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Abstract

The genes that encode the a- and b-chain subunits of vertebrate hemoglobin have served as a model system for elucidating

general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals

and birds. Here, we report a comparative genomic analysis of the a- and b-globin gene clusters in sauropsids (archosaurs and

nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the a- and b-

globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid

a- and b-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental

regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked a- and b-globin

gene clusters. In the a-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes

ingenecontent are attributable to the differential retention of paralogous gene copies thatwerepresent in the common ancestor

of tetrapods. In the b-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene

content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specific

deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally

expressedb-typeglobingenes thatdiversified independently ineach lineage.These independentlyderivedb-typeglobinsdescend

from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.
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Introduction

Repeated rounds of gene duplication and divergence can lead

to the functional and regulatory diversification of multigene

families, where different members acquire distinct biochemi-

cal functions and/or patterns of expression. During the evolu-

tion of deuterostomes, the duplication and functional

divergence of members of the globin gene superfamily has

been an important source of physiological innovation

(Hoffmann, Opazo, et al. 2010; Hoffmann, Storz, et al.

2010; Blank et al. 2011; Storz, Opazo, et al. 2011;

Hoffmann, Opazo, and Storz 2012; Hoffmann, Opazo,

Hoogewijs, et al. 2012; Hoogewijs et al. 2012; Schwarze

and Burmester 2013; Storz et al. 2013; Burmester and

Hankeln 2014; Schwarze et al. 2014, 2015; Opazo, Lee,

et al. 2015). Within this diverse and ancient superfamily, ver-

tebrate hemoglobin (Hb) genes comprise one of the most

intensively studied gene families from a functional and evolu-

tionary perspective (Hardison 2012; Storz 2016), providing an

outstanding opportunity to assess the phenotypic consequen-

ces of changes in gene content.

The a- and b-globin genes of jawed vertebrates (gnathos-

tomes) encode subunits of tetrameric (a2b2) Hb, the red blood

cell protein that is responsible for the circulatory transport of

oxygen and carbon dioxide. The ancestral a- and b-globin

genes derive from the tandem duplication of a proto-Hb

gene in the common ancestor of gnathostomes, and the

resulting linked arrangement of a- and b-globin genes has

been retained in cartilaginous fishes, ray-finned fishes, and
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amphibians (Jeffreys 1982; Hosbach et al. 1983; Gillemans

et al. 2003; Fuchs et al. 2006; Opazo et al. 2013; Opazo,

Hoffmann, et al. 2015; Opazo, Lee, et al. 2015). However,

this ancestral arrangement has been lost in amniotes due to

the translocation of the b-globin locus to a new chromosomal

location, so that the a- and b-globin gene clusters are located

on different chromosomes in this group (Hardison 2008; Patel

et al. 2008; Hoffmann, Storz, et al. 2010; Hoffmann, Opazo,

and Storz 2012).

For historical reasons, comparative studies of the a- and

b-globin gene clusters of amniotes have mainly focused on

mammals because of the greater availability of whole-

genome assemblies. These studies have revealed very rapid

rates of gene turnover, which result in high levels of variation

in gene content among species (Hoffmann et al. 2008a,

2008b; Opazo et al. 2008a, 2008b, 2009; Storz et al. 2008;

Runck et al. 2009; Gaudry et al. 2014). Our understanding of

globin gene clusters in other amniotes is much more limited.

The release of multiple avian genomes provided expanded

opportunities for comparative studies of the a- and b-globin

clusters among vertebrates and revealed far lower rates of

gene turnover in birds than in mammals (Zhang et al. 2014;

Opazo, Hoffmann, et al. 2015). Until recently, a comprehen-

sive examination of variation in sauropsids, the sister groups of

mammals, was not possible due to a lack of comparative data

from crocodilians, turtles, squamates (lizards and snakes), and

rhynchocephalians (represented by tuatara). This dearth of ge-

nomic data has limited our ability to decipher orthologous and

paralogous relationships among the globin genes of different

taxa. With the recent release of multiple nonavian sauropsid

genomes (Alföldi et al. 2011; Castoe et al. 2013; Wan et al.

2013; Wang et al. 2013; Green et al. 2014; Liu et al. 2015), we

can now extend these studies to include all major groups of

amniotes.

Comparative studies suggest that most amniotes have

retained copies of three tandemly linked a-type globin genes

that were present in the last common ancestor of tetrapods:

50-aE-aD-aA-30 (Hoffmann and Storz 2007; Hoffmann, Storz,

et al. 2010; Grispo et al. 2012). With the exception of mam-

mals, where most species have multiple copies of aE- and aA-

globin, most variation in gene family size among tetrapods is

attributable to lineage-specific losses of one of the three an-

cestral paralogs. By contrast, the b-globin gene clusters have

had a much more dynamic duplicative history, with multiple

lineage-specific expansions of gene family size. As a result, the

major lineages of amniotes share a common set of ortholo-

gous a-globin genes, but they have unique sets of b-globin

genes that diversified via independent rounds of lineage-

specific duplication and divergence (Opazo et al. 2008a;

Hoffmann, Storz, et al. 2010; Storz, Hoffmann, et al. 2011;

Storz 2016). In general, the linkage order of the globin genes

reflects their temporal order of expression during develop-

ment (Cirotto et al. 1987; Ikehara et al. 1997; Alev et al.

2008, 2009; Storz, Hoffmann, et al. 2011). This is the case

in the mammalian and avian b-globin gene clusters, even

though the lineage-specific gene repertoires diversified inde-

pendently. In both cases, the b-type globin genes located at

the 50 end of the cluster are expressed during the earliest

stages of embryogenesis whereas the genes at the 30 end

are expressed during adulthood.

In the current study, we take advantage of newly released

whole genome sequences to investigate patterns of diversifi-

cation of sauropsid a- and b-globin genes. Specifically, the

objectives of the present study were 1) to characterize

changes in the size and membership composition of the a-

and b-globin gene families within and among the major sau-

ropsid lineages, 2) to reconstruct the evolutionary history of

the sauropsid a- and b-globin genes and to resolve ortholo-

gous relationships among them, and 3) to reconstruct evolu-

tionary changes in the developmental regulation of gene

expression. Our comparisons revealed contrasting patterns

in the evolution of the a- and b-globin clusters. Evolutionary

changes in the a-globin gene cluster are attributable to the

differential retention of ancestral duplicates among lineages,

whereas changes in the b-globin gene cluster are attributable

to differential gene gains and losses. In addition, we identified

differences in a- and b-globin expression between squamates

and the group that includes testudines, crocodilians, and

birds. In the case of b-globin, squamates and rhynchocepha-

lians express adult Hb isoforms that incorporate the products

of different b-type globin genes, whereas a single but inde-

pendently derived gene encodes the b-type subunits of adult

Hb in mammals, archosaurs, and turtles. Taken together,

our results suggest that the regulatory architectures of the

b-globin gene clusters evolved independently in mammals

and in the group comprising archosaurs plus turtles.

Materials and Methods

Bioinformatic Searches

We implemented bioinformatic searches for a- and b-globin

sequences in sauropsid genomes in two stages: we first fo-

cused on genomic data and we then incorporated auxiliary

sequence data from transcriptomes. To characterize the sau-

ropsid a- and b-globin gene clusters we searched for traces of

a- and b-globin genes in the genomic sequence records from

representative sauropsids in the Ensembl or NCBI

(refseq_genomic, htgs, and wgs) databases using BLAST

(Altschul et al. 1990). In all cases we used low stringency

settings, searching with the BLASTn algorithm, with match/

mismatch scores of 1 and �1, and gap existence and exten-

sion costs of 2 and 1, respectively. The full set of species is

listed in supplementary table S1, Supplementary Material on-

line, and includes ten squamates, four testudines, four croc-

odilians, and two birds. Even though there are more bird

genome sequences available, variation in the a- and b-globin

gene clusters of birds, which is the most studied group of
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sauropsids, has been covered recently (Opazo, Hoffmann,

et al. 2015). Thus, we have included two species in the current

study, zebra finch and chicken, which have high-quality

genomes and provide good representation of avian diversity

for comparative purposes. Once we located all genomic frag-

ments containing traces of a- and b-like globin genes, we

extracted the corresponding fragments and verified prelimi-

nary annotations by comparing identified sequences against

the well-annotated a- and b-globin genes of human and

chicken using BLAST2 (Tatusova and Madden 1999), as in

Hoffmann, Storz, et al. (2010). In a second stage, we interro-

gated sauropsid transcriptomes available in NCBI and the

Reptilian Transcriptomics database (www.reptilian-transcrip-

tomes.org; last accessed June 2017; Tzika et al. 2015) for a-

andb-type globin sequences in order to expand our taxonomic

coverage. Information regarding thesourcesofall sequences in

our analyses is provided in supplementary tables S1–S3,

Supplementary Material online. For the purpose of our anal-

yses, sequences were considered putatively functional if the

predicted lengths of the exons matched expected lengths

for amniote a- and b-globins, if there were no premature

stop codons, and if start and stop codons were found at

expectedpositions. Conversely,a- andb-like globin sequen-

ces were considered as pseudogenes if they include prema-

ture stop codons.

Data Curation

In the current assembly of the anole lizard genome, the aA

globin gene lies on a separate contig from the aD and GbY

genes, whereas the king cobra assembly is missing the aA

gene altogether. However, we suspect that these are issues

related to the current assemblies of anole lizard and king co-

bra genomes because the gekko assembly places aA in the

canonical genomic location, flanked by aD and GbY. In con-

trast to mammals, pseudogenes are rare in the a-globin clus-

ters of sauropsids; the sole exception was a clearly

recognizable aA pseudogene found in the python. In addition,

our bioinformatic searches identified two different aA sequen-

ces in the common viper genome, two different aD sequences

in the garter snake genome, and two identical aA paralogs in

the same fragment of the Chinese softshell turtle genome.

Given the nature of the current assemblies, we assume that

this apparent sequence heterogeneity is attributable to as-

sembly artifacts, although we cannot rule out the possibility

that the sequences represent products of recent duplication

events within each of the species.

The current assemblies of most of the sauropsid b-globin

gene clusters are fragmented and appear to be missing genes

in some cases. For example, the most current assembly of

the anole lizard genome, AnoCar2.0, includes a single b-

globin gene (Ensembl: ENSACAG00000012173, GeneID:

100552694), but analyses of transcriptomic and proteomic

data indicate the presence of at least one additional b-type

globin gene that is clearly distinct at the sequence level

(Storz, Hoffmann, et al. 2011), and was present in

AnoCar1.0 (ENSACAG00000010799). In the case of the

Chinese alligator genome, the assembly includes an en

bloc duplication involving the T1–T10 paralogs (supple-

mentary fig. S1, Supplementary Material online).

Because gene content is conserved between American

alligator, saltwater crocodile and gharial, we use these

three species as representatives of class Crocodilia for

the comparative genomics portion of the study.

Crocodilian b-globin gene clusters also stand out because

of the relatively high number of pseudogenes, which are

shared among the species.

Because some squamate genomes have incomplete cover-

age of the genes of interest, we completed the set of genomic

sequences with additional transcriptome records whenever

possible. For example, in the case of the corn snake and the

python, the current assembly includes portions of two distinct

genes, which correspond to the two b-globin gene sequences

derived from their transcriptomes (available at the Reptilian

Transcriptomics 2.0 database; Tzika et al. 2015). In the

case of the two rattlesnake species for which genome se-

quence data were available, the current assemblies lack

complete coverage of the a-globin gene cluster, so we

also included the globin repertoire of the closely related

Eastern diamond rattlesnake, derived from a venom-gland

transcriptome (Rokyta et al. 2012). Similarly, in the case of

the garter snake, the aA-globin gene is not present in the

current assembly, so we included a copy of this gene from

a transcriptome of the same species. In a second stage, we

extended our analyses to include sequences derived from

transcriptomes, with a view to increasing taxonomic cov-

erage of squamates and testudines. Finally, in the case of

the tuatara, because it is the sole representative of the

order Rhynchocephalia, we included three transcriptome-

derived sequences in the analyses of genome-derived

sequences (two a-type globins and one b-type globin).

We also compared amino acid sequences derived from

direct peptide sequencing to conceptual translations of

the coding sequences. The list of these additional amino

acid sequences is provided in supplementary table S4,

Supplementary Material online.

In many squamate transcriptomes we identified b-globin

paralogs that appear to be assembly artifacts, as initial

searches identified the presence of three or four putative

paralogs, but careful examination revealed that these sequen-

ces represent different chimeric combinations of two closely

related sequences. By default, we assumed that the paralogs

more similar to genome-derived sequences were the “true”

paralogs. Although chimeric fusion genes are relatively com-

mon among mammalian b-globins (Hoffmann et al. 2008b;

Opazo et al. 2009; Gaudry et al. 2014), to err on the side of

caution, we provisionally consider these transcripts as bioin-

formatic artifacts.
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Phylogenetic Analyses

Phylogenetic relationships among the a- and b-type globin

sequences were estimated using maximum likelihood (ML)

and Bayesian analyses (BA). For these analyses, nucleotide

and amino acid sequences of vertebrate globin genes were

aligned using the program MAFFT version 7.304 (Katoh and

Standley 2013), as implemented in the following server:

http://mafft.cbrc.jp/alignment/server/, last accessed on

January 2017. ML analyses were run using IQ-Tree ver 1.5.5

(Nguyen et al. 2015) in the implementation of IQ-Tree avail-

able from the IQ-Tree web server (Trifinopoulos et al. 2016)

last accessed on June 2017, and support for the nodes was

evaluated with 1, 000 pseudoreplicatesof the ultrafast boot-

strap procedure (Minh et al. 2013). Bayesian Analyses were

performed in MrBayes version 3.2 (Ronquist et al. 2012), run-

ning four simultaneous chains for 2�107 generations, sam-

pling trees every 1,000 generations, and using default priors.

We assessed convergence by measuring the SD of the split

frequency among parallel chains. Chains were considered to

have converged once the average split frequency was<0.01.

We discarded trees collected before the chains reached con-

vergence, and we summarized results with a majority-rule

consensus of trees collected after convergence was reached.

Alternative topologies were compared using the approxi-

mately unbiased test proposed by Shimodaira and Goldman

(2002), as implemented in IQ-Tree.

Organismal Phylogeny and Divergence Dates

In all cases, we assumed that relationships among the differ-

ent lineages studied: birds, crocodilians, rhyncocephalians,

squamates, testudines, plus amphibians and mammals which

were included as outgroups follow the arrangement reported

by Crawford et al. (2012), based on the analyses of ultracon-

served genetic elements. Estimates of divergence times

among the lineages were obtained from the TimeTree server

(Kumar, Stecher, et al. 2017).

Nomenclature

Several naming conventions have been proposed for the a-

and b-globin genes of vertebrates, which in many cases result

in inconsistent schemes (see Aguileta et al. 2006 for a review).

As a result, in some schemes orthologous genes receive dif-

ferent names, such as the p- and f-globins in the a-globin

gene clusters of birds and mammals, respectively, which are

1:1 orthologs. Conversely, in other schemes paralogous genes

derived from independent duplications receive the same

name, such as the e-globin genes in the b-globin gene families

of birds and mammals, which have the same name but are

not 1:1 orthologs. In the case of the a-globin gene cluster, it is

straightforward to reconcile nomenclature with the duplica-

tive history of the genes. Accordingly, genes orthologous to

the early expressed p-globin of chicken are labeled aE-globin,

genes orthologous to the aD-globin of chicken are labeled aD-

globin, and genes orthologous to aA-globin of chicken are

labeled aA-globin. The case of the amniote b-globin genes is

more complex. In the case of avian and mammalian b-globins,

which derive from lineage-specific duplications, we will use

the greek-letter labeling that is conventionally used for each,

50-q-bH-bA-e-30 in birds, and 50-e-c-g-d-b-30 in mammals, not-

ing that the avian and mammalian e-globin are not ortholo-

gous. Snake b-globins, which can be classified into two well

defined groups are referred to as bI or bII, to faciliate compar-

isons with previous work (Gorr et al. 1998; Storz et al. 2015).

Finally, in the case of crocodilian and testudine b-globins, we

have labeled them with a T followed by a number indicating

the presumptive position of the gene on the cluster in the

forward direction, so that the b-globin gene on the 50 end

is labeled as Hbb-T1 and the genes downstream are labeled as

T2, T3, and so forth. In this scheme, the bird q-bH-bA-e globins

would be labeled Hbb-T1 through T4.

Gene Expression Analyses

We collected publically available squamate, crocodilian, and

turtle liver transcriptomes from McGaugh et al. (McGaugh

et al. 2015). Sequences corresponding to the aA and aD genes

were identified using BLASTX and a database of previously

annotated aA and aD amino acid sequences. Raw paired-end

Illumina reads (SRA062458 and SRP071466) were cleaned

and trimmed using Trimmomatic (Bolger et al. 2014) and

were used to estimate expression of aA and aD-globin in

each species with RSEM (Li and Dewey 2011). Transcripts

per million (TPM) was used as the expression metric.

Results

We integrated synteny, phylogenetic, and expression analyses

to reconstruct the evolution of the a- and b-globin gene clus-

ters of sauropsids. Briefly, we surveyed genome databases to

locate the sauropsid a- and b-globin gene clusters. We then

annotated the a- and b-type globin genes in conjunction with

the genes flanking the 50 and 30 ends of the globin clusters,

and we used phylogeny reconstructions to resolve orthology

and paralogy. We then compared the resulting trees with the

organismal phylogeny to reconstruct ancestral repertoires and

we incorporated gene and/or protein expression data to infer

developmental patterns of expression. These surveys spanned

all orders of sauropsids other than rhynchocephalians and in-

cluded ten species of squamates (both lizards and snakes),

four testudines, four crocodilians, plus zebra finch, and

chicken as representative birds (see full list in supplementary

table S1, Supplementary Material online).

Synteny

Comparative genomic analyses revealed that the a- and b-

globin gene clusters of sauropsids both exhibit a high level of
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conserved synteny. The 50 end of the a-globin cluster is

flanked by orthologs of NPRL3, which spans multiple impor-

tant cis-regulatory elements that govern the expression of a-

type globins (fig. 1). Available data suggest that the conserved

synteny of the genes flanking the sauropsid a-globin gene

cluster extends to RBHDF1 and MPG (fig. 1). On the 30 end

of the a-globin gene cluster, sauropsids share a derived, small-

scale inversion, so that the cluster is flanked by TMEM8A,

rather than by Luc7L, as in mammals and other vertebrate

groups (Opazo, Lee, et al. 2015). In addition, squamates,

crocodilians, and testudines, but not birds, have retained a

copy of Globin-Y (GbY) at the 30 end of the a-globin gene

cluster, an ancient vertebrate globin with an unknown

functional role that also flanks the a-globin gene cluster of

platypus, and the a- and b-globin gene clusters of frog

(Xenopus), spotted gar, and elephant shark (fig. 1).

Patterns of conserved synteny in the b-globin gene cluster

are less clear due to the fragmentary nature of this chromo-

somal region in the current genome assemblies of most sau-

ropods. Among the species studied, flanking gene

information for both sides of the b-globin gene clusters is

available for chicken, the two alligators, and painted turtle,

and in all these cases the b-globin gene cluster is flanked by

olfactory receptors on both sides, as is the case with mammals

(fig. 1). This also seems to be the case for king cobra and

common viper as well, but the current assemblies are too

FIG. 1.—Syntenty of the a- and b-globin gene clusters of representative vertebrates (arranged from left to right in 50 to 30 order) with a focus on

saurospids. Genes inferred to be orthologs are linked by vertical lines, and adult-expressed genes are identified by an asterisk. White boxes correspond to

pseudogenes. In the case of the to squamates, the lizard gene clusters combine data from Japanese gekko (a-globin) and the AnoCar1.0 release of the Green

anole (b-globin), and the snake gene clusters combine data from king cobra (a-globin) and Burmese python (b-globin). Note that we lack a genome

assempbly for the tuatara, the sole representive of the order Rhynchocephalia. The secondary loss of GbY in birds and humans is denoted by an “x.”
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fragmentary to draw definitive conclusions. Because of the

high rate of gene gain and loss among the olfactory receptors

of the different sauropsid lineages (Vandewege et al. 2016),

establishing 1:1 orthologous relationships among olfactory

receptors of these different lineages was not possible.

The a- and b-Globin Gene Clusters of Sauropsids

We found limited variation in the number of genes in the a-

and b-globin gene clusters of most sauropsids relative to

mammals (fig. 1). Birds and turtles have retained the ancestral

complement of three a-type globin genes (aE, aD, and aA),

whereas the other sauropsid taxa possessed alternative com-

binations of two genes: aD and aA in squamates, and aE and

aA in crocodilians. We verified the absence of the aE-globin

gene in squamates by comparing crocodilian and testudine

aE-globin sequences against squamate sequences in GenBank

and the Reptilian transcriptomics databases using low strin-

gency searches. We were able to retrieve the aD and aA paral-

ogs that were already present in our analyses, and the more

distant b-globin paralogs as well, but we found no match that

corresponded to an aE-like globin sequence. We also verified

the absence of aD-globin in crocodiles by comparing avian

and testudine aD-globin sequences against crocodilian

sequences in GenBank and the Reptilian transcriptomics data-

bases. In this case, we were able to retrieve the aE and aA

sequences that were already present in our analyses, and we

also recovered an intronless retroprocessed aD-globin pseudo-

gene in the genomes of all crocodilians, located on a separate

scaffold from the a-globin gene cluster, and flanked by the

craniofacial development protein 1 (CFDP1) and the breast

cancer antiestrogen resistance protein 1 (BCAR1) in each of

the four crocodilian species surveyed. The fact that our pro-

tocols can identify b-type globin sequences when seeded with

an a-like sequence, and can also recover divergent pseudo-

genes such as the aD-globin pseudogene of crocodilians, sug-

gests that our searches were comprehensive. In addition,

average pairwise distances among the aE, aD, and aA paralogs

range from 38% to 40% at the nucleotide level, and from

48% to 50% at the amino acid level (supplementary table S5

and supplementary files S1 and S2, Supplementary Material

online), indicating that these three a-globin paralogs are

clearly distinct from each other. We therefore conclude that

the apparent absence of aD in crocodilians and the absence of

aE-globin in squamates are not artifacts of our search

protocol.

The b-globin gene cluster of sauropsids is more variable

than the a-globin cluster. In this case, we could not resolve

orthology relationships using bioinformatic searches. Thus,

we initially labeled the genes using numbers, which in the

case of well-resolved clusters use the prefix “T,” and the

numbers denote the order of the gene in the tandem array,

so that the T1 is the first gene on the 50 end, followed by T2

and so forth. We found two intact b-globin genes in most

squamates, but could not determine their order in any of the

species examined. On the other hand, we were able to resolve

the tandem arrays of b-globin genes for birds, crocodiles, and

testudines. There were two or three genes in turtles, labeled

T1–T3, four in birds, labeled T1–T4 (which correspond to q-,

bH-, bA-, and e-globin), and four genes with three pseudo-

genes in crocodilians, labeled T1–T7 (fig. 1). The Chinese al-

ligator was the only exception, as this species appears to have

an en bloc duplication of the b-globin gene cluster, which

includes five putatively funtional genes and seven pseudo-

genes labeled T1–T12, where the T7–T10 block of genes is

a duplication of the T3–T7 paralogs (supplementary fig. S1,

Supplementary Material online). Average pairwise distances

for the different sets of b-globins paralogs were lower than

the distances among a-globin paralogs, ranging from 8% to

33%, (supplementary table S6 and supplementary files S3

and S4, Supplementary Material online).

Phylogenies of the a- and b-Globin Genes of Sauropsids

We were able to resolve orthologous relationships of the sau-

ropsid a- and b-globin genes using maximum likelihood and

Bayesian phylogenetic analyses. In order to increase our tax-

onomic sampling, we combined the genome-annotated

sequences with additional transcriptome records. In particular,

the latter included two a- and one b-globin sequences from

tuatara, so that representatives of all major groups of saurop-

sids were included in the analyses.

a-Globin Gene Cluster

Our estimated phylogenies of the a-type globins confirmed

our primary orthology assignments, as the sauropsid aE, aD,

and aA genes group with their mammalian orthologs with

high confidence, and the crocodilian aD-like pseudogene

groups with the aD genes of birds, testudines, tuatara, and

squamates (fig. 2). Within each of these a-globin clades, rela-

tionships among sequences did not deviate significantly from

the expected organismal relationships. The tree indicates that

variation in the number of a-globin genes is largely attribut-

able to gene losses: the common ancestor of squamates

appears to have lost the aE-globin gene whereas the common

ancestor of crocodilians apparently lost aD-globin (fig. 2). We

identified two a-like transcripts in the tuatara transcriptome

available, which correspond to the aD and aA genes.

b-Globin Gene Cluster

In the case of the b-globin gene family, our analyses based on

nucleotide sequence suggest that birds, crocodilians, testu-

dines, and squamates each posses an independently derived

set of b-globin genes (fig. 3). Our analyses place sauropsid

and mammalian b-globins as sister groups, and the former

were divided into two clades, the first one containing the b-

globin sequences from squamates, and the second one
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FIG. 2.—Phylogeny of sauropsid a-type globin genes derived from genomes and transcriptomes. Support for the relevant nodes are indicated as

bootstrap percentages from IQ-Tree above the nodes, and as Bayesian posterior probabilities from MrBayes below.
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FIG. 3.—Phylogeny of sauropsid b-type globin genes derived from genomes and transcriptomes. Genes or groups of genes that are expressed in
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containing b-globin sequences of birds, crocodilians, and tes-

tudines. In general, the arrangements do not deviate signifi-

cantly from the expected organismal relationships (Crawford

et al. 2012). The one exception was the presence of one tu-

atara beta globin gene, SPU_ENSACAG00000012173, in the

clade that includes birds, turtles, and crocodiles, which sug-

gests that this gene lineage traces back to the ancestor of

sauropsids and that it was secondarily lost in the ancestor of

lizards and snakes. Forcing the b-globins of this second clade

to follow the expected organismal arrangement, with tuatara

as the deepest node, followed by testudines, with crocodilian

b-globins as sister to avian b-globins did not result in a signif-

icant loss in likelihood score in an Approximately Unbiased

topology test.

Within the squamate clade, there are two well-defined

groups of snake b-globins, corresponding to the bI and bII

clades defined by Storz et al. (2015). Lizard b-globins are

paraphyletic relative to the snake bI-globin clade (fig. 3) and

relationships among the lizard sequences do not deviate from

known organismal relationships (Pyron et al. 2013). Orthology

among lizard b-globins can only be resolved for a small subset

of the genes because when multiple b-globin paralogs for a

lizard species are present, they are usually very similar (fig. 3),

a pattern that may reflect a history of lineage-specific gene

duplications, interparalog gene conversion, or a combination

of these two processes. For example, intraspecific distances

among the b-globin paralogs of lizards range from 1% to

15%, lower than the comparisons between the snake bI-

and bII-globins, which range from 22% to 27% (supplemen-

tary file S3, Supplementary Material online).

In our maximum-likelihood analyses, avian, crocodilian,

and testudine b-globins form a monophyletic clade (fig. 3).

In all cases, we found that genes at the 50 and 30 ends of the

cluster grouped together in a clade, and the genes in center of

the cluster are grouped in a second clade. Thus, the avian T1

(q) and T4 (e) paralogs are sister to the clade that includes the

avian T2 (bH) and T3 (bA) paralogs, the crocodilian T1 and T7

paralogs are sister to the clade that includes the T2–T6 paral-

ogs, and the testudine T1 and T3 paralogs are sister to the

clade of testudine T2s (fig. 3). It is noteworthy that crocodilian

pseudogenes are shared across all species, which indicates

they were already inactive in their last common ancestor,

which existed �80 Ma.

We then estimated phylogenetic affinities based on amino

acid sequences in order to include two tuatara b-globin amino

acid sequences, P10060 and P10061, as well protein records

from testudines, squamates, and crocodilians that have no

associated nucleotide sequence (fig. 4). The tree based on

amino acid sequences was largely congruent with the one

based on nucleotide sequences, but resolution was relatively

poor due to the large number of sequences included relative

to the number of characters (108 vs. 147). One of the tuatara

b-globin amino acid sequences, P10060, grouped with the

squamate b-globins, whereas the other two tuatara

b-globins, protein record P10061 and the one derived from

the trascriptome, fell in the clade that includes the b-globins

of crocodilians, birds, and the T1 and T3 paralogs of testu-

dines. Integrating the nucleotide and amino acid based phy-

logenies with protein and transcript sequences indicates that

the b-chain subunits of adult Hb are products of single genes:

Hbb-T3 (bA) in birds, Hbb-T4 in crocodilians, and Hbb-T2 in

testudines.

Discussion

Our analyses capture the contrasting evolutionary pattern of

the a- and b-globin gene families of sauropsids. In the case of

the a-globin gene family, differences are restricted to the dif-

ferential loss of one of the three paralogs present in the com-

mon ancestor. As a result, testudines and birds have retained

copies of aE, aD, and aA, whereas squamates have retained aD

and aA, and crocodilians have retained aE and aA (along with a

vestige of aD in the form of processed pseudogene). By con-

trast, variation in gene copy number is more extensive in the

b-globin gene cluster (fig. 1). Our previous study suggested

that each of the major lineages of amniotes evolved distinct b-

globin repertoires via repeated rounds of lineage-specific

gene duplication (Hoffmann, Storz, et al. 2010). However,

that study only included anole lizard as a representative of

squamates and it did not include turtles or crocodilians.

Interestingly, the phylogenies obtained with our increased tax-

onomic sampling suggest an even more extreme pattern of

lineage-specific b-globin expansion (fig. 3), where the major

groups of sauropsids (birds, crocodilians, testudines, and

squamates) each possess repertoires that derive from

lineage-specific duplications. In spite of the observed contrast

in evolutionary dynamics between the a- and b-globin gene

families, variation in gene content within the different saurop-

sid groups appears to be limited. This is in stark contrast to

mammals, which exhibit high levels of variation in the size and

membership composition of the a- and b-globin gene clusters

(Hoffmann et al. 2008a, 2008b; Opazo et al. 2008a, 2008b;

Gaudry et al. 2014).

Evolution of the Sauropsid a- and b-Globin Gene Families

Reconciling individual gene trees with the organismal phylog-

eny is straightforward in the case of the a-globin gene family,

as variation in gene content among groups is strictly attribut-

able to lineage-specific losses of single members of the three-

gene set that was present in the common ancestor of

sauropsids. In the case of the b-type globins, we base our

inferences on the tree based on nucleotide data, as it is better

resolved and includes the crocodilian pseudogenes (fig. 3).

The monophyly of amniote b-globins suggests that these

genes can be traced back to a single gene in the last common

ancestor of amniotes, and implies that a single b-globin was

translocated to the novel chromosomal location. In turn, the
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affinity of the one tuatara b-globin transcript with the

b-globins of birds, crocodilians, and turtles implies that the

last common ancestor of sauropsids had at least two different

b-globins: one retained by tuatara and squamates, and one

retained by tuatara, archosaurs, and turtles. This inference is

confirmed by the tree based on amino acid sequences, which

includes two additional tuatara b-globin sequences, P10060

and P10061. The tuatara P10060 b-globin sequence groups

with the b-globins of squamates, and the other two tuatara

b-globins, P10061 and SPU_ENSACAG00000012173, group

with the b-globins of birds, crocodiles, and turtles, indicating

the presence of at least two b-globin genes in the last com-

mon ancestor of sauropsids (fig. 5).

Differences in the b-globin gene repertoires among sau-

ropsid groups are the result of the differential retention of two

ancestral genes, followed by lineage-specific duplications,

which in the case of some squamates have been obscured

by a history of interparalog gene conversion

(Hoffmann, Storz, et al. 2010; Opazo, Hoffmann, et al.

2015). Among the b-type globin genes of squamates, the

phylogenetic analyses indicate that the snake bII-globins rep-

resent the most early branching lineage (figs. 3 and 4), which

suggests that the common ancestor of squamates had at least

two b-globin genes, which have only been retained as a dis-

tinct pair in snakes. Most lizards analyzed have two b-globin

genes that are most closely related to snake bI-globins, but

robust orthology inferences are not possible due to an appar-

ent history of interparalog gene conversion, gene turnover, or

both.

The b-globin gene repertoires of birds, crocodilians, and

testudines diversified independently via repeated rounds of

lineage-specific duplication and descend from only one of

the two ancestral sauropsid b-globin paralogs. Interestingly,

even though bird, crocodilian, and testudine b-globins fall in

reciprocally monophyletic groups, reflecting independent

duplicative histories, in all cases the genes at the two ends

FIG. 5.—Reconstruction of the evolution of the sauropsid b-globin repertoires. Inferred duplication events are based on the phylogenies shown in figures

3 and 4. Crosses indicate gene losses due to either deletion or inactivations. Divergence times among the different lineages correspond to the estimated

divergence times in the TimeTree server (Kumar, Stecher, et al. 2017).
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of the cluster group together, and are sister to the clade of

genes in the center of the cluster. Because there is evidence

for gene conversion between the embryonically expressed

T1 (q) and T4 (e) globin genes of birds, we suspect a similar

process is partly responsible for this arrangement in testu-

dines and crocodilians. (Hoffmann, Storz, et al. 2010;

Opazo, Hoffmann, et al. 2015). Interestingly, most gene

turnover seems to have occurred during the early evolution

of sauropsids, as the repertoires are different among the

major lineages in this group, but highly conserved within

them.

Evolution of Globin Expression

In all gnathostome vertebrates studied to date, the expression

of the a- and b-type globin genes is ontogenetically regulated

so that structurally and functionally distinct Hb isoforms are

expressed during different stages of development (Storz

2016). Thus, changes in the size and membership composi-

tion of the a- and b-globin gene families may produce

changes in the developmental regulation of Hb synthesis

which can then constrain or potentiate the functional dif-

ferentiation between Hb isoforms (Opazo et al. 2008a,

2013; Runck et al. 2009; Hoffmann, Storz, et al. 2010;

Storz, Hoffmann, et al. 2011; Storz, Opazo, et al. 2011;

Grispo et al. 2012; Damsgaard et al. 2013; Storz et al.

2013; Gaudry et al. 2014). In fact, the a- and b-globin

gene clusters of teleost fish, lobe-finned fish, amphibians,

squamates, birds, and mammals have all diversified in a

lineage-specific manner such that each of those groups

has distinct repertoires that are differentially expressed

during embryonic development and postnatal life

(Opazo et al. 2008a, 2013; Hoffmann, Storz, et al.

2010; Storz, Hoffmann, et al. 2011).

Adult birds typically coexpress two structurally and func-

tionally distinct Hb isoforms in definitive red blood cells: the

major HbA isoform, which incorporates products of the aA-

globin gene, and the minor HbD isoform, which incorporates

products of the aD-globin gene (Grispo et al. 2012; Opazo,

Hoffmann, et al. 2015). Turtles also coexpress different adult

Hb isoforms that incorporate the aA- and aD-globin genes. In

both turtles and birds, the Hb isoform that incorporates the

product of the aA-globin gene is the major isoform in adult

red blood cells, and in both taxa the minor “D” type isoform

exhibits an appreciably higher O2-binding affinity (Grispo et al.

2012; Damsgaard et al. 2013; Projecto-Garcia et al. 2013;

Cheviron et al. 2014; Galen et al. 2015; Natarajan et al.

2015, 2016; Opazo, Hoffmann, et al. 2015; Kumar,

Natarajan, et al. 2017). Squamates exhibit a different pattern

of expression. In fact, in rattlesnakes and anole lizards, Hb

isoforms that incorporate products of the aD-globin gene

are actually expressed at higher levels than those that incor-

porate products of the aA-globin gene (Storz, Hoffmann, et al.

2011; Storz et al. 2015). Consistent with these measurements

of protein abundance, the squamate transcriptome data

revealed a higher abundance of aD transcripts relative to

aA transcripts in adult red blood cells. An assessment of

RNA libraries from adult liver provides further support for

this observation, as the ratio of reads mapping to aD and

aA is generally larger in squamates than in turtles (supple-

mentary table S5, Supplementary Material online). In

snakes, the major adult D-type Hb isoform actually exhib-

its a lower O2-affinity than the minor A-type isoform

(Storz et al. 2015). Thus, in birds, turtles, and squamates,

it appears that the major adult Hb isoform always has a

lower O2-affinity than the minor isoform, but the subunit

composition of the major and minor isoforms varies

among lineages.

Analyses based on protein data suggest that Hb isoform

composition is qualitatively different in tuatara and squamates

relative to other amniotes (Abbasi et al. 1988; Gorr et al.

1998; Storz, Hoffmann, et al. 2011; Lu et al. 2015; Storz

et al. 2015). Both squamates and tuatara express multiple,

structurally distinct b-type globins during adulthood, whereas

birds, crocodilians, turtles, and mammals generally possess a

single adult b-type globin gene, or they possess two or more

copies that are identical or nearly so (Abbasi et al. 1988; Gorr

et al. 1998; Opazo et al. 2009; Runck et al. 2009, 2010; Storz,

Hoffmann, et al. 2011; Storz et al. 2012, 2015; Weber et al.

2013; Gaudry et al. 2014; Lu et al. 2015; Schwarze et al.

2015). It is worth noting the long branch leading to the adult

crocodilian b-type globin gene, Hbb-T4, reflects a high rate of

amino acid substitution that may be related to the evolution

of uniquely derived functional properties of crocodilian Hb

(Bauer et al. 1981; Perutz et al. 1981; Komiyama et al.

1995; Weber et al. 2013). Interestingly, even though tuatara

and squamates both possess two b-type globins, these genes

clearly do not descend from the same ancestral gene pair

(i.e., the tuatara and squamate b-globins are not 1:1 ortho-

logs; figs. 3–5).

Incorporating an explicit evolutionary framework into the

comparative genomic analysis of these differentially expressed

globins can reveal important clues as to when and how the ge-

netic control of their expression emerged. This is particularly in-

teresting in the case of the amniote b-globin gene cluster,

because it translocated to a novel position in the genome, alter-

ing its original genomic context (Hardison 2012). In mammals

and birds, the switch from embryonic to fetal and then adult Hb

during development is a complex process that involves interac-

tions betweendistal cis regulatory sequences (located 40- to 60-

kb upstream of the b-globin cluster) and more proximal ele-

ments (Alev et al. 2009; Wilber et al. 2011; Hardison 2012;

Ulianov et al. 2012). Moreover, position effects appear to be

important, since the 50 to 30 gene order generally matches the

orderof their expressionduringdevelopment. This also seems to

be the case in crocodilians and turtles, where the genes in the 50

end of the cluster apparently do not encode b-chain subunits of

adult Hb.

Gene Turnover and Diversification in Sauropsid Vertebrates GBE

Genome Biol. Evol. 10(1):344–358 doi:10.1093/gbe/evy001 Advance Access publication January 11, 2018 355

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy001#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy001#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy001#supplementary-data


Evolution of the a- and b-Globin Gene Clusters in
Amniotes

Our evolutionary reconstructions show a clear contrast in the

tempo and mode of evolution of the a- and b-globin gene

clusters in amniotes. In the case of the a-globin gene cluster,

which has remained in the ancestral genomic location, varia-

tion in gene content is largely limited to differential losses of a-

globin paralogs that were present in the common ancestor of

the group. However, expression changes have evolved: in

squamates and tuarara, the major adult Hb isoform incorpo-

rates products of the aD-globin gene, whereas in archosaurs

and turtles, the major isoform incorporates products of the

aA-globin gene. In contrast to the high degree of conserved

synteny in the a-globin gene cluster, the b-globin cluster,

which translocated to a new chromosomal location in the

common ancestor of amniotes, has experienced a much

higher rate of gene gain and loss. Consequently, all major

groups of amniotes (i.e., mammals, birds, crocodilians, turtles,

rhynchocephalians, and squamates) possess unique reper-

toires of b-type globin genes that diversified independently in

each lineage. These independently derived b-globin gene clus-

ters trace back to two genes in the last common ancestor of

sauropsids,which in turn traceback toa single copygene in the

last common ancestor of amniotes. Tuatara is the only extant

taxon that retains descendant copies of both ancestral

sauropsid b-globins. The two b-globin paralogs of squamates

descend from one of these ancestral genes, whereas the b-

globin paralogs of archosaurs and turtles descend from the

other ancestral gene copy (fig. 5). In adult red blood cells, tu-

atara and squamates coexpress structurally distinct Hb iso-

forms that incorporate products of both b-type globin

paralogs. By contrast, the adult Hbs of archosaurs and turtles

incorporate the products of a single b-type globin gene.

Interestingly, however, the adult b-type globin genes of the

archosaurs and turtles are not 1:1 orthologs, and in each case

the adult-expressed paralogs are locateddownstream from em-

bryonically expressed paralogs. Thus, our results indicate that

the stage-specific expression of early and late-expressed b-glo-

bins evolved at least twice in amniotes, once in mammals, and

once in the lineage leading to birds, crocodilians and turtles.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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