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Differential coding of reward and movement
information in the dorsomedial striatal direct and
indirect pathways

Jung Hwan Shin!, Dohoung Kim® 2 & Min Whan Jung"23

The direct and indirect pathways of the basal ganglia have long been thought to mediate
behavioral promotion and inhibition, respectively. However, this classic dichotomous model
has been recently challenged. To better understand neural processes underlying reward-
based learning and movement control, we recorded from direct (dSPNs) and indirect (iISPNs)
pathway spiny projection neurons in the dorsomedial striatum of D1-Cre and D2-Cre mice
performing a probabilistic Pavlovian conditioning task. dSPNs tend to increase activity while
iSPNs decrease activity as a function of reward value, suggesting the striatum represents
value in the relative activity levels of dSPNs versus iSPNs. Lick offset-related activity increase
is largely dSPN selective, suggesting dSPN involvement in suppressing ongoing licking
behavior. Rapid responses to negative outcome and previous reward-related responses are
more frequent among iSPNs than dSPNs, suggesting stronger contributions of iSPNs to
outcome-dependent behavioral adjustment. These findings provide new insights into striatal
neural circuit operations.
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he striatum is known to play crucial roles in diverse

behavioral processes such as movement control and

reward-based learning!™. Spiny projection neurons
(SPNs) of the striatum follow two different output pathways. The
direct pathway projects directly to the globus pallidus interna
(GPi; in primates) and the substantia nigra pars reticulata (SNr).
The indirect pathway projects to the globus pallidus externa
(GPe) and then to the SNr/GPi. While direct pathway SPNs
(dSPNs) express dopamine D1 receptors, dynorphin, and sub-
stance P, indirect pathwagr SPNs (iSPNs) express dopamine D2
receptors and enkephalin®®.

The direct and indirect pathways of the basal ganglia are
thought to function in opposition to one another. In the classic
rate model of movement control, the direct pathway initiates
movement, while the indirect pathway inhibits it>’:, In support
of this theory, stimulation of direct pathway neurons promotes
locomotion while stimulation of indirect pathway neurons sup-
presses it>!1. Conversely, ablation of direct pathway neurons
reduces locomotion, while ablation of indirect pathway neurons
enhances it'®!!, Arguing against the classic rate model, sub-
sequent studies found concurrent activation of striatal neurons in
both the direct and indirect pathways during action initiation!?~
15 These results can be incorporated into a refined classic rate
model positing that the direct pathway promotes intended
movements, while the indirect pathway inhibits unwanted,
competing movements®'®17, Still, there are even more recent
findings that are less readily incorporated into models that
assume antagonism between the direct and indirect pathways.
Not only does unilateral inhibition of both direct and indirect
pathway neurons in the dorsolateral striatum induce ipsiversive
movements'®, bilateral inhibition of direct and indirect pathway
neurons reduces lever pressing behavior and increases action
sequence latency'®. These results suggest a simple dichotomous
model assuming antagonism between the two pathways may not
do justice to the complexity and subtlety with which the circuits
of the basal ganglia control movement.

The direct and indirect pathways are also thought to antag-
onize one another in reward-based learning, with the direct
pathway mediating reinforcement and the indirect pathway
mediating punishment and aversion>>*2!, Although several stu-
dies have documented opposing effects of stimulating or inhi-
biting the dSPN's and iSPNs on goal-directed behavior?’=2%, more
recent results again suggest such a dichotomy may be too sim-
plistic?*=3!. Currently, the ways the direct and indirect pathways
of the basal ganglia contribute to reward-based learning remain
poorly understood. The direct and indirect pathways may med-
iate behavioral promotion and suppression, respectively, based on
different types of signal processing and/or different output con-
nectivity. Here, in an effort to better understand striatal neural
processes underlying reward-based learning and movement
control, we compared the activity of dSPNs and iSPNs in the
dorsomedial striatum in response to positive and negative out-
comes and to licking behavior. We found quantitative differences
between dSPN and iSPN activity related to value, reward, and
licking behavior, which provide new insights into striatal neural
circuit operations.

Results

Behavior. To study direct and indirect pathway striatal neural
processes underlying reward-based learning and movement
control, we trained D1-Cre and D2-Cre mice in a Pavlovian
conditioning task. Five D1-Cre and four D2-Cre mice were used
in the main physiological experiment. The mice were head-fixed
and randomly presented with three distinct odor cues (condi-
tional stimulus, CS; 1) paired with three different probabilities
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(80, 50, and 20%) of reward delivery (5 pl of water) (Fig. 1a, b).
Unrewarded trials were paired with a white LED light stimulus
(50 lux, 100 ms). The mice showed higher lick rates during the
delay period (1s after CS offset) of higher reward probability
trials (one-way ANOVA, F,313=131.5, p=2.4x 10742 Fig. 1c, d;
Supplementary Fig. 1a—j). In the rewarded trials, the mice showed
similar lick rates regardless of the odor cue after receipt of the
reward (1 s after the first lick following reward delivery: F, 3,5 =
0.9, p= 0.409; Dl-Cre; F2,144 =1.1, p= 0.342; DZ-CI'C, F2,171 =0.1,
p=0.888; Fig. 1d and Supplementary Fig. 1i, j). In unrewarded
trials, each odor cue elicited significantly different lick rates even
after trial outcomes were revealed (1 s after LED onset; F, 35 =
62.7, p=12x10"2% DI1-Cre, Fy 44 =333, p=13x10"1% D2-
Cre, F,171 =301, p=6.1x 10712 Fig. 1d and Supplementary
Fig. 1i, j). These results show that the mice successfully formed
cue-reward probability associations.

Optical tagging of dSPNs and iSPNs. For optogenetic identifi-
cation of dSPNs and iSPNs, we injected a double-floxed (DIO)
Cre-dependent adeno-associated virus (AAV) vector carrying the
gene for channelrhodopsin-2 (ChR2) in-frame with the gene for
enhanced yellow fluorescent protein (AAV-DIO-hChR2(H134R)-
eYFP, UNC Vector Core) into the left dorsomedial striatum of
the five D1-Cre and four D2-Cre mice (Fig. 2a). We then
implanted a microdrive array containing one optical fiber and
eight tetrodes for unit recording and laser stimulation. We con-
firmed the localization of the AAV-DIO-hChR2(H134R)-eYFP in
the dorsomedial striatum and SNr in D1-Cre mice and in the
dorsomedial striatum and GPe in D2-Cre mice via histological
examination at the completion of the unit recordings (Fig. 2b, c).
We also confirmed proper placement of the optical fiber and
tetrodes by histological examination (Fig. 2d).

Total 317 and 413 single units were recorded from D1-Cre (15,
28, 103, 75, and 96 units from five mice) and D2-Cre mice (118,
83, 118, and 94 units from four mice), respectively. We classified
the recorded neurons into putative SPNs (n =446, 61.1%), fast-
spiking interneurons (ESIs, n=130, 17.8%), and tonically active
neurons (TANs, n= 48, 6.6%; Supplementary Fig. 2 shows sample
activity patterns from the different striatal neuron types). The rest
remained unclassified (n=106; 14.5%; Fig. 2). We found 94 units
in D1-Cre mice and 102 units in D2-Cre mice that were reliably
activated by laser stimulation with short latencies (<6 ms) and
low spike jitters (spike latency, D1-Cre mice, 4.2 + 0.9 ms; D2-Cre
mice, 4.3 + 0.8 ms, mean+SD; SD of spike latency, D1-Cre mice,
0.9 + 0.5 ms; D2-Cre mice, 1.0 + 0.5 ms, mean+SD; Fig. 2e, f and
Supplementary Fig. 4). The optogenetically confirmed neurons
included putative SPNs (77 dSPNs and 75 iSPNs) as well as FSIs
(2 from D1-Cre and 4 from D2-Cre mice), TANs (10 from D1-
Cre and 15 from D2-Cre mice), and unclassified neurons (5 from
D1-Cre and 8 from D2-Cre mice). The proportions of optically
tagged neurons were 37.0 and 16.4% of all recorded SPNs and
interneurons (FSIs and TANs combined), respectively, in D1-Cre
mice, and 31.5 and 18.1%, respectively, in D2-Cre mice. Thus, we
obtained roughly similar rates of optogenetic tagging for putative
SPNs and interneurons.

A ma;or subclass of FSIs is parvalbumin (PV)-positive
neurons®>?> and TANs are thought to be cholinergic
interneurons®>34. Because previous studies failed to find DIR
and D2R expression in PV neurons*3® and DIR expression in
cholinergic interneurons’’, we examined ChR2 expressions in PV
and cholinergic interneurons using double-immunostaining. We
found 6.6% of choline acetyltransferase (ChAT)-positive neurons
and 1.2% of PV-positive neurons were co-labeled with ChR2 in
D1-Cre mice. We also found 6.2% of ChAT-positive and 2.5% of
PV-positive neurons were co-labeled with ChR2 in D2-Cre mice
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Fig. 1 Behavioral task. a The structure of the probabilistic Pavlovian conditioning task. b Schematic of the experimental setting. ¢ Licking behavior. Lick
density functions (¢ =100 ms; mean+SEM across 107 sessions performed by five D1-Cre and four D2-Cre mice) are color-coded according to the odor
cues that predict different reward probabilities for all trials (top), rewarded trials (middle), and unrewarded trials (bottom). d Mean (+SEM) lick rates
during the delay period of all trials (top) and during the first 1s after reward onset in rewarded (middle) and unrewarded (bottom) trials. Reward onset was
defined as the time of the first lick after reward delivery in rewarded trials and as the time of LED light onset in unrewarded trials. Circles, individual session
data. ***p < 0.001 (ANOVA followed by post-hoc Tukey's test for all comparisons)

(Supplementary Fig. 3). These results suggest that our animal
lines have both DIR- and D2R-expressing subpopulations of
striatal interneurons and/or there were non-specific, cre-
independent expressions of ChR2 in the striatal interneurons in
our study. We included only putative SPNs in the subsequent
analyses (Supplementary Fig. 3 shows the responses of all
optogenetically confirmed dSPNs and iSPNs to laser stimulation).

Neural activity related to reward value. We first examined dSPN
and iSPN responses to reward value using a multiple linear
regression analysis (Eq. 1). Many dSPNs and iSPNs respond
significantly to reward value (i.e., reward probability) during the
cue, delay, and reward periods (Fig. 3a, b). As a control for odor-
dependent, rather than value-dependent neuronal firing, we
examined the effect of reversing cue-reward probability rela-
tionship on value-dependent striatal neuronal activity in a sepa-
rate group of mice (n=3). A significantly larger population
showed similar than reversed activity relationships with value
before and after the reversal, indicating that SPN responses to
reward value cannot be accounted for by sensory responses
(Supplementary Fig. 5a—c). The strength of the value signals in
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dSPNs and iSPNs was similar throughout each trial except briefly
at cue onset (Fig. 3b). We did find differences between the dSPN
and iSPN value signals, however, when we divided the value-
responsive neurons into those with positive or negative coeffi-
cients (i.e., those whose activity increases or decreases as a
function of value, respectively). During the delay and reward
periods, we found more SPNs with positive value coefficients
among the dSPNs and more SPNs with negative value coefficients
among the iSPNs (y?-test, positive-coefficient SPNs, delay period,
72 =48, p=0.028; first 1s of the reward period, y*>=9.6, p=
0.001; negative coefficient SPNs, delay period, y> = 8.1, p=0.001;
first 1s of the reward period, y* = 9.3, p=0.004; Fig. 3b, c). This
shows that although the dSPN and iSPN populations encode
value both positively and negatively, there is a bias toward
encoding value in opposite directions.

Neural activity related to reward. We next looked for evidence
that dSPNs and iSPNs also respond to the reward itself (ie., the
trial outcome). Among both dSPNs and iSPNs, we found neurons
whose activity increases in response to positive outcomes and
neurons whose activity increases in response to negative
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Fig. 2 Optogenetic identification and classification of D1 and D2 striatal neurons. a Schematic of double-floxed cre-dependent AAV viral injection into the
dorsomedial striatum shown in a saggital brain section diagram. b, ¢ Sagittal sections of D1-Cre (b) and D2-cre (€) mouse brains showing ChR2 expression
(green) in the dorsomedial striatum and SNr (D1-cre mouse) or GPe (D2-cre mouse). d Stimulation and recording locations shown in a coronal brain
section diagram (0.8 mm anterior to bregma). Black vertical bars denote the optical probe locations and red circles indicate the locations of the last
recording session for each tetrode, as determined via histological examination. e, f Examples of optically tagged dSPNs and iSPNs. Top, raster plots. Each
row represents one trial and each dot represents a single spike. Bottom, peri-stimulus time histograms (PSTHs). Time O denotes laser stimulus onset. The
blue bar denotes the 10 ms period of laser stimulation. Inset, averaged spike waveforms of spontaneous (black) and optically driven (blue) spikes. Scale,
250 ps and 30 pV. r, correlation between spontaneous and laser-activated spike waveforms. g Shown are unit clusters recorded in the main physiological
experiment. The recorded units were classified into putative SPNs (yellow), TANs (green), and FSls (purple) based on their mean discharge rates, the half-
valley widths for their averaged spike waveforms, and the CV for their inter-spike intervals. Gray, unclassified units. h Optogenetically identified D1 and D2
neurons are indicated in blue and red, respectively. i Proportions of SPNs, TANs, and FSIs among all recorded units (n=730; left) and optogenetically
identified D1 (n=94; blue) and D2 (n=102; red) neurons (right). j Distributions of the different neuron types plotted as a function of the proportion of
inter-spike intervals>2 s (PROPisi >2). Colors correspond to those in g and h

outcomes (Fig. 4a). These reward-related signals began as soon as  coefficients (i.e., neurons with increasing or decreasing activity,

the trial outcome was revealed (reward onset; aligned to the first
lick response following reward delivery in rewarded trials and to
light onset in unrewarded trials). During the first 1s after reward
onset, we observed similar fractions of dSPNs and iSPNs
responding to reward (36.4 and 37.3%, respectively; y*-test, y*=
0.02, p=0.901; Fig. 4b, c¢). We next divided these reward-
responsive neurons into those with positive and negative reward
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respectively, in rewarded trials versus unrewarded trials). Looking
at the first 1s after reward onset, these positive and negative
reward neurons both contained similar proportions of dSPNs and
iSPNs. Looking only at the first 0.5 s after reward onset, however,
a larger fraction of the reward-responsive SPNs with negative
coefficients were iSPNs rather than dSPNs (y*=5.3, p=0.022;
Fig. 4b, c). Additional experiments indicated that neural activity
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Fig. 3 dSPN and iSPN responses to value. a An example of a value-coding dSPN. A raster plot and spike density function (6 =100 ms) are shown. Trials
were grouped according to the CS. b, ¢ Time course for the proportion of dSPNs (n=77) and iSPNs (n=75) with value-related activity. The analyses

included all SPNs (top), SPNs with positive value coefficients (increasing activity with increasing value; middle), or SPNs with negative value coefficients
(decreasing activity with increasing value; bottom). b Temporal profiles for the proportion of value-coding dSPNs and iSPNs (0.5 s window advanced in 0.1
s steps). Green triangles indicate significant differences between dSPNs and iSPNs ()(z—test, p < 0.05). ¢ Fractions of value-coding SPNs in different epochs

(1s each). **p < 0.01, *p < 0.05 (y2-test)

related to negative outcome cannot be accounted for by sensory
responses to the light stimulus (Supplementary Fig. 5d-h). Thus,
although both dSPN and iSPN populations encode reward both
positively and negatively, more iSPNs than dSPNs show negative
reward coefficients during the early reward period.

We also examined dSPN and iSPN activity related to previous
reward. Consistent with previous reports*~!, we found slowly-
decaying previous reward signals in both dSPN and iSPN
populations (Fig. 4d, e). iSPNs, but not dSPNs, show a clear
elevation of previous reward signal around the reward onset. In
the 1s window surrounding reward onset, significantly more
iSPN's respond to previous reward than dSPNs (y*-test, 4 = 5.5,
p=0.016; Fig. 4e, f). We did not observe any significant
difference, however, in the fraction of previous reward-
responding iSPNs with positive versus negative coefficients (9.3
and 16.0%, respectively, in the 1s window surrounding reward
onset; y’-test, y>=1.5, p=0.219). These results indicate a more
important role of iSPNs in conveying previous reward signals.

To further characterize the reward-related responses of dSPNs
and iSPNs, we categorized the response patterns of all the dSPNs
and iSPNs based on the difference in firing rates (Afiring rate)
between rewarded and unrewarded trials (Fig. 5a, b). Type 1
neurons are activated in rewarded trials and type 2 neurons are
activated in unrewarded trials, both with responses peaking
roughly 1s after reward onset. Type 3 neurons are activated by
unrewarded trials and inhibited by rewarded trials, with responses
peaking 0.3 s after reward onset. Type 4 neurons show minimal
responses in this time window (Fig. 5¢). Similar fractions of
dSPNss and iSPNs belonged to type 1 and 2 groups (y’-test, y*> =
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0.6 and 0.03, respectively, p=0.449 and 0.854, respectively);
however, type 3 consisted of significantly higher fractions of
dSPNs than iSPNs (y*=6.5, p=0.010; Fig. 5d). These results
suggest that type 3 iSPNs contribute to the strong negative
reward-coding signals in the early reward period (Fig. 4b, c).
Consistent with this possibility, we found a significantly larger
fraction of iSPN (10, 13%) than dSPN type 3 neurons (three, 4%)
during the first 0.5 s of the reward period (Fisher’s exact test, p=
0.045). Thus, rapid responses to negative outcome seems to be
mediated mostly by iSPNs. Most TANs showed typical pause-
rebound responses to reward (Supplementary Fig. 6) as reported
previously*?.

Neural activity related to reward prediction error. We then
examined dSPN and iSPN activity related to reward prediction
error (RPE). Our analyses so far indicate both dSPN and iSPN
populations maintain value signals persistently so that they are
combined with reward signals during the reward period. Hence,
the signals necessary to compute RPE, namely value and reward
signals, were concurrently available for both dSPN and iSPN
populations when trial outcome is revealed*®*3, For the analysis
of RPE-related neural activity, we separately examined neural
responses to value and reward during the reward period and then
examined their relative response directions as in our previous
studies*®*0, Value-dependent firing may be confounded by other
factors such as lick rate. To minimize the effect of such potential
confounding variables, we examined positive and negative RPE-
related neural activity separately. After separating rewarded trials
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from unrewarded trials, we used a multiple linear regression
analysis that included lick rate as an explanatory variable (Eq. 2)
to examine value-dependent neural activity in the first 1s after
reward onset. Fig 6a separately shows value-dependent firing in
rewarded and unrewarded trials of the same neuron shown in
Fig. 3a. This neuron fired more during rewarded than unre-
warded trials when the trial outcome was revealed. It also showed
reduced firing as a function of value in rewarded trials. This
neuron, therefore, responded to both the actual outcome (reward)
and the predicted outcome (value) in opposite response directions
during the reward period. Since RPE is the difference between
actual and predicted outcomes*?, we interpreted this as an RPE-
coding neuron for rewarded trials (i.e., positive RPE-coding
neuron). Note that this neuron increased firing as a function of
value before the trial outcome, but decreased firing as a function
of value after the trial outcome (Fig. 3a). This cannot be explained
by a static maintenance of value-related neural activity and a
simple addition of value- and reward-related neural activity. This
example shows a dynamic aspect of striatal neural processes
underlying value and reward signal processing.

6 NATURE COMMUNICATIONS| (2018)9:404

Figure 6b shows regression coefficients for reward (determined
using all trials; Eq. 1) and value (determined using either
rewarded or unrewarded trials; Eq. 2) for all optogenetically
confirmed dSPNs and iSPNs separately for rewarded and
unrewarded trials. Consistent with previous findings®®, we
found SPNs with congruent and incongruent response directions
to reward and value. The neurons with incongruent response
directions can be considered as RPE-coding neurons, because
RPE is the difference between actual and expected rewards**. Of
the 77 dSPNs and 75 iSPNs, 13 dSPNs (16.9%) and 9 iSPNs
(12.0%) responded significantly to both reward (all trials) and
value in rewarded trials, and 12 dSPNs (15.6%) and 12 iSPNs
(16.0%) responded significantly to both reward (all trials) and
value in unrewarded trials. Of the SPNs significantly responsive to
both reward and value, eight dSPNs and seven iSPNs in the
rewarded trials and six dSPNs and seven iSPNs in the unrewarded
trials showed responses consistent with a role in RPE-coding
(Fig. 6b, c). We did not find a significant difference between the
fractions of positive and negative RPE-coding neurons among the
dSPN (y*-test, y*= 0.3, p=0.575) or iSPN population (3>=0, p=
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1.000; Fig. 6d). Nor did we find a significant difference between
the fractions of positive RPE-coding dSPNs and iSPNs (4 = 0.05,
p=0.827) or between negative RPE-coding dSPNs and iSPNs
(#*=0.1, p=0.734). In addition, we found no significant
deviation from an equal distribution in the proportions of dSPNs
and iSPNs whose activity increases or decreases as a function of
RPE (Fisher’s exact test, p=0.367 and 0.528, respectively). Thus,
not only are dSPNs and iSPNs similarly responsive to positive
and negative RPE, they also represent RPE in both the positive
and negative directions.

Neural activity related to licking behavior. We next examined
SPN activity related to lick onset (licks occurring >2 s after the
previous lick) and lick offset (licks occurring >2s before the
following lick; examples in Fig. 7a, b)*>4®, Most instances of lick
onset occurred before delay offset, while most instances of lick
offset occurred after delay offset (Supplementary Fig. 1). We
aligned all dSPN and iSPN responses (z-normalized according to
the mean and SD of neural activity in 100 ms bins) that occurred
between 1 s before and 3 s after lick onset/offset according to their
peak responses (Fig. 7c). Consistent with previous reports on
locomotion- and lever press-related SPN activity!>!15, we found
simultaneous activation of dSPNs and iSPNs at lick onset, with
peak responses of some dSPNs and iSPNs preceding lick onset
(Fig. 7a, ¢ and Supplementary Fig. 7). We also found simulta-
neous activation of dSPNs and iSPNs at lick offset (Fig. 7d and
Supplementary Fig. 7). Many dSPNs and iSPNs responded to
multiple variables across multiple stages (Supplementary Fig. 8).
Thus, consistent with previous findings'>!3, we found concurrent
activation of both dSPNs and iSPNs in association with the
initiation and termination of a lick bout.
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For a more nuanced analysis of lick offset-related neural
responses, we separated lick bouts according to their durations to
avoid potential overlap between lick offset-related neural
responses and lick onset-related neural responses in short-
duration lick bouts. This analysis revealed that dSPNs are more
strongly activated at lick offset (i.e., following the last lick of a lick
bout) than iSPNs, especially for the longer lick bouts (Fig. 7e, f).
Note the largely selective enhancement of dSPN responses in
association with the offset of a relatively long lick bout (Fig. 7f,
lick bouts >1.5 and >2 s). Consistent with these results, we found
in a multiple regression analysis*>® that lick offset coefficients
for dSPNs are more positive than those of iSPNs (Supplementary
Fig. 9). Thus, unexpectedly, we found stronger activation of
dSPNs than iSPNs during lick offset.

To directly test a role for dSPNs in suppressing ongoing licking
behavior, we examined the effects of bilateral stimulation of the
direct pathway dorsomedial striatal neurons in a separate group
of D1-Cre mice (n=3; Fig. 7g; ChR2 expressions and optical
probe locations confirmed by histological examination as in
Fig. 2). A continuous laser pulse for 1s (473 nm) in the same
experimental setting (head-fixed condition) strongly suppressed
ongoing licking behavior, but licking resumed immediately after
laser stimulus offset (Fig. 7h—j). Because optogenetic stimulation
of D1 striatal neurons increased movement velocity in an earlier
study’, we also tested these three mice under a freely moving
condition in a square box (30 x 30 x 30 cm). For this, as in the
previous study’, we delivered a continuous bilateral stimulus
(473 nm) for 30s with 30-s inter-trial intervals. Here, too, we
observed a laser-stimulation-induced increase in movement
velocity (Fig. 7k, 1). Thus, dSPN stimulation suppressed ongoing
licking behavior, while increasing movement velocity of freely
moving mice.
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Finally, we asked whether there is any correlation between
dSPN and iSPN discharges and lick rate (Fig. 8a, b). For this, we
calculated mean discharge rates and mean lick rates for all lick
bouts for each SPN, and calculated the Pearson’s correlation
coefficient between them. We found a significant correlation (p <
0.01) between the activity and lick rate for 24.6% of dSPNs and
32.0% of iSPNs (Fig. 8c; no significant difference between them;
2-test, y* = 1.0, p=0.316). When we included all optically tagged
SPNs in the analysis, both dSPNs and iSPNs had mean
correlation coefficients significantly smaller than zero (-0.031
and —0.047, respectively; t-test, t;5=—-2.1 and —2.7, respectively p
=0.044 and 0.009, respectively). These, too, were not significantly
different from one another (Wilcoxon’s rank-sum test, p = 0.470).
Seven (36.8%) of the dSPNs whose activity showed a significant
correlation with lick rate had positive correlation coefficients and
12 (63.2%) had negative correlation coefficients. This does not
differ significantly from an equal distribution (y*-test, y>=1.5, p
=0.220). Of the iSPNs with significant correlations, 6 (25.0%) had
positive coefficients and 18 (75.0%) had negative coefficients. This
distribution does represent a significant deviation from an equal
distribution (y?=7.1, p=0.007; Fig. 8d, e). Still, in the
comparison between dSPNs and iSPNs, the distribution of
neurons with positive and negative coefficients did not differ
significantly from an equal distribution (3>=0.06 and 1.7,
respectively, p=0.810 and 0.193, respectively). In summary, we
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found both positive and negative correlations between dSPN and
iSPN firing and lick rate, but the correlations were slightly but
significantly negative especially for iSPNs.

Discussion
Here, we examined the firing patterns of optogenetically identi-
fied dSPNs and iSPNs in the dorsomedial striatum during a
probabilistic Pavlovian conditioning task. We found both dSPN
and iSPN populations are responsive to a diverse array of reward-
and tongue movement-related variables; they are responsive to
value, reward, and RPE as well as to the initiation and termina-
tion of licking behavior. Both dSPN and iSPN populations con-
currently represent opposing signals (positive and negative
outcomes, positive and negative RPEs, and lick initiation and
termination), and they show activity-increasing as well as
-decreasing responses to each variable. There were, however, clear
and quantifiable differences between the activities of the dSPN
and iSPN populations. While dSPNs tend to increase firing with
increasing value, iSPNs tend to reduce firing with increasing
value. More iSPNs convey rapid negative outcome and previous
outcome signals than dSPNs. dSPN’s are activated more strongly
than iSPNs by lick offset.

We found examples of dSPNs and iSPNs whose activity
increases as a function of value, but also examples whose
activity decreases. There is a clear bias, however, among dSPNs
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toward activity increases and among iSPNs toward activity
decreases. This suggests the dorsomedial striatum may signal
estimated value through the relative activity levels of its direct
and indirect pathways. Such a scheme is consistent with pre-
vious manipulation studies that found opposing effects on
goal-directed behavior of selective stimulation or inhibition of
direct vs. indirect pathway neurons?>~2%. A more recent study

reported that the stimulation of direct and indirect pathway
neurons induces opposing responses in the downstream brain
areas*’. The relative activity of the direct and indirect path-
ways, along with their distinct output connectivity, may
determine the likelihood with which an animal will choose a
particular target.
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We found that both dSPNs and iSPNs respond to positive
and negative outcomes as well as to positive and negative RPE.
Our results indicate that the direct and indirect pathways
process opposing reward signals together rather than each
processing a single type of reward signal. There are, however,
quantitative differences. More iSPNs than dSPNs are rapidly
activated by negative outcomes and inhibited by positive out-
comes (i.e., type 3 neurons; Fig. 5). Also, iSPNs carry stronger
previous reward signals (a larger fraction of previous reward-
responsive neurons) around reward onset than dSPNs, so that
iSPNs carry current and previous reward signals simulta-
neously. These results suggest a more important role of iSPNs
in outcome-dependent adjustment of behavior than dSPN.
Behavioral choices in humans and animals are controlled by
multiple underlying processes. The fast responses of iSPNs may
contribute to rapid, negative outcome-dependent behavioral
adjustments (e.g., lose-switch), whereas their previous outcome
signals may contribute to adjusting behavior according to the
history of past outcomes (e.g., reinforcement learning) (c.f.
3948-51) There exists a large body of evidence implicating D2
receptors in reversal learning®>. We previously showed D2
receptors are more important than D1 receptors in optimizing
choice behavior in dynamic, uncertain environments; D2, but
not D1, receptor-knockout mice have difficulty updating action
value in response to positive and negative outcomes in a
dynamic foraging task*®. A recent study in monkeys reported
injection of a D2, but not D1, antagonist into the dorsal stria-
tum impairs learning from past outcomes®’. These results
suggest a more important role of the indirect pathway in
outcome-dependent adjustment of behavior. It would be
informative to measure and manipulate the reward-dependent
responses of dSPNs and iSPNs in a free-choice task.

The direct and indirect pathways are thought to antagonize
one another by facilitating and suppressing movement,
respectively®>7-$1617 Here, we found dSPNs are more strongly
activated than iSPNs at lick offset. Our results are difficult to
reconcile with the conventional model that assumes a prokinetic
role for the direct pathway and an antikinetic role for the
indirect pathway. In a recent study'®, strong stimulation of
direct pathway neurons in the dorsolateral striatum suppressed,
rather than facilitated, lever presses. Moreover, lever presses
resumed immediately upon stimulation termination and the
total number of lever presses was not reduced by the stimula-
tion, suggesting that direct pathway neurons momentarily
suppress ongoing lever presses while being stimulated. Although
strong stimulation of indirect pathway neurons also suppressed
lever presses, immediate resumption of lever presses was not
observed upon stimulation termination. Consistent with these
results, we found strong stimulation of direct pathway neurons
suppresses licking, but this licking resumes upon stimulation

termination. We also replicated the previous finding that con-
tinuous stimulation of direct pathway neurons in the dor-
somedial striatum increases movement velocity in freely moving
mice’. Thus, direct pathway stimulation suppresses ongoing
responses (licking in the present study and lever pressing in ref.
19) while increasing movement velocity in freely moving mice. It
is not straightforward to link specific behavior-related dSPN
activity to stimulation effect because optogenetic stimulation
presumably activates a general population of dSPNs that are
related to diverse behaviors. Given that striatal neurons seem to
be composed of functionally distinct spatial clusters!>>%, mod-
ulating specific functional dSPN or iSPN clusters should help
reveal the precise mechanisms by which the direct and indirect
pathways control movement.

Some studies sug§est the absence of DIR and D2R expres-
sion in PV neurons>>3¢ and the absence of DIR expression in
cholinergic  interneurons®’.  However, our  double-
immunostaining indicates the presence of ChR2-expressing
PV neurons and TANs in both D1-Cre and D2-Cre mice.
There are also studies reporting that striatal cholinergic
interneurons express DIR mRNA, albeit at a lower level (20-
25%) compared with D2R mRNA>>%, and a small fraction of
PV interneurons and somatostatin-expressing striatal inter-
neurons express D2R mRNA>7 and DIR mRNAS, respectively.
These results explain why we obtained optogenetically tagged
FSIs and TANs in both D1-Cre and D2-Cre mice. Nevertheless,
we cannot rule out the possibility of non-specific, cre-
independent expressions of ChR2 in FSIs and TANs in our
mice, which may raise a concern regarding the validity of
optogenetic tagging. Our conclusions on dSPNs and iSPNs are
likely to be valid, however, for the following reasons. First,
histological examinations revealed a clear segregation between
dSPN and iSPN populations (Fig. 2). Second, our unit classi-
fication was sufficiently stringent. We included only those units
with L-ratio <0.1 and isolation distance >19°%, and those
neurons that were not clearly segregated were left as unclas-
sified and excluded from the analysis. Furthermore, we
obtained similar results when we analyzed only those SPN unit
clusters with L-ratio <0.05, which are very well-isolated unit
clusters (72 dSPNs and 65 iSPNs) and when we excluded
relatively high-rate SPNs (cut-off value, one SD below mean
firing rate of TANs, 3.61 Hz; 68 dSPNs and 68 iSPNs were
analyzed). Thus, the chance for interneurons to be erroneously
classified as SPNs is low. Third, we used reasonably stringent
criteria for optogenetic tagging (activation window, 6 ms; log-
rank test, p <0.01; spike waveform correlation >0.8) and
obtained similar results when we applied more stringent cri-
teria (log-rank test, p <0.001; spike waveform correlations
>0.95). Fourth, lick offset- and previous reward-related activity
increases were largely selective to dSPNs and iSPNs,

Fig. 7 dSPN and iSPN responses to licking. a, b Examples of dSPNs and iSPNs responding to lick onset and offset. Time O denotes the time of the first (@) or
last (b) lick in a lick bout. ¢, d Normalized responses (z-scores) of all dSPNs (n=77) and iSPNs (n=75) to lick onset and offset (100 ms bins). Triangles
indicate example neurons from a and b. e, f Mean normalized responses of dSPNs and iSPNs to lick onset (e) and offset (f) are shown for all lick bouts and
for lick bouts with >1, 1.5, or 2 s durations. The second vertical dashed line denotes the mean lick offset time (e) or mean next lick onset time (f). Green
triangles denote significant differences between dSPNs and iSPNs (t-test, p < 0.05). g-1 The effect of bilateral stimulation of D1 striatal neurons on licking
and movement velocity. g Laser stimulation schematic for head-fixed mice. A continuous laser pulse (1-s duration) was given 0.5 s after the first lick post-
cue onset in a randomly chosen subset (30%) of trials. h An example session showing the effect of laser stimulation on licking. Each row is one trial and
each tick mark denotes a lick. Trials were grouped according to laser stimulation. i Group data (three D1-cre mice; each tested in two sessions). Lick density
functions (¢ =10 ms) with and without the laser stimulus. j Mean lick rates with and without the laser stimulus (1-s period beginning 0.5 s after the first
lick). k The same mice were also tested in a free-movement condition. Laser stimulation was applied continuously for 30 s with 30-s inter-trial intervals. A
sample movement velocity trace during 10 laser-on-laser-off episodes (blue indicates laser-on). | Mean movement velocity under laser-on and laser-off

conditions. **p < 0.01, paired t-test
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Fig. 8 dSPN and iSPN responses to lick rate. a, b Examples of dSPNs (a) and iSPNs (b) whose firing rates show significant correlation with lick rate. Each
dot represents mean lick rate and mean discharge rate during a lick bout. r, Pearson’s correlation coefficient. ¢ Distributions of correlation coefficients
between lick rate and firing rate (77 dSPNs and 75 iSPNs). Bold colors denote neurons whose activity shows significant correlation with lick rate.
*significantly different from O (t-test, p < 0.05). d Fractions of dSPNs and iSPNs whose activity shows a significant correlation with lick rate. e Fractions of
dSPNs and iSPNs whose activity shows a significant positive (+) or negative () correlation with lick rate. *p < 0.05 (y2-test)

respectively. These results argue against cross-contamination
between dSPN and iSPN populations

The roles the direct and indirect pathways play in reward-
based learning and motor control may vary across the different
areas of the striatum. The dorsomedial, dorsolateral, and ventral
striatum seem to act in separate cortico-striatal loops that serve
different aspects of behavioral control>®%6! With regard to
reward-based learning, previous manipulation studies in the
dorsomedial striatum yielded results supporting the view the
direct and indirect pathways mediate reinforcement and pun-
ishment/aversion, respectively>»?>27. By contrast, stimulation of
dSPNs and iSPNs in the dorsolateral striatum enhanced beha-
vioral responses, albeit in different ways>!. For the ventral stria-
tum, where the extent of D1 and D2 receptor segregation remains
controversial®?, there are findings that are consistent! 1222326 a5
well as inconsistent®»%* with the model assuming opposing roles
of the direct and indirect pathways in reward-based learning.
Thus, further studies are required to determine whether and how
the direct and indirect pathways contribute to reward-based
learning across the different loops of the striatum.

With respect to motor control, optogenetic modulation of
direct and indirect pathway neurons in the dorsomedial striatum
produced results supporting a classic rate model®. Later studies in
the dorsal'?!® and dorsolateral striatum'®, however, argue against
such a model. Our results, obtained in the dorsomedial striatum,
also argue against the classic model. Licking-related neural
responses have been recorded in the dorsolateral striatum®, and
a stimulation study identified an area in the dorsolateral striatum
that induces licking behavior. It is unclear whether the dor-
somedial striatum contains a similar area that controls licking
behavior. While the dorsolateral striatum receives direct projec-
tions from the mouth/tongue areas of the sensory/motor cortices,
the dorsomedial striatum does not®”. Nevertheless, we found a
significant correlation between neural activity in the dorsomedial
striatum and the onset, offset, and rate of licking behavior. It has
been proposed that the ventral, dorsomedial, and dorsolateral
striatum are in charge of coarse, intermediate, and fine control of
behavior, respectively®. According to this hypothesis, our results
may be related to dorsomedial striatal contributions to the
intermediate level of behavioral control. The direct pathway of
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the dorsomedial striatum may play a role in stopping ongoing
behavior and initiating another behavior, whereas finer control of
specific behavior may be controlled by the dorsolateral striatum,
which remains to be determined. So far, few studies have explored
the role the direct and indirect pathways in the dorsomedial and
ventral striatum have on animal movement’. Further studies
measuring and manipulating the activity of the direct and indirect
pathways in the dorsomedial, dorsolateral, and ventral striatum
are necessary to quantify the contributions the different cortico-
striatal loops make to motor control.

Methods

Animals. C57BL/6] BAC transgenic mouse lines expressing Cre recombinase
under control of the dopamine D1 and D2 receptors (EY217 and ER43, respec-
tively) were obtained from Gene Expression Nervous System Atlas. The mice were
deprived of water and their body weights were maintained at >80% ad libitum
levels throughout the experiments. They were individually housed, and all
experiments were conducted in the dark phase of a 12 h light/dark cycle. Only male
(D1-Cre, n=10; D2-Cre n=>5) mice were used. Five D1-Cre and four D2-Cre mice
were used for the main physiological experiments, two D1-Cre and one D2-Cre
mice were used for the physiological experiments examining neural responses to
sensory cues (Supplementary Fig. 5), and three D1-Cre mice were used for the
behavioral experiment examining laser stimulation effects on licking and move-
ment velocity (Fig. 7g-1). All mice were 12-18 weeks old at the time of physio-
logical recording. The experimental protocol was approved by the Animal Care and
Use Committee of the Korea Advanced Institute of Science and Technology
(Daejeon, Korea).

Behavioral task. The mice were trained in a probabilistic Pavlovian conditioning
task (Fig. 1). Each mouse’s head was fixed to the recording apparatus using a
custom-designed metal plate. Half a second after trial onset (signaled by a clicking
solenoid valve), a 1's pulse of one of three odors (citral, isoamyl acetate, and (-)
carvone diluted 1/1000 v/v in mineral oil) was delivered through a custom-
designed olfactometer in a pseudorandom order. No odor cue was presented
more than three times in a row. After a 1 s delay, either a reward (5 pl of water) or a
non-reward (a 100 ms LED light pulse at 50 lux) was delivered with a pre-
determined probability (20, 50, or 80%). The probability of each odor-reward
combination varied across animals. The duration of each inter-trial interval was
determined randomly between 4 and 5 s. Licking responses were detected with an
infrared photobeam sensor placed in front of the water port. Before beginning unit
recordings, the mice were trained in the task until their delay-period lick rates
differed significantly according to the expected reward probability (one-way
ANOVA followed by post-hoc Tukey'’s tests, p < 0.05 for all comparisons) (4.5 +
1.6 d, mean + SD). The mice performed 360-480 trials per daily recording session.
Rewarded trials in which there was no licking response between the delay offset
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and the onset of the next trial were considered incomplete. Trials following such
incomplete trials were excluded from the analysis because these trials always
provided a reward.

Virus injection. The mice were anesthetized with isoflurane (1.5-2.0% [v/v] in
100% oxygen), and a small burr hole (diameter, 0.5 mm) was made 0.8 mm
anterior and 1.4 mm lateral to the bregma to target the dorsomedial striatum
unilaterally (left hemisphere; physiological experiments) or bilaterally (behavioral
experiment). A bolus of 1 pl of virus (AAV5-EF1a-DIO-ChR2(H134R)-eYFP, UNC
Vector Core) was injected 2.8 mm below the brain surface at a rate of 0.1 pl/min.
The injection needle was then held in place for 5 min after the injection.

Neurophysiology and optogenetics. For those mice used in the physiological
experiments, a microdrive array containing an optic fiber (core diameter, 200 pm)
and eight tetrodes was implanted in the left dorsomedial striatum (0.8 mm anterior
and 1.4 mm lateral to the bregma; 2.3 mm ventral to the brain surface) immediately
after virus injection. The optic fiber was held in place throughout the experiment,
but the tetrodes were advanced 50-100 pm per day once unit recording began. Unit
signals were amplified 10,000%, band-pass filtered between 600 and 6000 Hz,
digitized at 32 kHz, and stored on a personal computer using the Cheetah data
acquisition system (Neuralynx). Laser pulses (473 nm; 10 ms; Doric corp/Omicron
Phoxx) were delivered at 1 Hz with variable intensities (0.5-1.5mW at optic fiber
tip; 120-300 pulses) at the end of each recording session to identify laser-activated
neurons. A cathodal electrolytic current (20's, 30 pA) was applied through one
channel of each tetrode at the end of the final recording session to leave marking
lesions. Coronal and sagittal sections (40 pm thick) of the brain were prepared
according to a standard histological procedure®®, and the brain sections were
examined under a light microscope to locate electrode tracks and electrolytic
lesions. A slide scanner microscope (Zeiss Axioscan) was used to verify ChR2
expression.

For the D1-Cre mice (n=3) used in the behavioral experiments, only optic
fibers were bilaterally implanted. Two weeks after viral injection and optic fiber
implantation, the mice were placed in a video-monitored square chamber (30 x
30 x 30 cm). After a 10-min habituation period, laser stimulation was delivered in a
series of 10 trials. Each trial consisted of continuous laser illumination (5 mW at
optic fiber tip, 473 nm, 30 s) followed by a 30-s laser-off period. Nose position and
body center were tracked using ETHOVISION XT 11.5 (Noldus). The same mice
were then tested in the probabilistic Pavlovian conditioning task under head-fixed
conditions. Only one odor cue associated with a 90% reward probability was used
in this experiment. Continuous laser illumination (5 mW at fiber tip, 473 nm, 15s)
was delivered 0.5 s after the first lick of each trial in a randomly chosen subset of
trials amounting to 30% of the total trials.

Unit isolation and classification. Putative single units were isolated offline by
manual cluster cutting of various spike waveform parameters using the MClust
software (A.D. Redish). Only those clusters with L-ratio <0.1 (0.016+0.020, mean
+SD, n=730) and isolation distance >19 (65.9+94.0)>° were included in the
analysis. Mean (+SD) peak amplitude of the recorded units was 160.6 + 78.5 pV/
(noise band amplitude, 30-35 uV). Mean (+SD) isolation distance, L-ratio, and
spike amplitude were 0.018 +0.018, 46.7 + 33.2, and 143.7 + 51.5 for dSPN (n=
77), and 0.025 + 0.025, 41.1 + 25.6, and 149.1 + 79.2 for iSPN (n="75) (Supple-
mentary Fig. 2). The recorded units were classified into putative SPNs, FSIs, and
TANs based on mean discharge rates, coefficients of variation (CV) of their inter-
spike intervals, and half-valley widths of the filtered spike waveforms (Supple-
mentary Fig. 2). The mean (+SD) firing rate, the CV of the inter-spike intervals,
and the half-valley width were 1.2 + 1.8 Hz, 2.57 + 1.53, and 397.5 +91.8 ps,
respectively, for the putative SPNs, 22.4 + 9.8 Hz, 1.50 +2.70, and 124.8 +18.2 s,
respectively, for the putative FSIs, and 5.8 + 2.2 Hz, 0.68 +0.15, and 296.5 + 48.5
ps, respectively, for the putative TANs. Only putative SPNs were included in the
analysis.

Identification of laser-responsive neurons. To be qualified as laser-activated,
neurons had to meet two criteria®®. First, the latency to the first spike during the
6 ms window after laser stimulation onset should be significantly (log-rank test, p
<0.01) lower than the latency to the first spike in a similar 6 ms window in the
absence of laser stimulation. Second, the correlations between laser-driven and
spontaneous spike waveforms should be >0.85. Increasing the stringency of these
criteria (i.e., log-rank test, p <0.001; spike waveform correlation >0.95) reduced
the number of laser-responsive SPNs (dSPNs, from 77 to 64; iSPNs, from 75 and
72), but yielded similar results.

Regression analysis. Neural activity related to value, reward, and lick rate was
examined using the following regression model:

F(t)y=ap+a1-O(t)+ay-V(t)+as -L(t) +as,- Ot —1) +as- V(t— 1),
(1)

where F(t) represents neural firing rate in a given analysis window, O(t), V(t), and L
(t) are reward (i.e., trial outcome; 1 if rewarded, 0 if unrewarded), value (reward
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probability; 0.2, 0.5, or 0.8), and lick rate, respectively, in each analysis window in
trial £, and ag-as are regression coefficients. To analyze positive and negative RPEs,
we divided the trials into rewarded and unrewarded, and examined neural activity
during the reward period with the following regression model:

F(ty=ao+a;-V(t)+ay-L(t)+a3- Ot —1)+ag- V(t —1). (2)

The following regression model was used to separately examine neural activity

related to the onset, maintenance, and offset of licking behavior*>46,

logS(t) = fo+ 32 JOFE,+ 5 PIEL, + 3 FREE,+ 3 AR, +

22
ZzﬂmFrw + Z ﬂnon anon w oy Z ﬂlkFlk + Z ﬂlonFlon + Z ﬁlOffF}Offn

3)

where the meaning of each variable is as follows: S(t), z-scored mean firing rate
during each 100 ms bin; fy-f, loff, regression coefficients; and F,_,, occurrence of
task event at time t—n (1 if event occurred, 0 otherwise). The superscripted symbols
mean the following: ts, trial onset; A—C, odor cues; rw, reward; non-rw, no-reward;
1k, mid-bout licks; lon, lick onset; and loff, lick offset. Lick onset was defined as a
lick that occurred >2's since the previous lick, and lick offset as a lick when the
interval until the next lick was >2s. All other licks with shorter inter-lick intervals
were defined as mid-bout licks.

Statistical analysis. The statistical significance of the regression coefficients was
determined with t-tests. Significant differences between fractions of dSPNs and
iSPNs were determined with y?-tests or Fisher’s exact tests. Significant differences
in other measures between dSPNs and iSPNs were determined with t-tests or
Wilcoxon’s rank-sum tests. Behavioral measurements associated with the three
odor cues were compared with the one-way ANOVA followed by post-hoc Tukey's
test. All statistical tests were two-tailed and p values <0.05 were considered sig-
nificant unless otherwise noted. All data are expressed as means+SEM unless
otherwise noted.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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