residues of Trp159, Ser238, and
Asn241, which constituted subsite II, with Ala. IsPETaseW159A,
and IsPETaseN241A showed only 8% and 18% BHET hydrolytic
activities compared with IsPETaseW/T (Fig. 3a), suggesting that
these residues are crucial in the constitution of subsite II.
However, IsPETaseS238A showed a similar level of BHET
hydrolytic activity compared with IsPETaseW/T (Fig. 3a). The
result suggests that replacing of Ser238 with Ala does not seem to
affect BHET hydrolytic activity of the enzyme. Next, the PETase
activities of the above variants were measured using PET film as a
substrate. Variants of the catalytic triad with Ala showed almost
complete loss of enzyme activities, and those involved in
constitution of the substrate binding site exhibited decreased
PETase activities compared with IsPETaseW/T (Fig. 3b).

As we described above, Arg280 at the end of subsite IIc is a
polar residue and shows protruding shape, which seems to hinder
stable binding of PET substrate beyond the fourth moiety (Fig. 2b,
c, e). Based on these results, we predicted that the substitution of
Arg280 into a small hydrophobic residue might allow more stable
binding of longer substrate, subsequently leading to an increase in
PETase activity. We replaced Arg280 with Ala, and measured
both the BHET hydrolytic and the PETase activities. IsPETa-
seR280A showed similar activity on BHET hydrolysis compared
with IsPETaseW/T (Fig. 3a), and the result can be explained by the
fact that Arg280 is located distal from the catalytic site and thus
does not directly participate in substrate binding when BHET is
used as a substrate. As hypothesized, IsPETaseR280A showed
increased PETase activity by 22.4% in 18 h and 32.4% in 36 h,
compared with IsPETaseW/T, when PET film was used as a
substrate (Fig. 3b). To investigate whether the replacement of
Arg280 with Ala indeed changed the conformation of substrate
binding site (subsite IIc) allowing longer substrate binding, we
determined the structure of IsPETaseR280A at a 1.36 Å resolution
(Supplementary Table 1). As expected, compared with IsPETa-
seW/T, IsPETaseR280A showed an extended subsite IIc by
providing hydrophobic and non-protruding cleft (Fig. 3c). It is
interesting that the replacement of Arg280, located distal from the
catalytic site with a distance of 22.8 Å, with Ala enhanced the
enzymatic activity. This result could not be obtained without
reliable docking calculation, which identified unique substrate
binding characteristics of IsPETase.

PET degradation mechanism by IsPETase. Based on the struc-
tural observations and biochemical studies described above, we
propose the following PET degradation process. To start PET
degradation, the PETase secreted from the bacterium would first
bind to the PET surface using its flat hydrophobic surface that has
a substrate binding cleft (Fig. 2b–d). The PET degradation pro-
cess can be divided into two steps, nick generation step and

terminal digestion step. In the nick generation step, four MHET
moieties are bound to each subsite (one MHET moiety to subsite
I and three MHET moieties to subsite II) and the scissile ester
bond seems to be positioned between subsite I and II near the
catalytic Ser160 residue (Fig. 4a). Then, the cleavage of one ester
bond causes the formation of a nick in PET, resulting in gen-
eration of two PET chains with different terminals: TPA-terminal
released from subsite I and HE-terminal released from subsite II
(Fig. 4a).

In the terminal digestion step, two PET chains having the HE-
and the TPA-termini are digested into MHET monomers in
somewhat different manners. For digestion of PET having the
HE-terminal (HEPET), the terminal MHET and the next three
MHET moieties bind to subsite I and subsite II, respectively, and
breakage of the ester bond results in the production of one MHET
monomer and HEPETn−1 (Fig. 4b). Subsequent digestion of
HEPETn−1 is expected to occur in a manner similar to that of the
first cleavage process. Digestion of PET having the TPA-terminal
(TPAPET) is also expected to occur through positioning of the
terminal TPA and the next three MHET moieties at subsite I and
subsite II, respectively (Fig. 4b). Cleavage of the ester bond seems
to produce one TPA molecule and HEPETn−1, and this HEPETn−1

undergoes subsequent cleavage as observed in the HEPET
degradation process (Fig. 4b). Alternatively, HEPET and TPAPET
can also be digested though binding of PET polymer chains and
the enzyme in the reverse direction, although this type of
digestion might be less efficient than the above digestion. In this
case, one or two MHET moieties, instead of three MHET
moieties, can bind to subsite II (Fig. 4b). These bindings can
produce a variety of PET monomers and dimers such as 2-HE
(MHET)2, (MHET)2, MHET and BHET, which can be finally
digested to MHET, TPA and EG (Fig. 4b). Continuous digestions
of HEPET and TPAPET proceed in a combinatorial manner, as
described above, resulting in accumulation of four molecules,
including MHET, TPA, BHET, and EG (Fig. 4b). BHET can be
further degraded into MHET and EG, and finally, three
molecules, MHET, TPA, and EG, accumulate due to PET
degradation (Fig. 4b). In addition, it is worth to note that
degradation of PET film by IsPETase accumulates significant
amount of TPA (Fig. 2b), although IsPETase can not hydrolyze
MHET to TPA and EG17. Based on the PET degradation process
we propose here, it can be also concluded that accumulation of
TPA from PET film degradation is mainly derived from terminal
digestion step of TPAPET.

Structural comparison with other PET degrading enzymes.
Structural comparison using the DALI server25 showed that the
structure of IsPETase is quite similar to those of cutinases from
T. fusca KW3 (TfCut2, PDB code 4CG1, Z-score 42.4), S. viridis
(SvCut, PDB code 4WFJ, Z-score 42.3), and Thermobifida alba
(TaCut, PDB code 3VIS, Z-score 42.1). These structural homo-
logs have been identified to have a PET-degrading activity26–28

and share ~50% amino-acid identity with IsPETase. In order to
provide a structural basis for why IsPETase shows much higher
PETase activity than these other PET-degrading enzymes, we
compared the structure of IsPETase with other three PET-
degrading enzymes. As residues constituting the substrate binding
site are almost conserved within these enzymes, the structure of
IsPETase was compared with that of TfCut2, a representative
cutinase studied for PET degradation.

Three residues constituting the Ser–His–Asp catalytic triad are
located at the same positions in TfCut2 (Fig. 5a), indicating that
these enzymes catalyze PET degradation through the same
catalytic mechanism. The residues constituting subsite I are also
identical in both IsPETase and TfCut2. It suggests that the
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binding mode of the first MHET moiety to subsite I is similar in
both enzymes (Fig. 5a). However, significant structural differ-
ences were observed in the conformation of subsite II. In TfCut2,
His169 and Phe249 residues are located at the corresponding

positions of Trp159 and Ser238 in subsite II of IsPETase,
respectively (Fig. 5a). To verify whether the residues, Trp159 and
Ser238, play a crucial role in the high PET-degrading activity of
IsPETase, these two residues were replaced with His and Phe,
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with dotted circles. Error bars represent the s.d. values obtained in duplicate experiments
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respectively, the corresponding residues in TfCut2. The IsPETa-
seW159H and the IsPETaseS238F variants showed dramatically
decreased hydrolytic activities from both uses of BHET and PET
as a substrate (Fig. 3a, b). The differences in these residues seem
to make subsite IIa of TfCut2 narrower and deeper than that of
IsPETase, resulting in reduced accessibility of the second MHET
moiety to its binding site in TfCut2 (Fig. 5b, c). Furthermore,
more striking structural difference was observed in the connect-
ing loop of β8-α6 (Figs. 1a and 5a). Compared with TfCut2,
IsPETase has an extended loop in the region with three extra-
residues (Asn244, Ser245, and Asn246; Figs. 1a and 5a).
Interestingly, the unique conformation of the extended loop in
IsPETase allows the formation of subsite IIb and IIc by
constituting a continuous cleft from subsite IIa (Fig. 5b, c). On
the other hand, the conformation of the region in TfCut2
prevents the formation of subsite IIb and IIc by blocking the
constitution of the continuous cleft (Fig. 5b,c).

In addition to structural differences in subsite II, existence of
two disulfide bonds is another important structural feature of
IsPETase. In other PET-degrading enzymes, one disulfide bond is
observed near the C-terminal; the disulfide bond is formed
between Cys281 and Cys299 in TfCut2, between Cys287 and
Cys302 in SvCut, and between Cys276 and Cys294 in TaCut
(Fig. 5d). The disulfide bond is also conserved in IsPETase and
formed between Cys273 and Cys289 (Fig. 5d). Since the disulfide
bond is located at the opposite side of the active site, it can be
assumed that the disulfide bond has no direct effect on the
enzyme activity, but rather influences the structural stability of
the enzyme. Interestingly, IsPETase has an additional disulfide
bond between Cys203 and Cys239 in the vicinity of the active site
(Fig. 5e). However, all other PET-degrading enzymes have Ala
residues at the corresponding positions (Fig. 5f). Since internal
disulfide bonds tend to increase the thermal stability of proteins,
another IsPETase variant without the additional disulfide bond
was generated to investigate how the disulfide bond affects the
thermal stability of IsPETase. The Tm values of IsPETaseW/T and
IsPETaseC203A/C239A variant were 46.8 and 33.6 °C, respectively
(Supplementary Fig. 4), suggesting that the additional disulfide

bond plays an important role in the thermal stability of IsPETase.
As expected, the PETase activity of IsPETaseC203A/C239A was
dramatically decreased compared with that of IsPETaseW/T

(Fig. 3a, b). The Tm of TfCut2 was measured to be 67.9 °C,
which is much higher than that of IsPETaseW/T. The reason with
high Tm value of TfCut2 is expected as T. fusca is a thermophilic
bacterium, and its high thermal stability is due to other structural
features of the protein even without the additional disulfide bond.

Phylogenetic tree analysis. Having understood the reasons for
the much higher PETase activity of IsPETase compared with
other known PET-degrading enzymes as described above, we
became interested in comparatively analyzing all possible 69
PETase-like enzymes from phylogenetically diverse organisms.
For this, a maximum-likelihood phylogenetic tree was con-
structed (Fig. 6a and Supplementary Fig. 5). PETase-like enzymes
can be classified into two types, type I and type II. Fifty-seven
enzymes, including TfCut2, belong to type I, and the remaining
twelve enzymes including IsPETase belong to type II. Type II
PET-degrading enzymes can be further classified into two sub-
types, type IIa and type IIb. Among 12 type II enzymes, eight
enzymes belong to type IIa and four enzymes including IsPETase
belong to type IIb. In all 69 proteins, three residues constituting
the catalytic triad, such as Ser, His, and Asp, are conserved
(Fig. 6b), indicating that these enzymes have the same catalytic
mechanism. The residues constituting subsite I are also highly
conserved in all proteins, suggesting that the binding mode of the
first MHET moiety to subsite I is quite similar among these
proteins (Fig. 6b). However, there are major differences in key
residues comprising subsite II and in the presence of additional
disulfide bond depending on the type of enzyme. In type I PET-
degrading enzymes, there is no additional disulfide bond and the
extended loop found in IsPETase. Moreover, all of these enzymes
possess His and Phe/Tyr residues at the corresponding positions
of Trp159 and Ser238 in IsPETase, respectively (Fig. 6b). These
structural features suggest that type I PET-degrading enzymes
have much lower PET-degrading activity compared with
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Fig. 4 Schematic diagram of PET degradation process. a Nick generation step. The TPA and EG moieties of the PET polymer are presented with orange-
colored hexagons and purple-colored lines, respectively. IsPETase is shown with a dark-gray color diagram. Subsite I and subsite II of IsPETase are shown as
an orange and green-colored diagrams, and labeled as I and II, respectively. The catalytic Ser160 residue is shown as a red-colored rectangle. The PETn
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from each terminal. b Terminal digestion step. Each enzymatic reactions in terminal digestion step is shown as a diagram. The cleaved products from the
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next reaction. Six PET-related compounds, 2-HE(MHET)2, (MHET)2, MHET, TPA, BHET, and EG, that are cleaved products from terminal digestion step,
are shown. The final degradation product (MHET, TPA and EG) are labeled in bold

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02881-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:382 |DOI: 10.1038/s41467-018-02881-1 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


IsPETase

a

b c

d e fIs_A89

Is_C203

Is_C239

A202

Extended loop

E204

C203

C239 A240

S238

Tf_G102
Sv_A108
Ta_G97

Is_N241
Tf_N252
Sv_N258
Ta_N247

Tf_A213
Sv_A219
Ta_A208

Tf_A250
Sv_A256
Ta_A245

TfCut2

Additional disulfide bond
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are shown as gray-colored cartoon model. The 2-HE(MHET)4 docking model of IsPETase is shown as an orange-colored stick. Residues constituting subsite
I and subsite II of IsPETase and TfCut2 are shown as a line models with cyan and magenta colors, respectively, and labeled. The unique residues observed in
IsPETase, Trp159 and Ser238, are indicated with star marks. The extended loop of IsPETase distinguishable from TfCut2 is shown in light-blue color. b, c
Structural difference on subsite II of IsPETase (b) and TfCut2 (c). The structures of IsPETase and TfCut2 enzymes are presented as surface models with a
gray color. The 2-HE(MHET)4 docking model of IsPETase is shown as an orange-colored stick. The Ser328 and Trp159 residues in subsite II and extended
loop of IsPETase corresponding phenylalanine and histidine residues and extended loop in other PET-degrading enzymes are distinguished and labeled,
respectively. d Disulfide bond found in PET-degrading enzymes. The disulfide bond found in each all four PET-degrading enzymes is shown as a stick
model, respectively and the residues forming the disulfide bond are labeled. e, f Additional disulfide bond found in IsPETase. The IsPETase structure is
presented as a stick model and the omit electron densities (magenta mesh) of the residues constituting the additional disulfide bond in IsPETase are
contoured at 2.0 σ (e). The additional disulfide bond region in IsPETase is compared with the corresponding regions in other PET-degrading enzymes (f).
The residues forming the additional disulfide bond in IsPETase and those located at the corresponding positions in other PET-degrading enzymes are shown
as a stick model and labeled appropriately
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IsPETase. Unlike type I enzymes, all type II PET-degrading
enzymes have additional disulfide bonds and the extended loop
(Fig. 6b). However, substantial differences were observed in
residues constituting subsite II and the extended loop depending
on type IIa and type IIb (Fig. 6b). Although residues constituting
subsite II and the extended loop are conserved among type IIb
enzymes, type IIa enzymes have a Phe or Tyr residue at the

position of Ser238 in IsPETase (Fig. 6b). Because the IsPETa-
seS238F variant exhibited much lower PET-degrading activity
compared with IsPETaseW/T, the type IIa proteins are predicted
to have lower PET-degrading activities compared with IsPETase.
Furthermore, type IIa enzymes have highly variable residues at
the extended loop (Fig. 6b), implying that environment around
subsite IIb and IIc of type IIa enzymes might be quite different
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from that of type IIb enzymes. Based on the same reasoning, the
other enzymes of type IIb are predicted to have PET-degrading
activities similar to that of IsPETase. In addition to IsPETase,
enzymes originating from bacteria, such as Acidovorax dela-
fieldii29, [Polyangium] brachysporum DSM 702930, and Bur-
kholderiales bacterium RIFCSPLOWO2_02_FULL_57_3631,
belong to type IIb. Interestingly, all four bacteria of type IIb
enzymes belong to the order Burkholderiales, suggesting that
these four bacteria seem to have similarly evolved.

Discussion
Until recently, enzymes using PET as a natural substrate have not
been identified, and PET degradation studies have mainly been
performed using cutinase and lipase family enzymes. However,
degradation of PET with these enzymes was not effective due to
their low affinities to PET, which leads low PET degrading
activity. Recently, PETase from I. sakaiensis was reported to have
much higher PET degradation efficiency than those enzymes
previously examined17. In this work, we determined the crystal
structure and reported the structural features conferring high
PET-degrading activity on IsPETase based on the docking
calculations.

While this paper of ours was under revision process, Han
et al.21 also reported the crystal structure of IsPETase and its
catalytic mechanism. Since they failed to obtain complex struc-
ture of IsPETase with various ligands, they ended up using
inactive variants of IsPETse instead of wild-type IsPETase and
succeeded in making complex structures of IsPETase variant
(Ser131Ala and Arg103Gly) with two ligand, 1-(2-hydroxyethyl)
4-methyl terephthalate (HEMT) and p-nitrophenol (pNP),
respectively21. The substrate-binding mode in complex with
HEMT or pNP in the first TPA binding site, corresponding to the
first MHET moiety in this study, agrees with what we described in
this study. Based on the complex structure, they focused on the
wobbling tryptophan and serine located near the active site.
Because we also observed multi-occupancy of Trp156 (Trp185 in
our study), this suggested mechanism indicated by the reduced
activity of S185H variant is interesting.

On the other hand, we performed docking calculation using a
longer substrate, 2-HE(MHET)4 and showed a substrate of four
MHET moieties is accommodated by the enzyme. Based on the
docking calculation, we thoroughly investigated the substrate
binding site (subsite I, IIa, IIb, and IIc) by site-directed muta-
genesis and concluded that the superior PET-degrading activity of
IsPETase is attributed to the differences in the subsite II and
disulfide bond formation. In addition, we performed structure-
based protein engineering by replacing Arg280 (a residue located
quite distal from the catalytic site) to Ala. The Arg280Ala variant
showed much higher PET-degrading activity. Then, the crystal
structure of this variant (Arg280Ala) was solved as well, which
showed that the structure was altered to better accommodate PET
substrate as we hypothesized. This is an important finding as the
structure-based engineering of a residue (Arg280), which is
located far away from the catalytic site with a distance of ~ 23 Å
could be selected for enhancing the PETase activity. The proof-of-
concept protein engineering demonstrated in this paper based on
the 3D structure of IsPETase will be invaluable for further
rational protein engineering. Moreover, we also provided com-
parative analysis of all possible 69 PETase-like enzymes from
phylogenetically diverse organisms and could suggest PETase
candidates potentially having high PET-degrading activities using
phylogenetic tree analysis.

Based on this study, we propose future studies for PET
degradation in the following two directions. First, it will be
necessary to characterize PET degradation by other type IIb

enzymes. Second, for actual applications on PET degradation
and/or recycling, protein engineering studies toward further
enhanced enzyme activity, specificity, and stability are also nee-
ded. Also, it is expected that the approaches taken in this study
can be extended to studying other enzymes capable of degrading
different plastics.

Methods
Production of IsPETase. The IsPETase gene was amplified by polymerase chain
reaction (PCR) using synthesized gene with codon optimization for expression in
Escherichia coli cells as a template (Supplementary Table 2). The nucleotide
sequence corresponding to the signal peptide was removed from the synthetic
DNA. The PCR product was then subcloned into pET15b, and the resulting
expression vector pET15a: IsPETase was transformed into the E. coli strain Rosetta
gami-B, which was grown in 11 l of lysogeny broth medium containing Ampicillin
at 37 °C. After induction by the addition of 1 mM isopropyl β-D-1-thiogalacto-
pyranoside, the culture was further incubated for 16 h at 18 °C. The cells were then
harvested by centrifugation at 4000 × g for 10 min at 20 °C. The cell pellet was
resuspended in buffer A (50 mM Na2HPO4-HCl, pH 7.0 and 100 mM NaCl) and
then disrupted by ultrasonication. The cell debris was removed by centrifugation at
13,500 × g for 20 min, and the supernatant was applied to a Ni-NTA agarose
column (Qiagen). After washing with buffer A containing 30 mM imidazole, the
bound proteins were eluted with 300 mM imidazole in buffer A. Finally, trace
amounts of contaminants were removed by size-exclusion chromatography using a
Superdex 200 prep-grade column (320 ml, GE Healthcare) equilibrated with buffer
A. All purification steps were performed at 4 °C. The degree of protein purity was
confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The
purified protein was concentrated to 28 mgml−1 in 50 mM Na2HPO4-HCl, pH 7.0
and 100 mM NaCl. Site-directed mutagenesis experiments were performed using
the Quick Change site-directed mutagenesis kit (Stratagene). The expression and
purification of variants of IsPETase and TfCut2 were performed under the same
conditions as those used for the native protein of IsPETase. To make sure there are
no changes in folding of the all-variant, circular dichroism experiment was per-
formed (Supplementary Fig. 7).

Crystallization of IsPETase. Crystallization of the purified protein was initially
performed with the following crystal screening kits: Index and PEG/Ion (Hampton
Research) and Wizard I and II (Rigaku) using the hanging-drop vapor-diffusion
technique at 20 °C. Each experiment consisted of 1.0 μl of protein solution and 1.0
μl of reservoir solution and then was equilibrated against 50 μl of the reservoir
solution. The best quality IsPETase crystals appeared in 0.1 M ammonium acetate,
0.1 M bis-tris (pH 5.0) and 17% Polyethylene glycol 10,000. The crystals were
transferred to a cryoprotectant solution containing 0.1 M ammonium acetate, 0.1
M bis-tris (pH 5.0), 20% Polyethylene glycol 10,000 and 30% (v v−1) glycerol,
extracted with a loop larger than the crystals, and flash-frozen by immersion in
liquid nitrogen. Crystallization of IsPETaseR280A was performed using procedure
similar to IsPETaseW/T.

Data collection and structure determination of IsPETase. Data were collected at
100 K at Beamline 6D at the Pohang Accelerator Laboratory (Pohang, Korea). The
data were then indexed, integrated, and scaled using the HKL2000 software suite32.
The IsPETase crystals belonged to the space group P212121, with unit cell para-
meters of a = 43.48 Å, b = 50.40 Å, and c = 129.49 Å. With one molecule of IsPE-
Tase per asymmetric unit, the Matthews coefficient was 2.64 Å3·Da−1, which
corresponds to a solvent content of 53.38%33. The structure of IsPETase was
determined by molecular replacement with the CCP4 version of MOLREP34 using
the structure of cutinase from Thermobifida alba (TaCut, PDB code 3VIS, 50%
sequence identity) as a search model. The model building was performed using the
WinCoot program35 and the refinement was performed with REFMAC536. The
data statistics are summarized in Supplementary Table 1. X-ray diffraction data of
IsPETaseR280A crystal were collected at 100 K at Beamline 7A at the Pohang
Accelerator Laboratory (Pohang, Korea)37. The IsPETaseR280A crystal also belon-
ged to the space group P212121, with cell parameters similar to those of IsPETaseW/

T crystal. The structure of IsPETaseR280A was determined by molecular replace-
ment using the structure of IsPETaseW/T as a search model. The model building
and structure refinement were performed as in IsPETaseW/T. The data statistics are
summarized in Supplementary Table 1. The refined models of IsPETase and
IsPETaseR280A have been deposited in the Protein Data Bank with PDB code 5XJH
and 5YNS, respectively.

Molecular docking calculations. Molecular docking of the tetrahedral inter-
mediate from 2-HE(MHET)4 to IsPETase structures was carried out by mixed
approaches of flexible and covalent docking using AutoDock4.238 and AutoDock
Vina39. The ligand molecule of IsPETase was prepared with WinCoot35 and
ProDrg40 and nonpolar H atoms were merged onto both the ligands and the targets
using AutoDockTools prior to performing the docking. For the generation of pdbqt
files of both rigid and flexible receptor, flexible residues (Tyr87, Trp159, Ser160,
Met161, Trp185, Ile208, His237, Ser238, and Asn241) were selected, and the bonds
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in the side chain of each residues were allowed to rotate. The grid box was centered
at x: −3.249, y: 25.239 and z: −29.093 with sizes of 90.7, 74.7, and 122.7 Å,
respectively. Prior to the covalent docking, non-covalent docking calculation using
AutoDock Vina was performed, and nine output poses were generated with their
calculated free energy of binding from its own scoring function. The best docking
model with the lowest binding energy (−7.1 kcal mol−1) was selected, and the
conformation of the model was used as an evaluation standard for the following
calculation. Furthermore, the induced conformation of the flexible residues in the
best model was applied to the receptor for covalent docking. Then, the covalent
docking using AutoDock was conducted according to the previous report41. A total
of 200 docking poses were evaluated based on the proper distances of the oxyanion
hole, and the best pose with the binding energy of −10.27 kcal mol−1 (from the
semi-empirical free energy force field of AutoDock) was selected by similarity to
the non-covalent docking result. The docking pose was finally minimized using
OPLS3 force field42 in the Schrödinger suite.

PETase in vitro assay using bis-hydroxyethyl terephthalate. To compare the
activity of the variants of IsPETase, bis-hydroxyethyl terephthalate (BHET) was
chosen as a substrate for enzyme assay. The BHET stock solution was prepared by
dissolving 2.5 g l−1 of BHET in dimethyl sulfoxide. The assay protocols were based
on the previously reported paper17.The enzyme assay was performed in buffer
solution (80 mM Na2HPO4 –HCl, 40 mM NaCl) at pH 7.0 with 200 mg l−1 of
BHET. The enzyme reaction was started by the addition of 50 nM enzyme and was
kept at 30 °C for 30 min. Then, the reaction was terminated by heating at 85 °C for
15 min. The reaction mixtures were centrifuged at 13,200 r.p.m. for 10 min. Lastly,
the supernatant was applied to LC analysis.

PETase in vitro assay using PET film. IsPETase assays were performed as pre-
viously reported17 with slight modifications described below. To analyze the
degradation rate of PET by PETases, commercial PET film (UBIGEO, Korea) was
used as the substrate for enzyme assay. The PET film was prepared in a circular
form with 6 mm diameter. The PET film was soaked in 300 μl of pH 9.0 glycine-
NaOH buffer with 200 nM of enzyme. The reaction mixture was incubated at 30 °C
for 18 and 36 h. The enzyme reaction was terminated by heating at 85 °C for 15
min. Then, the samples were centrifuged at 13,200 r.p.m. for 10 min, and the
supernatant was analyzed by LC. After the enzyme reaction, the film was washed
with 1% SDS and 20% ethanol in distilled water.

Analytical methods. The in vitro assay samples were analyzed by HPLC (1100
Series HPLC, Agilent) equipped with MS (LC/MSD VL, Agilent). Eclipse Plus-C18
column (5 µm, 4.6 × 150 mm, Agilent) was used. All analyses were operated at
room temperature (25 °C). For the mobile phase, buffer A (0.1% formic acid in
distilled water) and buffer B (acetonitrile) was used at a flow rate of 0.8 ml min−1.
The mobile phase was changed gradually from 95% buffer A to 30% buffer A at 20
min (all in vol%). The chemicals (BHET, MHET and TPA) were detected at 260
nm.

Melting temperature (Tm) measurement. Thermal stability of IsPETaseW/T,
IsPETaseC203A/C239A and TfCut2 proteins was determined by measuring melting
curves at both pH 7.0 and pH 9.0 with the Protein thermal shift dye (Applied
Biosystems) in a StepOnePlus Real-Time PCR (Thermo Fisher Scientific) according
to manufacturer’s instructions. Briefly, 1 μg of protein was mixed with 1× protein
thermal shift dye (Applied Biosystems) in 20 μl and signal changes reflecting
protein denaturation were monitored by increasing temperature from 25 to 90 °C.
Melting temperatures were determined from the first derivative curve.

Phylogenetic tree analysis. Iterative searching for PETase-like proteins was
performed by Basic Local Alignment Search Tool (BLAST) in National Center for
Biotechnology Information (NCBI) server using position-specific iterated BLAST
(PSI-BLAST) method. Multiple alignment was performed by Clustal omega. The
evolutionary history was inferred by using the Maximum Likelihood method based
on the Le_Gascuel_2008 model43. The tree with the highest log likelihood
(−13243.9235) is shown. The percentage of trees in which the associated taxa
clustered together is shown next to the branches. Initial tree(s) for the heuristic
search were obtained automatically by applying Neighbor-Join and BioNJ algo-
rithms to a matrix of pairwise distances estimated using a JTT model, and then
selecting the topology with superior log likelihood value. The rate variation model
allowed for some sites to be evolutionarily invariable ([+I], 14.9681% sites). The
tree is drawn to scale, with branch lengths measured in the number of substitutions
per site. The analysis involved 69 amino-acid sequences. All positions with <95%
site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data,
and ambiguous bases were allowed at any position. There were a total of 252
positions in the final dataset. Evolutionary analyses were conducted in MEGA744.

Far-UV circular dichroism. Far-UV (190–260 nm) CD experiments for IsPETase
and its variants developed this study were carried out in a Jasco J-815 CD Spec-
trometer (JASCO Corporation, Japan). Scans were recorded at 25 °C between 190
and 360 nm as an average of three scans with 0.5 nm step size, 1.5 s dwell time in a

10 m path length demountable Suprasil quartz cell (Hellma Ltd, UK) and smoothed
to obtain the final data of the variants of IsPETase (1 mgml−1). Spectra were
collected at 1.0-nm intervals with a bandwidth of 1 nm in a buffer containing 10
mm potassium sodium phosphate pH 7.0 in a 1 cm quartz cuvette (Supplementary
Fig. 6).

Data availability. The refined models of IsPETase and IsPETaseR280A have been
deposited in the Protein Data Bank (www.rcsb.org/) with PDB code 5XJH and
5YNS, respectively. Data supporting the findings of this study are available within
the article (and its Supplementary information files) and from the corresponding
author upon reasonable request.
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