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Abstract

Crowded environments modify the diffusion of macromolecules, generally slowing their 

movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies 

the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle 

diffusion have typically assumed either impenetrable obstacles or binding interactions that 

immobilize the particle, in many cellular contexts bound particles remain mobile. Examples 

include membrane proteins or lipids with some entry and diffusion within lipid domains and 

proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using 

a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, 

allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer 

particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to 

adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree 

of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow 

nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization 

in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer 

dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has 

implications for protein movement and interactions within cells.

1 Introduction

The diffusion of macromolecules in crowded environments is generally slowed relative to 

the uncrowded case, and particle motion can undergo transient anomalous subdiffusion [1]. 

The motion of lipids or macromolecules within biological membranes can be affected by 

crowding [2–9], because the membrane contains both macromolecules and inhomogeneities 

in membrane composition [10, 11]. In the cell interior, macromolecules, organelles and other 

cellular structures can inhibit motion, or in contrast, enhance sampling of non-crowded 

regions [12]. Biological crowders can also contain interaction sites which further modify the 

macromolecular motion [13]. The kinetics and equilibrium behavior of interactions between 

mobile proteins can be modified by crowding [14, 15]. The magnitude of the effects of 

crowding on macromolecular motion and reactions is important to determine the limiting 

rate of biological processes such as signaling receptor activation.

HHS Public Access
Author manuscript
Phys Biol. Author manuscript; available in PMC 2018 June 29.

Published in final edited form as:
Phys Biol. ; 14(4): 045008. doi:10.1088/1478-3975/aa7869.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because of its biological importance, the effects of crowding on diffusion and 

macromolecular interactions have seen significant experimental and theoretical work [16, 

17]. Lattice gas models have been used to demonstrate the effects of crowding [18, 19], 

binding [20, 21], and repulsion [22] on the diffusion of tracer particles. These effects—

including transient anomalous diffusion at short times and hindered normal diffusion at long 

times—have been studied for both immobile [23] and mobile obstacles [24, 25].

Although most theoretical work has focused on anomalous diffusion in crowded systems 

made up of impenetrable obstacles with attractive or repulsive surfaces [18–20, 22, 26], 

there is growing evidence of the importance of soft compartments and barriers in biological 

systems. In membranes, lipids can be only partially excluded from lipid rafts or domains. 

When they do interact, they can still diffuse within them [27–30]. Lipid motion can be 

hindered, though not stopped, near α-synuclein protein aggregates [31]. For all of these 

cases, theoretical considerations of a two-dimensional system should include the effects of 

the soft interaction potentials and bound-state mobility.

Inside the cell, intrinsically disordered or low-complexity domains can act as soft obstacles 

or wells, with rapid diffusion within the wells. Membrane-less organelles spontaneously 

form from low-complexity domain proteins. They are typically highly dynamic assemblies 

[32], which show fast intra-particle diffusion times, and allow rapid entry and exit of 

constituents [33]. Proteins which interact with intrinsically disordered proteins can still 

diffuse during the binding interaction [34, 35]. This effect may be particularly pronounced in 

the central channel of the nuclear pore complex, which contains a high density of binding 

sites on intrinsically disordered domains. Recent simulation work suggests that the 

disordered protein binding pockets can exchange on transport factors [35], providing a clear 

mechanism for mobility while bound to an obstacle. Particles are weakly excluded from 

individual disordered protein chains due to the lowering of the polymer chain entropy [36], 

but are expected to allow other macromolecules to enter, and pass through, the space that 

they occupy. The increasingly recognized importance of proteins which are intrinsically 

disordered or contain low-complexity domains within their assemblies warrants a more 

careful consideration of the differences between the previously well-studied models, in 

which binding immobilizes the bound species, and a model which includes soft interactions 

and obstacles or barriers in which the bound species may remain mobile.

Motivated by the biological importance of binding interactions which can retain mobility of 

the bound particle, we studied a minimal model with bound tracer mobility (figure 1). In our 

model, tracer particles move on a 2D or 3D lattice in the presence of immobile obstacles, to 

which the tracers can bind. A primary distinction between our model and many others that 

consider binding or adhesion is that others typically consider adhesion between a tracer and 

an adjacent hard obstacle, in which there is no overlap between tracers and a hard obstacles 

core [20, 22, 24]. Here, obstacles are soft: tracer particles can overlap with obstacles, with an 

energy penalty (or gain) ΔG upon moving to a lattice site occupied by an obstacle. Unlike 

previous work modeling lipid rafts, we closely examine the dependence on binding, instead 

of just pure exclusion or free entry into lipid regions [4].
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To understand the effects of bound mobililty, we first consider the limits of ‘sticky 

obstacles’, in which tracers are immobile while bound, and ‘slippery obstacles’, in which 

tracers are mobile while bound. We use lattice Monte Carlo methods to explore a range 

binding energy and obstacle filling fraction. We also examine the effects of semi-sticky 

obstacles—i.e., intermediate bound diffusion coefficient—and obstacle size effects, which 

demonstrates how diffusion is altered in a crowded environment with compartments with 

different properties—such as a cell [21]—is altered. Our results demonstrate how binding 

and bound-state motion independently impact particle dynamics, including long-time normal 

diffusion and anomalous diffusion. Bound tracer mobility increases the long-time diffusion 

coefficient, reduces the transient anomalous time, and eliminates caging for all times 

typically observed above the percolation threshold. These results demonstrate that mobility 

of bound particles can benefit biological systems by allowing mobility even in highly 

crowded environments.

2 Model

Our model seeks to build on stochastic lattice-gas models that have been important to 

understanding tracer dynamics in the presence of immobile and mobile hard obstacles [18], 

anomalous subdiffusion [19], and effects of binding on diffusion [20]. Saxton showed that 

the tracer diffusion coefficient drops to zero at the percolation threshold, the critical 

concentration of obstacles at which a continuous path of vacancies through which a tracer 

can move no longer exists. Above this percolation threshold, diffusion is anomalous at long 

times. The effects of tracer and obstacle size [26, 37, 38] and adhesion and repulsion to sites 

adjacent to obstacles [22] on transient subdiffusion and long-time diffusion have been 

studied. Extensions to mobile obstacles which interact with each other have demonstrated 

how obstacle clustering dynamics can influence the diffusivity of tracers [39]. Numerically 

exact methods for calculating diffusion coefficients using the Nernst-Einstein relation [40, 

41] and Markov chains [42] have been implemented as a different approach to analyzing 

these systems; the Nernst-Einstein approach can lower the computational cost of measuring 

diffusion coefficients for lattice gases [37]. Protein motion in polymer networks has been 

studied using random-walk and self-avoiding-chain models for immobile [43] and mobile 

[24, 44] hard chains. Studies of chains with binding sites found that modeling chain 

dynamics allowed a mapping onto randomly distributed obstacles with an effective volume, 

and showed how sliding along a defined chain can effect tracer dynamics [44, 45]. In some 

previous work, the effects of binding and sliding while bound were entangled because both 

effects were encoded by a single parameter [44, 45]. Domains with different diffusion 

coefficients and sizes—to model lipid rafts—have been studied, but the analysis only 

included total or no exclusion although it was noted that binding effects could play a large 

role [4].

In our model, tracer particles undergo a random walk on a square lattice and interact with 

immobile obstacles. The interaction is characterized by a binding free energy; for simplicity, 

we neglect any additional activation barrier. The characteristic binding free energy change of 

a tracer that hops from an empty site to an obstacle site is ΔG (in units where kBT = 1). We 

consider both attractive (ΔG < 0) and repulsive (ΔG > 0) obstacles. We use the Metropolis 

algorithm [46] to accept or reject candidate binding (probability PB) and unbinding 
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(probability PU) events. Each tracer occupies a single site lattice site, but the obstacle size is 

varied to represent domains of characteristic size. Obstacles are squares with sides of length 

lobst, measured in units of the lattice spacing.

To study the effects of tracer particle motion while bound, we considered the limits of 

perfectly sticky and slippery obstacles (fig. 1), as well as the intermediate ‘semi-slippery’ 

case. In all models, obstacles are soft, so that tracers overlap with obstacles when bound. For 

sticky obstacles, no hopping between obstacle sites can occur, but tracers can exit an 

obstacle in any direction that would move the tracer to an unoccupied site. For slippery 

obstacles, tracers can hop between adjoining obstacles while remaining bound. In the limit 

of perfectly slippery obstacles, in which bound motion is identical to unbound motion, there 

is no difference in hopping rates between free and bound tracers. For semi-slippery 

obstacles, we vary the bound diffusion coefficient.

2.1 Simulation methods

In our kinetic Monte Carlo scheme, at each time step a tracer attempts a move in a randomly 

chosen direction. Moves from empty → empty are always accepted, empty → obstacle 
moves are accepted with probability min(e−ΔG, 1), obstacle → empty moves are accepted 

with probability min(eΔG, 1), and obstacle → obstacle moves are always accepted/rejected 

if obstacles are slippery/sticky (fig. 1); for semi-slippery obstacles, the acceptance 

probability is Dbound/Dfree. If a tracer’s move is rejected, it remains immobile for that time 

step. We assume noninteracting tracers.

Initially, obstacles were uniformly randomly placed on the lattice, at the specified filling 

fraction, without overlaps. Next, tracers were randomly placed on obstacles and empty sites 

at their equilibrium occupancy, as determined by the filling fraction of obstacles ν, and 

binding energy ΔG. The fraction of tracers on obstacles is proportional to the obstacle filling 

fraction times the Boltzmann factor, νe−ΔG, while the fraction of tracers on empty sites is 

proportional to the fraction of empty sites, (1 − ν). The equilibrium fraction of tracers on 

obstacles of size 1 is then

(1)

Using an initial fraction of tracers bound to obstacles determined from fo avoids the time 

required for binding equilibration in the simulations, ensuring that mean-squared 

displacement measurements are independent of a time origin.

We performed 2D simulations with 200 tracers on a 256 × 256 periodic lattice for 105 – 

107.5 time steps, with recording interval of 10 – 100 steps. For each parameter set 

(determined by filling fraction and binding energy), we averaged over 96 separate obstacle 

configurations. We varied ν from 0 to 1 and ΔG from −5 to 10. 3D simulations used similar 

parameters with a 256×256×256 periodic lattice. In the semi-slippery case, we varied the 

ratio of bound to free diffusion coefficient Dbound/Dfree between 0 (perfectly sticky) and 1 
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(perfectly slippery) in steps of 0.2, for binding energies ΔG = 1, 2, 3, ∞ for two filling 

fractions, ν = 0.3 and 0.6. When varying obstacle size, we used square obstacles with the 

length of a side, lobst, equal to odd values from 1 to 15.

2.2 Trajectory analysis

We determined tracer mean-squared displacement (MSD) as a function of time delay by 

averaging over all tracers, 100 randomly selected independent time origins, and obstacle 

configuration. For long time delays for which 100 independent time intervals were not 

available, we averaged over the maximum number of independent time intervals. As 

previously mentioned, averaging over time windows improves our statistics; note that the 

time origins are not unique, since the placement of tracers in their equilibrium binding 

distribution ensures that there is no initial binding equilibration time. We have verified that 

that are no aging effects [47, 48], i.e., MSD measurements that depends on simulation time, 

in our model (data not shown).

We sought to quantify the effects of binding and obstacle filling fraction on tracer mobility. 

In systems with either purely Fickian diffusion or particular obstacle geometry, the mean-

squared displacement grows as a power law in time:

(2)

where 〈r2〉 is the ensemble-, time-origin-, and obstacle-configuration-averaged mean-

squared displacement, d is the spatial dimension, D is the diffusion coefficient, α is the 

diffusion scaling exponent, and t is the time delay. This fractional diffusion equation has 

been studied extensively [49], both because it emerges from certain microscopic theories and 

as a means to quantify anomalous random walks. Fractional diffusion has been 

experimentally measured in cells, using fluorescence recovery after photobleaching [50], 

fluorescence correlation spectroscopy [51], and single-particle tracking [52]. For hard 

obstacles, α reflects the non-homogeneity and fractal structure of a cluster. In this case, α 
can be thought of as a measure of a local landscape, in which obstacles have the possibility 

of trapping a tracer and introducing memory effects into the system. The value of α does not 

quantify the time it takes to escape a trapping cage; but α < 1 suggests the possibility that 

the landscape can cage tracers. In the α → 0 limit, a tracer is fully caged, and the α → 1 

limit represents Fickian diffusion.

However, many systems have more complex dynamics that are not power law. For example, 

tracer dynamics can be transiently anomalous: subdiffusive on short time scales and Fickian 

on longer time scales (fig. 2b). The dynamics can be quantified using a phenomenological 

approximation in which the exponent α is treated as time dependent [19, 26, 37, 38, 42, 53]. 

Thus, r2 ~ tα holds only over particular time scales.

For non-power-law dynamics, we can apply equation 2 locally, with a phenomenological, 

time-varying exponent. Then α(t) is defined by local fitting to the the logarithm of :
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(3)

so that α(t) − 1 is the local slope of the  versus t curve on a log-log plot. As seen in figs. 2 

and 3, the instantaneous effective α varies with delay time. Thus, a power-law MSD scaling 

with time, such as can arise from fractional Brownian dynamics, does not encompass the 

complexity of our crowded diffusion model, as has been found previously [8, 38].

At short time, our model typically exhibits anomalous diffusion. However, in some 

conditions, the short-time behavior is diffusive, with an intermediate anomalous regime. We 

defined αmin as the minimum instantaneous value of α (the most anomalous exponent). We 

characterized the transition between short-or intermediate-time anomalous diffusion and 

long-time normal diffusion by the time scale ta, determined as the intersection of the 

horizontal long-time asymptote of  with a line tangent to the point of the maximum rate 

of decrease of this curve (fig. 3b,c). We found that this transition time could be robustly 

determined for a wide range of diffusion coefficients and anomalous behavior. We denote ta 

the anomalous time. Qualitatively, it is the crossover time from short-time subdiffusion to 

long-time Fickian diffusion. While αmin characterizes how trapped a tracer is, ta quantifies 

how long it takes a tracer to escape a cage.

We defined the long-time Fickian diffusion coefficient as

(4)

All diffusion coefficient measurements are expressed in terms of the scaled diffusion 

coefficient , where  is the diffusion coefficient in the absence of obstacles, 

where l is the distance between lattice sites (here defined to be 1), and τ the time interval 

between steps (also set to 1).

In some cases, we were unable to determine all of D*, αmin, and ta. For some parameter sets, 

the slope of vs. t on a log-log plot approached a non-zero constant, indicating that 

diffusion was anomalous over all measured time delays, so that the Fickian diffusion 

coefficient was not well-defined. For other parameter sets, the  versus t curve did not 

reached a clear asymptote during the simulation time. We therefore could not determine D*, 

but could measure αmin. When tracer diffusion was normal over all or nearly all measured 

time delays, neither αmin nor ta were well-defined, but D* could be measured.

3 Sticky soft obstacles

We initially focus on the limit of perfectly sticky obstacles of size 1, to determine the effects 

of stickiness, filling fraction, and binding energy on tracer motion. We varied parameters 
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over a wider range for the 2D model, with a comparison to 3D results for some parameter 

sets.

For sticky obstacles, the motion of a bound tracer to an adjacent obstacle is prohibited. This 

could occur, for example, because the net free energy cost of binding to an obstacle is a 

result of an attractive binding interaction, with a high free energy barrier to moving to an 

adjacent site. Here, we consider the limit that the free energy cost of moving to an adjacent 

obstacle is so large that it approaches infinity. This situation provides an important point of 

comparison to explicitly test the effects of bound-state diffusion on tracer behavior.

We separately consider repulsive and attractive obstacles (fig. 4). Note that we include the 

case ΔG = 0, that is, where the binding interactions are neither attractive nor repulsive, but 

still block moves to adjacent obstacles. We define the lower critical occupancy νl as the 

filling fraction at which the diffusion is non-Fickian for all time scales for impenetrable 

obstacles (ΔG = ∞). In the limit of a hard repulsive obstacle, D* decreases with filling 

fraction, and approaches zero at the percolation threshold expected for hard obstacles on a 

square lattice, νl ≈ 0.4 [54], where ta diverges [18]. The lower critical occupancy is the 

percolation threshold, at which there is no longer a continuous path of empty sites (fig. 5).

For finite binding free energy in our model, Fickian diffusion can still occur above the 

percolation threshold νl because soft binding allows tracers to ‘hop through’ single obstacles 

via binding and unbinding. Without soft binding of the type we consider, obstacle 

percolation would prevent a tracer from moving between vacancy clusters. In other words, 

tracers that start in an area caged by obstacles are stuck there. With soft binding, tracers that 

start in a cage can hop onto an obstacle and then hop off into a new vacancy cluster. For soft 

binding interactions and sticky obstacles, there is an upper critical occupancy νu ≈ 0.72 at 

which the long-time diffusion coefficient approaches zero irrespective of binding energy 

(fig. 4). Above νu, tracers become caged regardless of the binding kinetics. Therefore, there 

is a different type of percolating network above the upper critical occupancy: the percolation 

of the inter-obstacle boundary (fig. 5). At the upper critical occupancy, there is a second 

adjacent obstacle preventing the tracer from ‘hopping through.’ Note that as expected, the 

transition time ta appears to diverge on the approach to the upper critical occupancy (fig. 4). 

We are unaware of a theoretical value for this percolating density, but our results suggest its 

approximate value is 0.72 in 2D (fig. 4).

Intermediate repulsive binding energy leads to intermediate behavior, as expected. For 

strong repulsion, e.g., ΔG = 5, D* remains small, though clearly non-zero, up to the upper 

critical occupancy, while ta monotonically increases until it diverges at νu.

Anomalous dynamics appear in the slope of 〈r2〉/t on a log-log plot. The most anomalous 

behavior occurs when the scaling coefficient α reaches its smallest value, αmin. We find that 

αmin decreases with filling fraction and binding energy (fig. 4c). Adding more obstacles and 

increasing the repulsion causes greater hindrance of tracer motion. We note that αmin ≈ 0.7 

near νl for impenetrable obstacles, as found previously [4, 19]. Finite repulsive binding 

energy leads to a smaller exponent (αmin < 0.7) than the infinite case at filling fraction above 

νl. For lower values of ΔG, the scaling coefficient does not go to zero at the upper critical 
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occupancy νu. Note that the sharp cutoff with filling fraction occurs because we did not 

collect data past νu.

Sticky obstacles with attractive binding interactions show a more rapid falloff in the 

diffusion coefficient and larger anomalous time (fig. 4). The upper critical density νu ≈ 0.72 

is in the same vicinity as for ΔG > 0. The dependencies of the diffusion coefficient on filling 

fraction for positive and negative binding energy are similar for low magnitude of the 

binding energy, but the diffusion coefficient falls off more rapidly with filling fraction for 

highly attractive obstacles. This occurs because an attractive obstacle confines a tracer in one 

position until it escapes, while a repulsive obstacle only impedes tracer motion for one time 

step. Therefore, repulsive interactions require several obstacles to transiently confine a 

tracer, while a single attractive obstacle can cause confinement. Note that we did not include 

large attractive binding free energy in our analysis.

For attractive obstacles, αmin is independent of binding energy over the range we studied 

(fig. 4). The characteristic time for a tracer to unbind from an attractive obstacle depends on 

the binding energy, leading to the energy-dependent variation in the anomalous time we 

observe. However, it is properties of the obstacle arrangement, rather than of binding, which 

determine the shape of the MSD curve, and therefore the αmin. The minimum anomalous 

exponent occurs when tracers are, on average, confined to a cage formed by inter-obstacle 

boundaries and single-site wells. Therefore, the minimum anomalous exponent is 

approximately the same for all binding energy, but varies with filling fraction.

We note that the sticky soft obstacle model studied here does not simply map to the 

impenetrable obstacles at a lower effective obstacle filling fraction. Such a mapping cannot 

be made because tracers can ‘hop through’ single obstacles via binding, while never being 

able to hop between obstacles. Sticky obstacles allow for move attempts—and blocks—that 

would never be attempted in the impenetrable case.

3.1 Sticky soft obstacles in 3D

We extended our study of single-site sticky repulsive obstacles to three dimensions, to 

determine whether the spatial dimension plays a key role in the tracer behavior (fig. 6). The 

results are qualitatively the same as the 2D model (fig. 4). However, in 3D, the lower and 

upper critical occupancies appear at higher filling fraction: a higher obstacle filling fraction 

is required to percolate a 3D lattice. The anomalous time is also typically smaller in 3D. For 

soft sticky obstacles, increasing the spatial dimension does not change the qualitative 

features of our model, but does shift the critical occupancies and anomalous time.

4 Slippery soft obstacles

When obstacles are perfectly slippery, bound tracers can hop to adjacent obstacles without 

penalty. Our model of perfectly slippery obstacles contains an occupancy-energy inversion 

symmetry: the dynamics are invariant to changing the filling fraction by switching obstacles 

and empty sites (ν → 1 − ν) while simultaneously switching the sign of the binding energy 

(ΔG → −ΔG). In other words, a low filling fraction of attractive obstacles is equivalent to a 

high filling fraction of repulsive barriers (fig. 7).
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Slippery obstacles remove the obstacle percolation threshold for all measured binding 

energies (fig. 7). The curves for ΔG = 10 for the repulsive slippery obstacles qualitatively 

resemble the sticky case (fig. 4), because the diffusion coefficient approaches zero for ν ≈ 
0.4. However, for slippery obstacles, the anomalous time increases, but does not diverge, at 

the percolation threshold, and then decreases at larger filling fraction. For slippery obstacles 

with finite ΔG, one can always find a time after which the system displays normal diffusion. 

Slippery obstacles lead to non-monotonic behavior: for large enough ν, the diffusion 

coefficient increases and anomalous time decreases. For high obstacle filling fraction, 

binding increases tracer mobility, because they can hop along the percolating network of 

obstacles. Similarly, the minimum exponent is non-monotonic with filling fraction.

4.1 Slippery soft obstacles in 3D

As for sticky obstacles, we examined tracer motion with single-site slippery obstacles in 

three dimensions (fig. 8). The results are qualitatively the same as the 2D model (fig. 7), 

with typically smaller anomalous time.

4.2 Comparison of sticky and slippery obstacles in 2D

The limits of perfectly sticky and slippery obstacles are most similar at low filling fraction 

(fig. 9). In general, slippery obstacles lead to exponents closer to one (less anomalous) than 

do sticky obstacles, because tracers are not caged by the obstacle-obstacle interface. Even 

for relatively small values of the binding energy (|ΔG| ≤ 3) and intermediate filling fraction, 

sticky and slippery obstacles lead to significantly different tracer dynamics (fig. 9). Slippery 

obstacles, on which motion can occur for high obstacle filling fraction, allow normal 

diffusion with coefficients comparable to those for low filling fraction. This effect may be 

important to explain the rates of a number of biological processes that are diffusion-limited, 

including transcriptional regulation and nucleo-cytoplasmic transport.

5 Semi-slippery obstacles

Having compared the limits of perfectly sticky (Dbound = 0) and slippery (Dbound = Dfree) 

obstacles, we now study intermediate cases. We varied the bound diffusion coefficient for 

repulsive binding energy ΔG = 1, 2, 3,∞ and filling fraction ν = 0.3 and 0.6. For finite 

binding energy, increasing Dbound increases the long-time diffusion coefficient (fig. 10). This 

effect is larger for higher filling fraction and lower binding energy, when tracers spend more 

time bound. Varying Dbound has little effect on the anomalous time at low filling fraction, 

because ta is already near the threshold at which we can accurately measure it. However, 

increasing Dbound decreases ta at higher filling fraction, because tracers can more quickly 

escape obstacles when their bound diffusion coefficient is larger. Similarly, varying Dbound 

has little effect on αmin at low ν, but does make diffusion less anomalous at higher filling 

fraction, because increasing bound motility reduces tracer caging.

6 Varying obstacle size

We varied the length of the obstacles lobst, while maintaining their square shape. Increasing 

the obstacle size (with filling fraction fixed) clusters obstacles. Since in our model the 
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binding penalty occurs only for empty → obstacle moves, increasing the size of obstacles 

effectively reduces the number of binding sites: more obstacle sites are interior to obstacles, 

rather than on their perimeter. For sticky obstacles with lobst = 1, tracers can easily hop 

through cages, since their bound motion is only blocked by an obstacle-obstacle interface. 

Increasing the obstacle size guarantees that individual obstacles will contain an obstacle-

obstacle interface, which makes it less likely that tracers can hop through neighboring 

obstacles (fig. 11). Increasing obstacle size at fixed filling fraction also increases the typical 

distance between obstacles. These changes alter obstacle percolation effects: νl and νu 

depend on lobst.

6.1 Sticky obstacles of varying size

First, we examined tracer dynamics on sticky obstacles of variable size (fig. 12). 

Qualitatively, large sticky obstacles have a soft surface (binding can occur on surface sites, 

although hops along the surface are still blocked), but a hard core (interior sites are 

inaccessible). A significant change in dynamics occur when lobst increases above 1. Any 

obstacle with lobst > 1 is fundamentally different from lobst = 1, because larger obstacles are 

guaranteed to contain sites with an adjacent obstacle site. Increasing lobst prevents hopping 

across the interior of any one obstacle, which can hinder tracer motion. The cages are thus 

more robust. Tracers can still hop across corners, unlike in the case of a purely repulsive 

interaction (fig. 11).

The dependence of tracer dynamics on binding energy changes upon increasing the obstacle 

size above 1 (fig. 12). For size-one obstacles, particles can hop through a single obstacle, 

and so lower binding energy leads to higher long-time diffusion coefficient. In contrast, with 

larger obstacles, high binding energy leads to an increased diffusion coefficient. With higher 

repulsion, a tracer is less likely to bind to the surface of an obstacle where it can get stuck. 

Thus, for larger obstacles, higher repulsion can facilitate motion.

For lobst > 3, increasing obstacle size increases the cage size, and so the long-term diffusion 

coefficient and the anomalous time both increase smoothly, in agreement with previous work 

on impenetrable obstacles [26]. The anomalous time increases with lobst above 3, because 

the effective cage size increases: tracers take longer to explore a cage to escape. For lobst ≥ 3 

and small filling fraction, the size dependence is roughly energy independent. The dynamics 

are dominated by blocked obstacle → obstacle moves, rather than by the energy 

dependence of empty → obstacle moves. For low filling fraction, αmin remains > 0.9, 

suggesting that obstacle caging effects are minimal.

Next, we examined a higher packing fraction ν = 0.6, chosen because it is between νl and 

νu for size-1 obstacles in 2D. The effects of obstacle size on percolation are significant, 

leading to larger changes in behavior than for ν = 0.3. As lobst increases, obstacles are on 

average spaced farther apart, which increases νl.

In contrast, the upper critical concentration is more complicated, because now each obstacle 

contains within it obstacle-obstacle interfaces. The upper critical concentration decreases 

below 0.6 for lobst = 3, and therefore the dynamics are anomalous at all times; ta diverges 

and D* goes to zero. Above lobst = 3, the upper critical concentration increases with 
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increasing obstacle size. For lobst = 5, νu > 0.6, leading to long-time Fickian diffusion. Here 

ta decreases with lobst, because the time required for a tracer escape a cage is not dominated 

by the cage size (as it was for low ν), but by the time needed to find a gap between cages. 

As lobst increases, the gaps become larger on average, lowering the escape time. Overall, 

above lobst = 5, the behavior is only mildly dependent on either obstacle size or binding 

energy, making the long term diffusivities primarily a function of the filling fraction.

6.2 Slippery obstacles of varying size

Understanding the effects of variable obstacle size on tracer motion is more straightforward 

for the case of slippery obstacles, because the difference between edge and interior obstacle 

sites is eliminated (fig. 13). In the perfectly slippery limit, increasing lobst effectively lowers 

the number of binding sites: tracers experience the binding energy change only when 

binding to obstacle edge sites, but can move freely through obstacle interior sites. Therefore, 

D* and αmin increase with obstacle size, an effect that is larger for higher filling fraction, 

because obstacle overlaps at high filling fraction lower the fraction of obstacles that impede 

motion and cage tracers. In nearly all cases, ta increases with obstacle size, because the 

effective cage size grows. The exception occurs for impenetrable obstacles, where increasing 

lobst increases the size of vacancies between cages, allowing caged tracers to escape more 

quickly.

7 Conclusion

In this paper, we have studied a lattice model of tracer particles that diffuse and experience 

crowding due to immobile obstacles. While most previous work has considered hard 

(impenetrable) obstacles, we consider soft (penetrable) obstacles characterized by a binding 

free energy that allows tracers to overlap with obstacles. We also consider the effects of 

varying the tracer mobility while bound, including the limiting cases of ‘sticky’ obstacles 

(which immobilize bound tracers) and ‘slippery’ obstacles (which allow full tracer mobility), 

as well as the intermediate regime between the two.

In some cases, diffusion crowded media leads to dynamics that are anomalous (r2 ~ tα) with 

a constant α [1]. However, our system typically does not give a power-law dependence of 

the MSD on time delay; this has been seen by others [8, 38]. As a result, we quantified a 

long-time diffusion constant (D*), the timescale on which the systems transitions from 

anomalous to Fickian (ta), and the minimum instantaneous anomalous exponent (αmin).

Our results demonstrate the key differences between sticky and slippery obstacles. For sticky 

obstacles, increasing the obstacle filling fraction decreases the diffusion coefficient and 

increases the degree of anomalous diffusion. Above an upper critical occupancy νu ≈ 0.72 in 

2D, diffusion becomes anomalous at all times, independent of binding energy. In the sticky 

case, the minimum anomalous exponent, αmin monotonically decreases with filling fraction, 

because adding more obstacles creates more cages in which tracers become transiently 

confined.

For slippery obstacles, by contrast, tracers always reach normal diffusion after a sufficiently 

long time; even increasing the filling fraction above the percolation threshold does not 
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eliminate tracer motion. For nonzero binding free energy, we find a novel non-monotonic 

dependence of D* on filling fraction: increasing the filling fraction away from zero 

introduces binding sites that slow tracer diffusion, but for sufficiently high filling fraction, 

bound mobility allows tracer motion along clusters of obstacles. The anomalous exponent 

decreases with binding energy magnitude, but varies non-monotonically with filling fraction. 

For low filling fraction, αmin decreases as more obstacles are added, because binding 

transiently traps tracers on isolated obstacles. For sufficiently high density, diffusion 

becomes more normal when tracers hop along clusters of obstacles while bound.

For intermediate ‘semi-slippery’ obstacles, we demonstrate that in the crossover from from 

sticky to slippery behavior, D*, αmin, and ta vary smoothly. Increasing bound diffusion 

always makes the diffusion coefficient larger and the diffusive motion less anomalous.

We varied obstacle size to examine how relatively large obstacle ‘domains’ affects tracer 

motion in our model. For sticky obstacles, increasing obstacle size above 1 led to a sharp 

jump in tracer properties. This occurs because larger obstacles always contain interior 

obstacle sites, which are inaccessible to tracers in the sticky model. For large obstacles, 

increasing repulsive binding energy tends to increase the tracer diffusion coefficient, because 

tracers spend less time trapped in a binding site.

For slippery obstacles, perimeter and interior obstacle sites are both accessible, which means 

that varying obstacle size has effects that are easier to understand intuitively. The diffusion 

coefficient and anomalous exponent increase with obstacle size, because larger obstacles 

lead to a fewer obstacle-empty boundaries. The effect of obstacle size on ta varied with 

filling fraction, due to competing effects on increasing cage size and increasing gaps 

between cages.

Our models separately represent effects of soft interactions (through the binding energy) and 

bound-state motion (through obstacle stickiness/slipperiness). Sticky and slippery obstacles 

show dramatically different tracer dynamics, even at short time and low filling fraction. 

Slippery obstacles lead to a diffusion coefficient which varies non-monotonically with filling 

fraction, with high values at both high and low obstacle densities. As the filling fraction 

increases from zero, the particles are more and more inhibited by obstacles. However, as the 

obstacle density increases, particles which bind can more easily move between obstacles. 

This may describe transport factor motion within the nuclear pore complex, where transport 

factors can slide on the disordered FG Nups [35]. Therefore, biological systems may use soft 

interactions and slippery obstacles to allow particle diffusion, even in the highly crowded 

cellular interior.

Our work highlights how soft interactions and bound-state mobility can dramatically change 

tracer motion. These effects are relevant to biological systems, ranging from membrane-less 

organelles to lipid rafts. Although most previous theoretical work on crowded diffusion has 

focused on the anomalous exponent, these biological examples highlight the importance of 

changes in the diffusion coefficient. For example, proteins which do not passage through the 

nuclear pore complex on biologically relevant time scales (minutes to hours) cannot have 

biological effects, and so the speed of passage is the fundamentally important biological 
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quantity. The long-time diffusion coefficient varies dramatically in our model between hard 

obstacles, soft sticky obstacles and soft slippery obstacles (figure 9). Thus, the effective 

permeability of obstacles and the degree to which bound particles can diffuse can be used by 

cells to tune macromolecular motion.
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Figure 1. 
Model schematic. Tracers (colored circles) hop on a lattice of empty sites (white squares) 

and obstacles (gray squares). Tracer binding with a soft interaction potential allows them to 

overlap with obstacles (top). For sticky obstacles, the only allowed moves of a bound tracer 

are to empty sites (unbinding). For slippery obstacles, tracers can hop to other obstacles 

while remaining bound. Arrows denote possible moves and P the probability that a given 

move is accepted.
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Figure 2. 
Mean-squared displacement 〈r2〉 divided by time delay t as a function of time delay t for (a) 

impenetrable obstacles, (b) repulsive slippery obstacles (ΔG = 2), (c) repulsive sticky 

obstacles (ΔG = 2), and (d) attractive sticky obstacles (ΔG = −2). Different colors 

correspond to different filling fraction ν. Curves with non-zero slope indicate anomalous 

diffusion, and the horizontal asymptote indicates the long-time diffusion coefficient. Each 

curve represents an average over tracers, independent time windows, and obstacle 

configurations.
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Figure 3. 
Top panel: Illustration of fitting procedure, showing 〈r2〉/t vs time delay t for simulation data 

(blue), line fitted to horizontal asymptote (red dashes), line tangent to point of maximum 

absolute slope of the curve (red dash-dots), and anomalous time ta (black dots) for different 

parameters. Bottom panel: instantaneous scaling exponent α vs time delay t. (a, d) Slippery 

obstacles with ΔG = 1, ν = 0.95: normal diffusion occurs for all measured time. (b, e) Sticky 

obstacles with ΔG = 2, ν = 0.45. (c, f) Sticky obstacles with ΔG = −5, ν = 0.50.
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Figure 4. 
Sticky obstacles of size 1 in 2D. (a, d) Diffusion coefficient D*, (b, e) anomalous time ta, and 

(c, f) minimum scaling exponent αmin as a function of obstacle filling fraction ν for positive 

(top) and attractive (lower) binding energy. Note that points for ΔG = 10 are partially hidden 

behind ΔG = ∞. The approximate locations of the critical occupancies νl and νu are 

indicated with gray dotted lines.
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Figure 5. 
The two types of percolation threshold in our lattice model: the lower critical occupancy νl 

(left) and the upper critical occupancy νu (right). For the lower critical occupancy, which is 

the standard percolation threshold, the percolating network is the obstacles. At the upper 

critical occupancy, the percolating network is the interface between two or more obstacles. 

The barrier to tracer motion is shown as a black lines; obstacle-obstacle boundaries which 

cannot be crossed by a tracer in the sticky model are shown in red. Without binding, tracers 

cannot pass through the lower percolating network. If they can bind, tracers can ‘hop 

through’ the lower percolation barrier with or without bound motion.
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Figure 6. 
Sticky obstacles of size one in 3D. (a) Diffusion coefficient D*, (b) anomalous time ta, and 

(c) minimum scaling exponent αmin as a function of obstacle filling fraction. The 

approximate locations of the critical occupancies νl and νu are indicated with gray dotted 

lines.
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Figure 7. 
Slippery obstacles in 2D. (a, d) Diffusion coefficient D*, (b, e) anomalous time ta, and (c, f) 

minimum scaling exponent αmin as a function of obstacle filling fraction ν for positive (top) 

and attractive (lower) binding energy. The approximate locations of the critical occupancies 

νl and νu are indicated with gray dotted lines.
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Figure 8. 
Slippery obstacles of size 1 in 3D. (a) Diffusion coefficient D*, (b) anomalous time ta, and 

(c) minimum scaling exponent αmin as a function of obstacle filling fraction ν. The 

approximate locations of the critical occupancies νl and νu are indicated with gray dotted 

lines.
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Figure 9. 
Comparison of models with slippery repulsive obstacles (solid lines), sticky repulsive 

obstacles (dashed lines), and hard repulsive obstacles (purple dashed line). (a) Diffusion 

coefficient D*, (b) anomalous time ta, and (c) minimum scaling exponent αmin as a function 

of obstacle filling fraction ν. The gray dotted lines are indicating the approximate locations 

of critical occupancies νl and νu.
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Figure 10. 
Semi-slippery obstacles in 2D. Varied the bound diffusion coefficient from the sticky Dbound 

= 0 to slippery Dbound = Dfree limit for single site lobst = 1 obstacles. Top panel: (a, d) 

Diffusion coefficient D*, (b, e) anomalous time ta, and (c, f) minimum scaling exponent αmin 

as function of Dbound for low filling fraction ν = 0.3 (top) and high filling fraction ν = 0.6 

(bottom).
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Figure 11. 
Cartoon showing size effects for sticky and impenetrable obstacles. Red lines indicate 

borders between obstacles that cannot be crossed by a tracer.

Stefferson et al. Page 27

Phys Biol. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Size effects for sticky obstacles in 2D. (a, d) Diffusion coefficient D*, (b, e) anomalous time 

ta, and (c, f) minimum scaling exponent αmin as a function of obstacle filling fraction ν for 

ν = 0.3 (top) and ν = 0.6 (lower).
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Figure 13. 
Size effects for slippery obstacles in 2D. (a, d) Diffusion coefficient D*, (b, e) anomalous 

time ta, and (c, f) minimum scaling exponent αmin as a function of obstacle filling fraction ν 
for ν = 0.3 (top) and ν = 0.6 (lower).
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