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ABSTRACT
RNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly
documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is
limited. Here, we delineate the mutational landscape of »1300 RBPs in »6000 cancer genomes. Our analysis
revealed that RBPs have an average of »3 mutations per Mb across 26 cancer types. We identified 281 RBPs to
be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent
frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those
that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways
associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more
than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one
cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome
groups with and without deleterious mutations were compared. Functional interaction network of the driver
RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for
tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the
higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal
cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common
drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in
breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a
plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to
uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional
regulatory networks in different cancer types.
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Introduction

Post-transcriptional regulation of gene expression is an intricate
and essential mechanism that orchestrates the maturation, trans-
port, stability and degradation of all classes of RNAs.1-3 Typically,
each of these events are regulated by the formation of diverse ribo-
nucleoprotein (RNA) complexes mediated by RNA binding pro-
teins (RBPs). RBPs bind to the secondary structure or untranslated
regions (UTR) or ORF of an RNA in a sequence specific manner to
control its fate. Furthermore, most human RBPs are ubiquitously
expressed compared to the remaining protein-coding transcrip-
tome with 20% of the expressed transcripts encoding RBPs. Hence,
RNA metabolism is not only a conserved cellular process but also
has the highest protein copy number demands.1,4-6

Given the importance of regulatory molecules like RBPs in
controlling gene expression, it is evident that any deviation
from normal function of these proteins can lead to various

disorders including cancer.7 Cancer development was often
believed to be a result of aberrant transcription and signaling
events. Increasing evidence suggests that post transcriptional
regulation also controls several important cellular mechanisms
including proliferation, differentiation, invasion, metastases,
apoptosis and angiogenesis that could lead to a cancer pheno-
type. RBPs being the central players of post transcriptional con-
trol, their dysregulation is a plausible mechanism for mediating
cancer initiation and progression.8-10 For instance, KHDRBS1,
a KH domain containing splicing factor was shown to be over-
expressed in cancers of breast, prostate, kidney and cervix. An
increased expression of this protein facilitates the inclusion of
exon5 in the pre-mRNA of CD44 – a cell surface protein
involved in cancer proliferation.11 Another well studied RBP
for its role in tumorogenesis is Musashi-1(MSI1), which is
overexpressed in a few central nervous system (CNS) tumors
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but primarily in glioblastoma. Although the mechanism of
action is not well characterized, it is believed that MSI1 acts by
regulating the Notch signaling pathway through the transla-
tional repression of its mRNA.12,13 Furthermore, RNA binding
protein PCBP2, a member of the poly(C) binding protein fam-
ily was found to be overexpressed in glioma and regulating
several targets important for controlling tumor growth.14

Recently, a global analysis on the expression of mRNA levels of
genes encoding »800 RBPs revealed 30 RBPs to be highly upre-
gulated in several cancers.5 Although there are several studies
implicating the changes in the expression of RNA binding pro-
teins in different malignancies, the cause of such a change is
not completely established.

However, recent studies signal the contribution of somatic
mutations in altering the function of RBPs in several cancers.15

Mutational analysis of all the genes in the human genome
across 12 cancer types identified SF3B1, U2AF1 and PCBP1 –
RBPs involved in splicing to be significantly mutated in multi-
ple cancers suggesting their role in causing cancer pheno-
types.16 Furthermore, APOBEC3B – an important protein in
the RNA editing mechanism was found to be upregulated and
frequently mutated in cancers of bladder, cervix, lung, head
and neck and breast.17 Also notable are the mutations in the
gene coding for RBM10 in lung cancer which was found to mis-
regulate the alternative splicing of NUMB protein- a critical
regulator of the Notch pathway and hence leading to irregular
cell proliferation in lung cancers.18 These studies emphasize the
importance of studying the mutational landscape of RBPs in
cancer genomes. Hence, to expand the current understanding

of mutations in these genes, we performed a systematic analyses
of somatic mutations occurring in »1300 RBPs in »6000
tumor samples across 26 cancer types.

To achieve this, we compiled a list of genes identified to
encode RBPs in human cells from several experimental studies
(See Materials and Methods). We then analyzed the exome
sequencing data of 26 cancer types to identify candidate drivers
and integrated their transcriptome profiles to assess alterations
in their expression due to mutation. Furthermore, we carried
out functional and network analysis of these drivers to identify
potentially dysregulated pathways in the cancer genomes and
delineate cancer specific interaction networks. Finally, we
knocked down two candidate RBP drivers – SF3B1 and PRPF8
in breast cancer cell lines to observe changes in the cellular
phenotypes.

Results

General framework

Figure 1 illustrates various steps and methods employed to cal-
culate the mutation frequency, identification of Genes Enriched
for Mutations (GEMs) and candidate driver genes. Firstly, the
mutation frequency of a gene in a given cancer is calculated by
normalizing the number of mutations with the exome length of
the gene and the total number of subjects in a cancer type
(Fig. 1A). Secondly, we identify Genes Enriched for Mutations
(GEMs) in a given cancer using a Fisher’s exact test that calcu-
lates the probability of observing mutations in a given gene

Figure 1. Overview of the different steps for calculating mutation frequency, Genes Enriched in Mutations (GEMs) and candidate drivers from cancer samples. (A) shows
the approach adopted to calculate the mutation frequency of a given gene in a given cancer type. (B) shows the approach adopted to identify Genes Enriched for Muta-
tions (GEMs) in a cancer type. (C) illustrates the workflow adopted in OncodriveFM approach, which was used to identify driver genes in cancer cohorts.
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against a genomic background (Fig. 1B). Finally, we identify
RBPs that accumulate high functionally-impactful mutations
using OncodriveFM approach (Fig. 1C) (See Materials and
Methods) that relies on SIFT, PPH2 and Mutation Assessor19-
21 to estimate the functional impact of individual mutations. It
does so by computing the bias towards the accumulation of
high-impact mutations across the cancer in the cohort as a sig-
nal of their involvement in tumorogenesis.

RBPs are less frequently mutated than non-RBPs in 70%
of the cancers and are mutated at a rate equal to TFs
in 50% of the cancers

To identify the mutational frequencies across 26 cancer
cohorts for RBPs and Non-RBPs, we first computed the muta-
tional frequencies of all the genes annotated in the human
genome as shown in Fig. 1 (see Materials and Methods). We
observe RBPs to be mutated at an approximate rate of 3 muta-
tions per Mb across the studied cancer cohorts with the

highest and lowest frequencies occurring in cancers of uterine
(UCEC) and thyroid (THCA) respectively (Fig. 2A). We then
compared the mutational frequencies of RBPs to that of Non-
RBPs (any gene that is not included in our RBP repertoire
was termed as Non-RBP, See Table S1 for a list of RBPs) to
see differences in their mutational spectra. Overall, we find
the mutational frequency of Non-RBPs to be significantly
higher than that of RBPs in »70% of the cancer types studied
(Fig. S1A; Exact p-values are listed in the Table S1) and exhib-
iting an equal rate in LAML, OV, PAAD and UVM. Addition-
ally, comparison of the mutation frequencies of RBPs with
»3600 Non-RBPs which exhibited similar GC content and
exome lengths to RBPs, revealed that in majority of the cancer
types (19 out of 26) RBPs exhibited significantly different
mutation frequencies than random set of genes with similar
properties, at a threshold of p< 0.01 (Wilcoxon test,
Fig. S1B). These results suggest that in most cancer types the
contribution of GC content and exome length on mutational
frequency in RBPs is minimal.

Figure 2. Mutation Frequency of RBPs j (A) The mutation frequency of RBPs across 26 cancers is shown as a bean plot. The thick white line in each bean indicates the
median mutation frequency of RBPs in a given cancer and the dashed black line indicates the average mutation frequency of RBPs across all the cancers (B) Heatmap
showing the pearson correlation of mutation frequencies of RBPs between 26 cancer types (C) Dendogram obtained by hierarchically clustering the mutation frequencies
of RBPs in 26 cancer types. Cancer types shown are abbreviated as follows: Adrenocorticol carcinoma (ACC), Bladder Urothelial carcinoma (BLCA), Breast invasive carci-
noma (BRCA), Cervival squamous cell carcinoma an endocervical adenocarcinoma (CESC), Colon adenocarcinoma (COAD), Gliobastoma multiforme (GBM), Head and neck
squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute myeloid leukemia
(LAML), Lower grade glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian serous cystadeno-
carcinoma (OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostrate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ),
Skin cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), Uterine corpus endometrial carcinoma (UCEC), Uterine carcinosarcoma
(UCS), Uveal Melanoma (UVM).
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Although, we have previously shown in multiple studies that
RBPs exhibit distinct properties such as high gene expression
level and evolutionary conservation compared to other classes
of genes/transcripts,4-6 we also found based on Ensembl anno-
tations22 that RBPs exhibit significantly higher exome lengths
compared to Non-RBPs albeit comparable in length to Tran-
scription Factors (TFs) (Fig. S2A). In addition, we also noted
that RBPs exhibit significantly lower GC content than both
Non-RBPs and TFs (Fig. S2B). Hence, warranting the need to
study RBPs as a class of regulatory proteins and to consider
TFs as an independent biological random set to compare the
relative extents of mutations per unit length of a gene, in addi-
tion to comparing to the genomic background i.e, Non-RBPs.
This involved comparison of the mutational frequencies of two
major classes of regulatory molecules – RBPs and TFs (Tran-
scription Factors; obtained from DBD database23) to under-
stand the differences between the mutational landscape of these
crucial regulatory genes. While TFs showed higher mutational
frequencies than RBPs in 50% of the cancer types (p-values are
listed in Table S1), the mutational frequencies of TFs were seen
to be equal to RBPs in multiple cancers such as breast (BRCA),
bladder (BLCA), cervix (CESC) and brain (GBM). Further, we
correlated the mutational frequencies of RBPs using pearson
correlation via rcorr function from hmisc package (https://
cran.r-project.org/web/packages/Hmisc) across cancers to
identify similar mutational loads between cancers. This
revealed OV (ovarian cancer) and UVM (uveal melanoma) to
be highly correlated (R D 0.94, p D 0) followed by LIHC (Liver
hepatocellular) and THCA (Thyroid cancer) (R D 0.75, p D 0)
(Fig. 2B). When we performed a similar analysis on the muta-
tional frequencies of Non-RBPs, we observed different correla-
tion patterns; for example – LGG-OV have the highest
correlation (R D 0.93, p D 0) followed by OV-UCS (R D 0.88,
p D 0, Fig. S1C). Furthermore, to understand if mutational

frequency of RBPs segregate cancers into meaningful clusters,
we performed hierarchical clustering of the mutational fre-
quencies using pvclust package24 by setting ‘complete’ as the
clustering method and ‘correlation’ as the distance metric for
10,000 bootstraps, that revealed 7 different clusters as shown in
Fig. 2C. Clusters found to be significant are highlighted with p-
values. The mutational frequencies of RBPs cluster cervical,
bladder, liver and thyroid cancers viz CESC, BLCA, LIHC and
THCA into one cluster (Cluster #1) suggesting a similar muta-
tional spectra of RBPs across these different types of cancers
(Fig. 2C). Our results also show clustering of OV and UVM
(Cluster #7), suggesting a common origin of these gender-spe-
cific cancers. Further, our results although not significant
exhibited known relationships between COAD and READ
which are commonly studied together as well as the clustering
of glandular adenocarcinomas like LUAD and STAD. Interest-
ingly, these patterns were very distinct for Non-RBPs
(Fig. S1D), suggesting that these observations could reveal com-
mon mechanisms of dysregulation at post-transcriptional level
with in members of these cancer type clusters due to mutations
in RBPs.

RBPs enriched for mutations are crucial players
in translation, splicing and apoptosis mediated pathways

Genes under positive selection, either in individual or multiple
cancer types, tend to display higher mutation frequencies above
background.16 We employed a statistical approach as shown in
Fig. 1B to identify Genes Enriched for Mutations (GEMs) in a
given cancer type (see Materials and Methods). This identified
281 genes encoding for RBPs to be significantly enriched for
mutations in at least one cancer (see Fig. 3A for RBPs enriched
for mutations in at least 4 cancers and Fig. S3 for RBPs
enriched for mutations in at least one cancer type; -log

Figure 3. RBPs enriched for mutations j (A) shows the list of RBPs enriched for mutations (Corrected p < 0.01, Fisher’s exact test) in at least 4 cancer types. (B) shows the
pathways enriched (p < 0.01) in GEM RBPs. (C) illustrates the distribution of mutation frequencies for various variant types between RBPs enriched for mutations (labelled
as GEMs-RBPs) and those that are not enriched for mutations (non-GEM-RBPs). All significant differences in the distributions are highlighted with their p-values for
p < 0.01 using Wilcox test.
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[corrected p-values] from the Fisher’s exact test are listed in
Table S2). Comparison of GEM and non-GEM RBPs with cor-
responding gene sets for non-RBPs, for differences in the GC
content and exome length, revealed that while GC content does
not contribute to the extent of mutations in RBPs (p D 0.496,
Wilcoxon test), it was found to be significantly different (p D
4.21e-08, Wilcoxon test) between GEM and non-GEM groups
for non-RBPs (Fig. S2C). Also, exome length was found to be
higher for GEM RBPs compared to non-GEM RBPs (p D
0.0016, Wilcoxon test) which was in sharp contrast to the
observation that non-RBPs that are not enriched for mutations
have significantly higher exome lengths (Fig. S2D). These
observations suggest that while GC content has no significant
influence on the extent of mutations in RBPs, exome length
might be higher for GEM RBPs, however it does not necessarily
determine whether a gene is a GEM since non-RBPs GEMs
exhibited significantly lower exome lengths.

Among the GEM RBPs, we identified KMT2C (MLL3), a
histone 3- lysine 4 methyltransferase with tumor-suppressor
properties that belongs to a family of chromatin regulator
genes, to be enriched for mutations in 40% of the cancer types
(Fig. S4). This observation was in accordance with previous
studies that showed MLL3 to be significantly mutated in can-
cers.16,25 Furthermore, PLEC (plectin) – an abundantly
expressed versatile protein that links different elements of the
cytoskeleton26 was also seen to be enriched for mutations in 11
cancer types including lung, head and neck, bladder and pan-
creas. Previously, PLEC was identified as a biomarker in can-
cers of pancreas and was shown to be promoting migration and
invasion of cancer cells in head and neck cancers.27,28 These
findings together with our observations suggest the importance
of PLEC in mediating cancer phenotypes in diverse tissues than
currently documented. Also notable is the gene encoding for
EPPK1 which was seen to be mutated in »40% of the cancers
including cancers of cervix, colon, head and neck, pancreas etc.
EPPK1 belongs to the plakin family of genes which are known
to function in interconnecting cytoskeletal filaments and was
identified as a candidate biomarker in the cervical lesions.29,30

Further, functional analysis of RBPs enriched for mutations
identified diverse pathways including translation, mRNA splic-
ing and apoptosis to be over-represented (p < 0.01, Fig. 3B, see
Materials and Methods), thus uncovering common players and
associated mechanisms responsible for cancer phenotypes due
to RBPs.

RBPs enriched for mutations undergo frequent frameshift
and inframe deletions, missense, nonsense and silent
mutations

As different genes are susceptible to undergo different kinds of
mutations at varied frequency, we aimed to identify mutation
types that RBPs enriched for mutations (GEM-RBPs) fre-
quently undergo when compared to RBPs that are not enriched
for mutations (NonGEM-RBPs) (See Materials and Methods).
In particular, we quantified the mutation frequencies of nine
different classes of mutations namely Frameshift mutations
– Deletion and Insertion,31 Inframe Deletion, Inframe Inser-
tion,32 Missense,33 Nonsense,34 Nonstop,35 Silent36 and Splice
Site37 for all the RBPs across cancer samples (Materials and

Methods, Table S2). Our analysis clearly revealed that RBPs fre-
quently and significantly undergo Frameshift deletion, Inframe
deletion, Missense, Nonsense and Silent mutations (Fig. 3C)
implying a significant contribution of these mutation types on
the function of RBPs in cancer genomes. Abundance of Frame-
shift deletions in GEM-RBPs clearly indicates that deletion
mutations causing change in reading frame thereby resulting in
different translation than the original polypeptide, could be a
frequent mechanism of dysregulation. Also, a significant differ-
ence in the frequency of nonsense mutations – which introduce
a premature termination codon (PTC) in the gene; between the
two groups indicate the importance of these mutations in trig-
gering the mechanism of nonsense mediate decay (NMD) of
RBPs enriched for mutations in several cancers. Earlier, the dis-
engagement between genotype and phenotype in patients with
muscular dystrophy was attributed to NMD.38 This study
showed that mutations that change the reading frame and
introduce a premature termination codon cause a severe form
of the disease as the whole transcript is eliminated by NMD,
whereas mutations that did not give rise to a PTC resulted in a
milder form of muscular dystrophy.38 A similar mechanism
could be leading to the dysregulation of RBPs that are enriched
for mutations in several cancer phenotypes, due to the higher
mutational rate of nonsense mutations in GEM-RBPs (Fig. 3C).
Likewise, missense mutations that result in a change in the
amino acid composition and inframe deletions which although
do not change the frame of transcription but can result in a
dysfunctional protein form could contribute to the loss of func-
tion phenotypes in RBPs enriched for mutations.

More than 200 RBPs are identified as “candidate” drivers
with majority of them specific to cancer types

In addition to identifying Genes Enriched for Mutations
(GEMs), which can comprise of both synonymous and nonsy-
nonymous somatic mutations in a cancer genome, we aimed to
uncover RBPs that exhibit a bias towards the accumulation of
nonsynonymous mutations with high functional impact during
tumorigenesis, as a means to uncover likely driver RBPs. Driver
genes are known to provide a significant growth advantage to
cancer cells. As discussed above, we distinguish these two
groups of genes – GEMs and driver genes, based on whether
the mutations comprise of any mutation or only nonsynony-
mous ones respectively. To this end, we used Oncodrive FM39

an approach to detect genes that tend to accumulate functional
somatic mutations across a cohort of cancer samples. A signifi-
cant trend towards the accumulation of such functional muta-
tions is calculated as FM bias – signal of positive selection
during cancer development (See Materials and Methods).
Hence, we term such genes as “candidate drivers” in the present
study. This analysis revealed more than 200 likely driver genes
encoding for RBPs in at least one cancer type (See Fig. S5 and
Table S3 for extended list of all RBP candidate drivers). How-
ever, RBPs were not enriched for drivers when compared to the
non-RBPs (p D 1E-10, Fisher exact test, odds ratio D 1.6).
Fig. 4 shows the list of RBPs identified as drivers in at least two
cancer types. Among these, a notable example is AHNAK, a
nucleoprotein initially identified in human neuroblastomas and
skin epithelial cells. In addition to being essential for
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pseudopodia formation and tumoral migration/invasion,
AHNAK is known to be a tumor suppressor gene which func-
tions by modulating the TGFb signaling.40-42 We predict
AHNAK to be a candidate driver43 in 12 cancers including

head and neck squamous carcinoma, lung adenocarcinoma,
lung squamous carcinoma, breast cancers (See Table S3) sug-
gesting the impact of nonsynonymous mutations on protein
function and thus misregulating pathways responsible for cellu-
lar growth and hence leading to a cancer phenotype. Another
striking example is AGO2 which was found to accumulate
functional mutations in cancers of breast, skin, lung and stom-
ach. AGO2 is a member of the AGO subfamily that facilitates
RNA mediating gene silencing.44 A closer inspection revealed
that 5 out of the 11 missense mutations in this gene are seen to
be affecting the Piwi domain of the protein that is essential for
target cleavage (Fig. S6). These observations suggest the alter-
ation in amino acid composition of the RBPs as a possible
mechanism leading to the dysregulation of post transcriptional
control in tumorogenesis. Additionally, majority of the RBPs
(65%) were predicted to be drivers in only one cancer type with
a small fraction of the RBPs identified as drivers in more than
five cancer types Fig. S6), suggesting heterogeneous mecha-
nisms and/or pathways might be contributing to the mutational
portrait of RBPs in different cancer types.

Further, we tested the overlap between driver genes and
those that are GEMs, to identify frequently mutated genes that
accumulate functional bias across a given cancer cohort. We
found 62 RBPs to be significantly mutated and also possessing
deleterious non-synonymous mutations (Enrichment p D
0.0096, Hypergeometric test, complete list shown in Fig. S7).
Interestingly, we find the gene encoding SF3B1 – an important
splicing factor to be frequently mutated and accumulating
functional mutations in uveal melanoma (UVM) which is in
accordance with a study that showed the impact of SF3B1
mutations on alternative splicing in uveal melanomas.45 Fur-
thermore, recurrent missense mutation at R625 in patients
with uveal melanoma was observed suggesting an oncogenic
role of this mutation (Fig. S6C). In addition, another critical
protein of the spliceosome machinery, U2AF1 was seen to be
frequently mutated and possessing deleterious mutations in
acute myeloid leukemia (LAML). Somatic mutations in U2AF1
were previously observed to be contributing to mis-splicing
events in myeloid malignancies.46,47 Also, recurrent missense
mutations at S34 in the zf-CCCH domain was observed to be
highly recurrent in patients with LAML (Fig. S6C).

Pan-cancer expression analysis of candidate RBP drivers
shows significant change in RNA levels for 15% of them

To identify if mutations in an RBP gene affects its RNA lev-
els, we performed pan-cancer expression analysis for all the
candidate RBP drivers between patient cohorts containing
these mutations and cohorts that don’t carry such mutations
(See Materials and Methods). This identified 30 RBPs that
exhibited significant changes in their RNA levels between the
pan-cancer cohorts constructed for each candidate RBP as
described above (Fig. 5A, Exact p-values are listed in the
Table S4). Of these, CDKN2A, a cyclin-dependent kinase
inhibitor 2A known to stabilize the tumor suppressor protein
p53 was observed to have higher levels of RNA in mutated
samples when compared to the non-mutated samples (Fold
change D 3.9, p D 1.26E-11, Wilcox test). Furthermore, a
nonsense mutation in R80 was seen to be present at a higher

Figure 4. Candidate RBP Drivers j The driver genes in each cancer type were
identified using the Oncodrive FM as described in Materials and Methods.
Heatmap shows the list of RBPs identified as “candidate drivers” in at least
two cancer types.
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frequency (Fig. 5B). Additionally, two distinct RNA helicases
– DDX5 and DHX9 were found to have significantly differ-
ent expression profiles between mutated and non-mutated
cohorts. Another interesting example among the genes that
showed a significant difference in the expression levels is
RBM10 which is a predicted candidate driver in lung adeno-
carcinoma (LUAD). RBM10 was seen to be 2 fold down reg-
ulated in mutated samples when compared to the non-
mutated samples. We hypothesize that the lower expression
in the mutated samples could be a result of the presence of
truncated transcripts due to several non-sense mutations in
the gene encoding for RBM10 (Fig. 5B).43

Candidate RBP drivers form an integral part of the
spliceosomal machinery

RNA-binding proteins, often interact with different proteins in
the cell to form protein complexes that mediate different events

of the post transcriptional regulation. Hence, mutations in the
RBP gene might not only lead to abnormal subcellular localiza-
tion, defective binding to RNA but also lead to altered protein-
protein interactions and thus conferring a cancer phenotype.15

Therefore, we analyzed the protein-protein interaction network
of those RBPs predicted to be drivers in at least 2 cancers to
delineate the common pathways that could be possibly affected
by mutations in these genes. We used Reactome Functional
Interaction Plugin to analyze such pathways (See Materials and
Methods). We constructed a network of interactions among
the candidate drivers by allowing the linker proteins. Upon
analysis, FLNA – an actin binding protein predicted to be a
candidate driver in cancers of breast, colon, stomach, skin and
lung was seen to be physically interacting with MAPK14 – one
of the important regulator of cancer progression48 (Fig. 6).
Interestingly, MAPK14 was not identified as a candidate driver
in any of the cancers and hence the interaction of FLNA with
MAPK14 might possibly explain the cause of MAPK14 dysre-
gulation in several cancers. Additionally, we performed a

Figure 5. Expression of candidate RBP drivers j (A) Candidate RBP drivers which exhibited significant change in the RNA levels between mutated and non-mutated sam-
ples across cancer types. (B) Mutation diagram (Lollipop plots) of RBPs with significant expression change. These were plotted using the mutation mapper tool in the
cbioportal.72,73
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functional annotation on the constructed network to identify
dense clusters that are functionally important. We observe
that proteins important in the spliceosomal machinery to be
significantly enriched (Fig. 6, Materials and Methods) sug-
gesting the importance of splicing in causing cancer pheno-
type. Although post-transcriptional targets of most of these
RBPs are unknown especially in the cancerous tissues where
they are detected as drivers, we employed Seten,49 a func-
tional analysis tool, which provides a comprehensive sum-
mary of the functional role of an RBP based on publicly
available CLIP-seq profiles in cell lines, to study whether
driver RBPs like PRPF8 and U2AF1 with CLIP-seq data
exhibit enrichment to target cancer hallmarks.50,51 This anal-
ysis clearly revealed a significant enrichment in controlling
several cell cycle progression and apoptosis related processes
among the RNA targets of PRPF8 and U2AF1 across two
different cancer cell lines K562 (Chronic Myelogenous
Leukemia) and HepG2 (Hepatocellular Carcinoma) support-
ing the notion that pan-cancer driver RBPs might be
involved in dysregulating such cancer hallmarks. Hence, we
believe this analysis not only helps in unravelling the com-
mon drivers across cancers but also improves our under-
standing of the underlying post-transcriptional mechanisms
mediating cancer phenotypes.

Driver RBPs exhibit significantly higher network
centralities and their network analysis reveals several
cancer-specific RNP mutational hotspots

We further analyzed the network properties such as degree,
betweenness and closeness of RBPs that are predicted to be can-
didate drivers in at least two cancer types by constructing a pro-
tein-protein interaction network among RBPs (see Materials
and Methods). Upon comparing the network properties of
driver RBPs with that of nondriver RBPs, we found that drivers
have significantly higher degree, betweenness and closeness
centrality measures compared to the latter (Exact p-values indi-
cated in Fig. 7A, Wilcox test). Higher degree, betweenness and
closeness of drivers when compared to the non-drivers indi-
cates that they form an integral part of the protein-protein
interaction network of RBPs and thus mutations in them could
significantly contribute to causing lethal phenotypes by poten-
tially disrupting the formation of RNP complexes. Indeed,
many drivers including RNA helicases like DDX proteins iden-
tified in this study were also discovered previously to be highly
upregulated in cancer transcriptomes and were found to exhibit
different path lengths in the protein interaction network thus
suggesting the importance of these drivers in causing cancer
phenotype due to disruption in protein complexes.5

Figure 6. Protein-Protein interaction network among RBPs j The figure illustrates the protein-protein interactions among the RNA Binding proteins with driver mutations
in at least two cancer types. The node sizes are proportional to the number of cancers in which a RBP is identified as a candidate driver. The dense cluster annotated as
“processing of capped intron-containing pre-mRNA” was identified at p < 1E-03. The analysis was carried out using the ReactomeFI Cytoscape plugin and contains linker
genes which connect driver RBPs in this network.
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RBPs often interact with proteins in the cell to form protein
complexes that mediate different events of the post transcrip-
tional regulation. Hence, mutations in them may not only affect
the expression, defective binding to RNA but can also lead to
altered protein-protein interactions and thus conferring a can-
cer phenotype.15 Also, due to varied mutational frequencies in
different cancers, the interactome of an RBP may differ
between cancer types. Hence, the topology of the interaction
network of RBPs is likely to change among cancers due to the
formation of cancer-specific Ribonucleoprotein (RNP) com-
plexes. To address this, we identified cancer-specific subnetworks
in the protein-protein interaction network of candidate driver
RBPs (see Materials and Methods, Fig. 7B). Fig. 7B shows can-
cer-specific subnetworks of candidate driver RBPs in SKCM,
LUAD, COAD and STAD respectively, obtained using the Hot-
Net2 algorithm (See Materials and Methods, Table S5). PRKDC
– a gene that encodes the catalytic subunit of the DNA depen-
dent protein kinase, candidate driver in SKCM, STAD and
LUAD was found to show variation in its interacting proteins
and topology between these cancer types (Fig. 7B). In SKCM,
PRKDC was seen to be interacting with DHX38, DHX9, DDX5
and HSPA8 whereas the interacting partners in LUAD and
STAD are (RTCB, TPR, DHX9, CDC5L) and (HSP90AB1,
HSP90AA1) respectively. Also notable is SF3B1 which is a candi-
date driver in LUAD and COAD. This RBP interacts with
CDC5L and SF3A1 in LUAD whereas it interacts with
SNRNP300 and SF3B3 in COAD suggesting that different com-
binations of RBP mutated complexes could be contributing to
disruption in different post-transcriptional sub-networks leading
to varying cancer phenotypes. Therefore, these observations proj-
ect the prominence of understanding the rewiring of protein-
protein interactions of RBPs across different cancers and thus
plausibly contributing to the heterogeneity among cancers.

Knockdown of pan-cancer drivers, SF3B1 and PRPF8,
in breast cancer cell lines reveals cancer subtype-specific
effects

Our analysis at multiple levels indicated that RBPs involved in
splicing and splicesomal machinery to be significantly mutated
in multiple cancer types. In particular, our functional analysis
(Fig. 6) revealed that RBPs such as SF3B1 and PRPF8, which
are identified as a driver in at least four different cancer types
are an integral part of the splicing machinery. Hence, to under-
stand if the mutations in these proteins are truly deleterious
and/or can have a phenotypic impact in breast cancer, we
choose SF3B1 and PRPF8 to study their effect on breast cancer
cell lines. In particular, we reduced the levels of these two pro-
teins in two breast cancer cell lines and measured the levels of
cancer stem cell markers (see Materials and Methods).
CD44C/CD24- cells are suggested to have cancer stem cell phe-
notype, although CD44C/CD24C cells do possess cancer stem
cell features.52-54 MCF-7 is a luminal cell line with 15%
CD44C/CD24C cells. Despite inefficient knockdown of SF3B1
(Fig. 8A), CD44C/CD24C cells were reproducibly reduced
upon SF3B1 knockdown (Fig. 8B). By contrast, SF3B1 knock-
down cells displayed elevated levels of CD24 compared with
control luciferase siRNA transfected cells (Fig. 8C). Similar
results were obtained upon knockdown of PRPF8 in these cells
(Fig. 8A-C). Interestingly, SF3B1 or PRPF8 knockdown in
MDA-MB-231 cell line, which represents mesenchymal
stem like triple negative breast cancer,55 had no effect on
CD44C/CD24- status (Fig. 8). Thus, activity of SF3B1 and
PRPF8 in breast cancer may be subtype-specific. Our multiple
attempts to obtain MCF-7 cells with significant knockdown of
SF3B1 were not successful although the same siRNA was effec-
tive in reducing SF3B1 in MDA-MB-231 cells. Inability to

Figure 7. Network analysis and cancer specific subnetworks j (A) Comparison of network properties degree, betweenness and closeness of driver and non-driver RBPs in
the protein interaction network among RBPs. All the properties were found to be significantly higher for drivers compared to non-drivers (p< 0.01, Wilcox test). (B) Cancer
specific subnetworks in the protein-protein interaction network among candidate drivers in each cancer type – SKCM (A), LUAD (B), COAD (C), STAD (D) are shown. Only
the most significant subnetworks are shown for each of these cancer types. The node color in each figure indicates the negative logarithm of the q-value derived from
OncodriveFM approach in the respective cancer type.
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reduce SF3B1 in MCF-7 suggests the requirement of SF3B1 for
survival of these cells. Consistent with this possibility, recent
studies have demonstrated SF3B1 mutation (K700E) in breast
cancer, preferentially in estrogen receptor positive breast

cancer, to be a driver mutation.56 MCF-7 cells are estrogen
receptor positive and are dependent on estrogen for survival.57

Overall, our results suggest breast cancer subtype-specific
function of SF3B1 and PRPF8 (Fig. 8).

Figure 8. SF3B1 and PRPF8 alter CD44/CD24 profile in MCF-7 but not MDA-MB-231 cells. (A) siRNA-mediated knockdown of SF3B1 and PRPF8 in MCF-7 and MDA-MB-231
cells. Same blots were re-probed for b-Actin as a loading control. (B) CD44/CD24 staining pattern in control siRNA, SF3B1 siRNA and PRPF8 siRNA treated cells. Isotype
controls were used to generate quadrants. SF3B1 and PRPF8 knockdown reduced the number of CD44C/CD24C cells in MCF-7 cells but had no effect on MDA-MB-231
cells, despite much higher knockdown in these cells. MDA-MB-231 cells are predominantly CD44C/CD24-. (C). The effect of SF3B1 and PRPF8 on CD24 and CD44 protein
levels. SF3B1 and PRPF8 knockdown increased CD24 but did not significantly effect CD44 levels in MCF-7 cells. SF3B1 and PRPF8 knockdown in MDA-MB-231 cells had no
effect on CD44 expression.
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Discussion

RNA Binding proteins (RBPs) are a class of proteins crucial in
orchestrating several events of the post transcriptional regula-
tion (PTR). Dysregulation of these proteins has been implicated
in several disorders including cancer although the causes of
such dysregulation is poorly understood. In this study, we
delineate the mutational landscape of »1300 RNA-Binding
proteins across 26 cancer types. Our computational analysis
revealed that RBPs have an average of »3 mutations per Mb
across 26 cancers and enabled the identification of 281 RBPs to
be enriched for mutations in at least one cancer type. Among
these, genes encoding for EPPK1, KMT2C, AHNAK and PLEC
were found to be enriched for mutations in at least 10 cancers
suggesting common players in mediating cancer phenotypes in
different tissues. GC content and exome length were not found
to play a major role in contributing to the mutational frequency
of RBPs in majority of the studied cancers. However, it is possi-
ble to speculate that other properties such as high expression,
prevalent in RBPs,4-6 can result in a tendency for genes to be
clustered in specific regions of the genome, are likely to be in
‘open chromatin’ regions or related to cancer pathways/func-
tions, leading to their specific high mutation rates. Hence, as
the repertoire of RBPs and their genomic organization princi-
ples are increasingly studied, such contributions to the muta-
tional landscape of RBPs will become clear across a broad
range of cancer types. Our analyses also revealed that RBPs
enriched for mutations in atleast one cancer type were seen to
be undergoing frequent Frameshift and Inframe deletions, mis-
sense, nonsense and silent mutations when compared to those
that are not enriched, revealing the abundance of these variant
types in mutated RBPs as significant contributor for malfunc-
tion in cancer genomes. Functional analysis of the RBPs which
are significantly mutated, revealed the enrichment of pathways
related to apoptosis, splicing and translation. Additionally, we
identified more than 200 RBPs that are candidate drivers in at
least one cancer type. These drivers based on the impact of
non-synonymous mutations on the function of RBPs included
AHNAK and SYNE1 which were found to be significantly
mutated in at least 12 and 8 cancer types respectively. We show
that the presence of non-synonymous mutations correlate with
change in the RNA levels of a significant fraction of driver
RBPs (15% of the drivers), when cancer samples are grouped
by the presence of mutations in an RBP irrespective of the can-
cer type. Also, protein-protein interaction network analysis of
the driver genes identified in at least two cancer types revealed
the presence of a cluster of mutated proteins involved in the
spliceosomal machinery, suggesting a plausible mechanism for
tumorogenesis. Knockdown of pan-cancer drivers such as
SF3B1 and PRPF8 in breast cancer cell lines MCF7 and MDA-
MB-231 using siRNAs, revealed cancer subtype-specific effects.
Our knock down experiments indicated that deletion of either
of these RBPs resulted in MCF7 cells, which are estrogen recep-
tor positive, to exhibit reduced stem cell features. In contrast,
MDA-MB-231 cells, which represent mesenchymal stem like
triple negative breast cancer, did not exhibit any change in
stem cell characteristics suggesting the cancer subtype specific
effects imparted due to the alternations in the levels of driver
RBPs. These observations suggest the need to account for

tumor variability, due to the presence of multiple cell popula-
tions in a given tumor sample, in developing better cancer sys-
tems biology models which can account for clonal evolution of
cancer genomes.58,59 Although, current depth of sequencing
and level of annotation from TCGA datasets doesn’t readily
permit such high resolution analyses to dissect the prevalent
clones, future studies focused on single cell sequencing of
tumors should be able to dissect the clonal origin of the muta-
tions for driver RBPs identified here. Network analysis of the
driver RBPs in the protein interaction of RBPs clearly revealed
higher network centrality measures suggesting the prominent
positions they hold in the RNP network. These observations
suggest that driver RBPs which are highly connected in the pro-
tein interaction network could contribute to the disruption in
the formation of RNP complexes thereby effecting the post-
transcriptional networks they control. To identify cancer-spe-
cific sub-networks which are likely to represent RNP complexes
which are effected in different cancers, we employed the hotnet
framework and identified several potential RNP complexes
which are mutated in four different cancer types. Our results
suggest that although RBP drivers might be common between
cancers, their downstream RNP mutational hotspots could be
very different thereby leading different post-transcriptional net-
work changes across cancer types. This analysis should form a
foundation to help us uncover the mutational spectrum of
RBPs and their wiring dynamics in different cancer types
thereby leading to dysregulation of post-transcriptional regula-
tory networks and also emphasizes the potential of various pro-
teins of the splicesomal machinery as possible drug targets in
cancer.

Materials and methods

Datasets used in the study

a. RNA binding proteins
We catalogued a set of 1344 genes encoding for RBPs in the
human genome of which 1298 had mutation data. These con-
sist of RBPs identified in recent experimental screens, including
Castello et al.,60 Baltz et al.,61 Ray et al.,62 human orthologs of
RBPs identified in mouse embryonic stem cells by Kwon
et al.,63 and those reported in RBPDB.64 Complete dataset of
RBPs is available as Table S1 and from READDB.65

b. Mutation data
Somatic mutation calls were downloaded as MAF Files from the
Broad Firehouse for 26 cancer types: Adrenocorticol carcinoma
(ACC), Bladder Urothelial carcinoma (BLCA), Breast invasive
carcinoma (BRCA), Cervival squamous cell carcinoma an endo-
cervical adenocarcinoma (CESC), Colon adenocarcinoma
(COAD), Gliobastoma multiforme (GBM), Head and neck squa-
mous cell carcinoma (HNSC), Kidney Chromophobe (KICH),
Kidney renal cell carcinoma (KIRC), Kidney renal papillary cell
carcinoma (KIRP), Acute myeloid leukemia (LAML), Lower
grade glioma (LGG), Liver hepatocellular carcinoma (LIHC),
Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma
(LUSC), Ovarian serous cystadenocarcinoma (OV), Pancreatic
adenocarcinoma (PAAD), Pheochromocytoma and Paragan-
glioma (PCPG), Prostrate adenocarcinoma (PRAD), Rectum
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adenocarcinoma (READ), Skin cutaneous Melanoma (SKCM),
Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA),
Uterine corpus endometrial carcinoma (UCEC), Uterine carci-
nosarcoma (UCS), Uveal Melanoma (UVM). Mutations that
were called using NCBI Build 36 were converted to build 37
using the NCBI lift over. The list of cancer types and their corre-
sponding downloaded filenames are available as Table S1.

Mutation frequency

The overall mutation frequency of a gene in a given cancer type
is calculated as shown in Fig. 1A. To summarize, the mutation
frequency is calculated by normalizing the total number of
mutations in a given gene by its exome length and the number
of patients in the cancer type being analyzed. The obtained
value is multiplied by 106 to estimate the mutation frequency
per Mb. The Pearson correlation of mutation frequencies
between different cancers was estimated using the “rcorr” func-
tion in the Hmisc package in R. Hierarchical clustering of
mutational frequencies was performed using GENE-E (http://
www.broadinstitute.org/cancer/software/GENE-E).

Identification of genes enriched in mutations (GEMs),
analysis of gene sets and variant types

We calculated the significance of observing the total mutations
in a gene, given its exome length against the whole genome as a
background using Fisher’s exact test (see Fig. 1B). The obtained
p-values are corrected by Benjamini- Hochberg based FDR cor-
rection. Genes with corrected p < 0.01 and odds ratio < 1 were
classified as Genes Enriched in Mutations (GEMs) in a given
cancer. P-value and the odds ratio were calculated using the
fisher.test function in R.

Functional analysis of gene sets was carried out using
ClueGO, a cytoscape plugin used to identify and visualize func-
tionally related clusters.66 Pathway annotations available in
Reactome database67 were used to carry out the functional anal-
ysis. Clusters identified at p< 0.01 were used for interpretation.

For the analysis based on the variant types, we initially cate-
gorized RBPs in each cancer as GEMs and non-GEMs based on
the above mentioned criteria. We then obtained the mutation
frequency of these genes in each cancer type for nine different
variant classes viz – Inframe deletion, Inframe insertion,
Frameshift deletion, Frameshift Insertion, Missense mutation,
Nonsense mutation, Nonstop mutation, Silent and Splice Site
mutations. Variants were classified into the above mentioned
categories based on the annotations provided in the down-
loaded MAF files. Also, mutation frequency of a gene for each
of these variant types in a given cancer is calculated as shown
in Fig. 1A (See “Mutation Frequency” section in Materials and
Methods). Upon obtaining the mutation frequencies in each
cancer type for all the variant classes, we pooled the mutational
frequencies of RBPs enriched for mutations across the cancers
into one bin named as GEM-RBPs (Fig. 3C) and mutation fre-
quencies of RBPs that are not enriched for mutations in any
cancer are labelled as NonGEM-RBPs in Fig. 3C. The signifi-
cance of the differences between these two groups was calcu-
lated using Wilcox test.

Identifying candidate driver RBPs

We computed the bias of RBPs towards the accumulation of
somatic mutations of high functional impact (FM bias) to iden-
tify potential driver genes among them, across each cohort of
cancers. To this end, we first employed the IntOGen-FM pipe-
line,68 on each of the 26 cohorts of cancer samples used in this
study. The pipeline first obtained three predicted functional
impact scores for each of SIFT, PPH2 and Mutation Assessor
algorithms19-21 for the somatic mutations observed in all genes
across cancer samples of each cohort. We then used the Onco-
driveFM approach39 to compute the FM bias of RBPs. Somatic
mutations in all genes were taken into account by Oncodri-
veFM to compute the background functional impact of each
RBP, and to correct FM bias p-values for multiple testing. The
analysis of the 26 cohorts was carried out using expression fil-
ters and mutational thresholds as described in.68 In each
cohort, RBPs identified at q-value < 0.01 were identified as
candidate drivers.

Expression analysis

The cancer expression data was downloaded from The Cancer
Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga).
TCGA provides multi-level data (clinical, genome sequencing,
microarray, RNA sequencing etc.) procured from a number of
institutions, from a variety of patients, for over 30 cancers. In
this study, we collected RNAseq V2.0 data for more than 6000
patients spanning 26 cancers, by downloading the RNA expres-
sion levels for all the genes across the cancer cohorts by select-
ing the Level 3 from the data portal of the TCGA data access
site. For a given gene predicted as a driver in a particular can-
cer, we divide the patient cohort into two groups – Mutated
and Non-mutated samples corresponding to that gene.
Mutated samples constitute patients with non-synonymous
mutations in a given gene of interest. On the contrary, Non-
mutated samples constitute those without the mutations. By
using the TCGA sample barcodes we cross mapped between
the mutation and expression data for each patient in each
cohort. The significance of difference in the expression levels
between these sample groups is calculated using the Wilcox-
test. Genes which exhibited a significant difference in expres-
sion levels between the two groups (p < 0.01) were considered
for further analysis, under the notion that these non-synony-
mous mutations in drivers are contributing to the changes in
expression levels.

Functional interaction network analysis

RBPs predicted to be drivers in at least two cancers were used
for analyzing the functional interaction networks. We used
Cytoscape FI plugin69 to map the driver genes onto the interac-
tion network. We allowed the presence of linker genes to
expand the network of the genes. We then grouped the genes
into enriched functions using the annotations available in the
Reactome as a background. Complexes with more than five
components and FDR corrected p < 1E-03 were identified to
be significant and were highlighted in Fig. 6.
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Network properties of candidate drivers

We constructed a network of 12299 interactions among
1247 RBPs using the data obtained from BioGRID for
human proteins.70 For each node, network properties like
Degree, Betweenness and Closeness were calculated using
the built in functions in igraph (See http://cneurocvs.rmki.
kfki.hu/igraph/ and http://www.r-project.org). Further, genes
were categorized as drivers – if they are predicted to be candi-
date drivers in at least two cancer types and the remaining
RBPs are termed nondrivers. Statistical significance was esti-
mated using Wilcox test.

Identifying cancer specific subnetworks among candidate
RBP drivers

We employed the HotNet2 (HotNet diffusion-oriented sub-
networks) algorithm71 to identify subnetworks in a given net-
work among the candidate drivers identified in SKCM,
LUAD, COAD and STAD. We limited our analysis to these
cancers based on the number of RBP drivers predicted (>40).
To this end, we constructed a network constituting 12299
interactions among 1247 RBPs using BioGRID.70 We then
performed permutations of the above network to generate
100 random networks. Subsequently, for each cancer type,
every node in the protein-protein interaction network is given
a “heatscore” as input to the algorithm that is identical to the
q-value obtained from the above analysis (See Section titled
“Identifying candidate driver RBPs”). Using these input
parameters, the HotNet2 algorithm was run independently on
all the four cancers to identify significant subnetworks. Fur-
ther, the subnetworks identified at specific threshold delta val-
ues were considered for the analysis – SKCM (delta D 7.19E-
06), LUAD (delta D 4.21E-06), COAD (delta D 2.47E-06),
STAD (delta D 2.92E-06).

Cell lines, siRNA transfection, western blotting and flow
cytometry

MCF-7 and MDA-MB-231 cells were maintained in minimum
essential media (MEM) with 10% fetal calf serum and Penicil-
lin/Streptomycin. Cells were transfected with 60 nM control
luciferase siRNA, siRNA against SF3B1 (Ambion Cat# 16708A,
Assay ID:19939) or PRPF8 (Ambion Cat# 16708A Assay ID:
241490) using Lipofectamine reagent (Invitrogen). SF3B1 and
PRPF8 protein levels were measured by western blotting four
days after siRNA transfection as described previously.54 CD44/
CD24 staining and flow cytometry was also performed four
days after transfection as described previously.54 Antibodies
against SF3B1 (cat# 14434S, Cell Signaling), PRPF8
(Cat#Ab190347, Abcam), CD24 (Cat#555428, BD Biosciences)
and CD44 (Cat#559942, BD Biosciences) were used as per
instructions from manufacturers.
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