
RESEARCH ARTICLE

Drug drug interaction extraction from the

literature using a recursive neural network

Sangrak Lim1, Kyubum Lee1¤, Jaewoo Kang1,2*

1 Department of Computer Science and Engineering, Korea University, Seoul, Korea, 2 Interdisciplinary

Graduate Program in Bioinformatics, Korea University, Seoul, Korea

¤ Current address: National Center for Biotechnology Information (NCBI), National Library of Medicine

(NLM), National Institutes of Health (NIH), Bethesda, MD, United States of America

* kangj@korea.ac.kr

Abstract

Detecting drug-drug interactions (DDI) is important because information on DDIs can help

prevent adverse effects from drug combinations. Since there are many new DDI-related

papers published in the biomedical domain, manually extracting DDI information from the lit-

erature is a laborious task. However, text mining can be used to find DDIs in the biomedical

literature. Among the recently developed neural networks, we use a Recursive Neural Net-

work to improve the performance of DDI extraction. Our recursive neural network model

uses a position feature, a subtree containment feature, and an ensemble method to improve

the performance of DDI extraction. Compared with the state-of-the-art models, the DDI

detection and type classifiers of our model performed 4.4% and 2.8% better, respectively,

on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI

corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with

the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in

vitro data respectively. The results of our validation demonstrate that our model can auto-

matically extract DDIs better than existing models.

Introduction

Drug-drug interactions (DDIs) may occur when two or more drugs are co-administered, and

thus the effects of the combined drugs can be increased, weakened, or harmful. It is known

that such DDI events may cause preventable drug related harm [1]. Several databases such as

DrugBank [2], PharmGKB [3], Drugs.com [4] and Stockley’s Drug Interactions [5] collect

known adverse events caused by DDIs. Usually, human experts manually collect DDI informa-

tion from various sources such as the FDA’s Adverse Event Reporting System [6]. Since there

are numerous combinations of drugs available, it is difficult to collect all the DDI events of

patients from reports or publications. Also, manually organizing DDI information in natural

language into a DDI database is costly and time-consuming.

Several efforts to automatically collect DDI information from the biomedical literature

using text mining tools have been made. The DDI Challenges in 2011 and 2013 [7] released

gold standard datasets for the task of improving the performance of DDI extraction using a

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lim S, Lee K, Kang J (2018) Drug drug

interaction extraction from the literature using a

recursive neural network. PLoS ONE 13(1):

e0190926. https://doi.org/10.1371/journal.

pone.0190926

Editor: Jinn-Moon Yang, National Chiao Tung

University College of Biological Science and

Technology, TAIWAN

Received: September 1, 2017

Accepted: December 24, 2017

Published: January 26, 2018

Copyright: © 2018 Lim et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The DDI Extraction

Challenge corpus data is available from: http://

labda.inf.uc3m.es/doku.php?id=en:labda_

ddicorpus. The source code and minimal running

data of our DDI extraction model are available

from: https://github.com/arwhirang/DDI-recursive-

NN.

Funding: This research was supported by the

National Research Foundation of Korea (http://

www.nrf.re.kr/) grants (NRF-2016M3A9A7916996,

2015M3A9D7031070, 2014M3C9A3063543 to

https://doi.org/10.1371/journal.pone.0190926
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190926&domain=pdf&date_stamp=2018-01-26
https://doi.org/10.1371/journal.pone.0190926
https://doi.org/10.1371/journal.pone.0190926
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://labda.inf.uc3m.es/doku.php?id=en:labda_ddicorpus
http://labda.inf.uc3m.es/doku.php?id=en:labda_ddicorpus
http://labda.inf.uc3m.es/doku.php?id=en:labda_ddicorpus
https://github.com/arwhirang/DDI-recursive-NN
https://github.com/arwhirang/DDI-recursive-NN
http://www.nrf.re.kr/
http://www.nrf.re.kr/


Natural Language Processing (NLP) pipeline. Using support vector machines (SVMs), some of

the methods obtained better results on these datasets [8, 9]. Unfortunately, the methods that

use traditional machine learning classifiers such as SVMs require feature engineering of

domain experts, which is also expensive and time consuming. However, several recent deep

learning methods have achieved comparable results without using feature engineering [10–

14].

In this paper, we build a DDI extraction model using a Recursive Neural Network based

approach. Our recursive neural network model in NLP uses syntactical features of each node

in a parse tree. Since the grammatical structure of natural language sentences is known to be

recursive [15], we believe a recursive neural network model would be more effective for under-

standing the DDI-related sentences and extracting information from them.

Socher et al. [16] proposed a Matrix-Vector Recursive Neural Network (MV-RNN) model

that assigns a vector and a matrix to every node in a parse tree to classify the relation of two

target nouns in a sentence. They showed that their recursive neural network model is effective

for finding relations between two entities. Unfortunately, the the MV-RNN model’s perfor-

mance on the DDI extraction task was unsatisfactory [17]. However, in this paper, we show

that our recursive neural network model can improve the performance of DDI extraction

using additional features. The parse tree of a sentence alone is insufficient to convey the loca-

tion of target drug pairs. We use a position feature, a subtree containment feature, and an

ensemble method for improving the performance of DDI extraction in this study.

We validate our model on two different corpora: the DDI’13 corpus and the PK DDI cor-

pus. DDI’13 corpus is the most widely known and manually annotated corpus among the

DDI-related corpora. The PK DDI corpus is also manually annotated [18]. Both corpora aim

to support the development of DDI extraction techniques using NLP. DDIs have roughly two

types of interactions: pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetics

is the study of what the body does to a drug including processes from drug absorption to excre-

tion. On the other hand, pharmacodynamics focuses on the effects of drugs on organisms. The

DDI’13 corpus contains both PK and PD types of interactions, and the PK DDI corpus con-

tains only PK-type interactions.

Materials and methods

Model development

The SemEval 2013 task 9.2 has two objectives. The first focuses on detecting positive DDIs in

all possible pairs of drugs and the second focuses on the multi-class type classifier of each posi-

tive DDI pair of one of the following four types: advice, effect, mechanism, and int. The DDI

types are explained in Table 1. The one-stage method, one of the existing DDI extraction

methods [19], performs detection and type classification at the same time by classifying the

Table 1. DDI relation types and explanations.

Types Explanation

Advice This type is assigned when a sentence contains recommendation or advice regarding the concomitant

use of two drugs

Effect This type is assigned when a sentence contains pharmacodynamic mechanism including a clinical

finding, signs or symptoms, an increased toxicity or therapeutic failure.

Mechanism This type is assigned when a sentence contains pharmacokinetic mechanism including changes in

levels or concentration of the entities.

Int This type is assigned when a sentence states that an interaction occurs and does not provide any

information about the interaction.

https://doi.org/10.1371/journal.pone.0190926.t001

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 2 / 17

JK). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190926.t001
https://doi.org/10.1371/journal.pone.0190926


negative instance and the four DDI types at once. The two-stage method, another DDI extrac-

tion technique, divides the process into detection and type classification [8]. The first detection

stage involves determining whether an interaction between two drugs exists. In the second

type classification stage, the model receives the predicted positive pairs from the first stage as

input and performs multi-class classification to determine the types of DDIs. The given data

has more negative relations than positive relations, and each positive relation is one of the four

relation types mentioned above. Since the detection classifier of the two-stage method does

not divide the positive instances by type, the full set of positive instances can be utilized to

train the detection classifier. We implement both the one-stage and the two-stage methods.

Our overall system architecture is presented in the Fig 1. In the data generation part (Fig

1a), we apply the preprocessing first to improve the performance. Because our recursive neural

network model takes parsed sentences as an input, we use the NLP library to parse the given

sentences. During the parsing process, the subtree containment feature is generated. In the

position feature generation step, we obtain the relative distance between each word and the

target drugs. The target drugs are any pair of drugs in a sentence, and are the current focus of

DDI extraction. The DDI detection task evaluates all possible pairs of drugs in a sentence to

determine DDI relations. After the position feature generation step, we label the training data

for both detection and type classification tasks. In the two-stage method (Fig 1c), our detection

and type classifiers share the same model with different inputs and outputs. The detection clas-

sifier does not learn labels for type classification and vice versa. The detection testing should

be performed prior to the type classification testing because only the predicted positive pairs in

the DDI detection result are used as type classifier testing data. On the other hand, the one-

stage method (Fig 1b) uses five-class type classifier without the detection stage. Since the PK

DDI data does not have DDI-type information, we use only the detection classifier on the PK

DDI data.

Fig 1. Overall system architecture. We implemented both the one-stage and the two-stage method. (a) Data

generation part. (b) One-stage method. Five-class type classifier for the one-stage method. (c) Two-stage method. The

DDI detection classifier distinguishes positive DDI instances from negative instances. The DDI type classifier receives

the predicted positive instances from the detection classifier as a testing set.

https://doi.org/10.1371/journal.pone.0190926.g001

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 3 / 17

https://doi.org/10.1371/journal.pone.0190926.g001
https://doi.org/10.1371/journal.pone.0190926


Preprocessing

Preprocessing involves removing obvious noise, tokenization, and anonymizing target drugs.

These steps reduce the size of the vocabulary and help boost the performance.

Tokenization, replacement and anonymization. In the task of extracting DDIs, most

drug names in sentences are extracted and annotated as entities. However, not all entities in

sentences are annotated. In the biomedical domain, an entity can have multiple names; there-

fore, we converted entity names to more commonly used names to effectively use word

embedding. We employed the biomedical entity extractor used in Biomedical Entity Search

Tool (BEST) (http://infos.korea.ac.kr/bioentityextractor/) to find and replace entity names

with more commonly used terms. BEST aims to complement standard biomedical search tools

such as PubMed [20].

Because the DDI’13 corpus is employed for extracting DDIs using NLP, a target drug pair is

labeled as “False” if its interaction is not represented in a sentence, even though there is an

actual interaction between the two drugs. Drug names do not play a significant role in the DDI

detection process; therefore, earlier studies replaced the drug names with designated names

such as “Ddrug0” for the first drug and “Ddrug1” for the second drug and so on [8–11]. We fol-

lowed the same strategy for our study. Replacing drug entities with designated names also

addresses the unusual cases where target entities are composed of two or more non-sequential

words. For instance, the first sentence in the following example, is changed to the second sen-

tence. In the first sentence, both words “nonheme” and “heme” are connected with “iron” by a

conjunction. The second target entity “nonheme iron” is changed to “Ddrug1” in the second

sentence. The underlined words are the target drugs.

1. “Calciumdrug0 is the only known component in the diet that may affect absorption of both

nonhemedrug1 and hemedrug2 irondrug1/2.”

2. “Ddrug0 is the only known component in the diet that may affect absorption of both

Ddrug1 and Ddrug2.”

After all the preprocessing steps, we changed all the independent numbers to “#” regardless

of whether they were normal integers or floats.

Negative instance filtering. For a fair comparison, the data we use is almost the same as

the data used in the previous study [10]. We did not perform the negative instance filtering

ourselves, but we obtained the data IDs from the released code of the previous study and used

the data with the same IDs. In this section, we briefly mention the filtering method applied to

the data. In machine learning, imbalanced data degrades performance; thus, several studies

that used the DDI’13 corpus implemented the following two rules to filter negative instances,

and thus prevent performance degradation. The first rule is to remove any drug pair that refers

to the same drug. This kind of drug pair may have the same drug name or synonyms. The sec-

ond rule is to filter pairs of drugs that share coordinate relations. A coordinate relation refers

to the case where two words are connected by a conjunction (e.g., “and,” “or”) a comma. Kim

et al. [8] suggest that the pair of drugs in the same noun phrase have a coordinate relation. In

many cases, the coordinate relation between three or more drugs is the feature of the negative

instance.

Parsing sentences

The constituency parse tree of a sentence contains syntactic interpretations of the sentence.

For this reason, many existing papers have utilized results of constituency parsers. However,

sequential models cannot use constituency parse trees to the full extent. The Long Short-Term

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 4 / 17

http://infos.korea.ac.kr/bioentityextractor/
https://doi.org/10.1371/journal.pone.0190926


Memory (LSTM) model constructs a hidden state from the input vector of the current time

step and from the hidden state / memory cell of the previous time step [21]. On the other

hand, the tree-LSTM model receives the hidden state / memory cell from multiple nodes (chil-

dren nodes) at the same time. For example, consider a sentence with a coordinating conjunc-

tion that connects two clauses. The recursive neural network model can tell which phrases are

equivalent in the hierarchical structure of the constituency parse tree of a sentence. We use the

Stanford Parser [22] to transform a sentence into a constituency parse tree. After the parsing

process, we use the “binarizer” provided by the Stanford Parser to convert the constituency

parse tree into a binary tree.

We calculate the subtree containment feature in the parsing stage. Since the subtree con-

tainment feature is converted into a vector by our recursive neural network model, we briefly

explain how the feature is calculated; however, the details are discussed in the sections below.

When one of the target drugs exists in the leaves of the current node, the subtree containment

feature is given a value of one (context:true); otherwise, it is given a value of zero (context:

false).

Word embedding

Word embedding is a set of low-dimensional continuous vectors that are trained by an unsu-

pervised language model. A word from the vocabulary of interest is mapped to a vector of real

numbers using word embedding. Word embedding combined with a neural network is a

method widely used to improve NLP performance [23, 24]. The vector form of words

expresses the relationship between the words and it is used to enhance the performance of an

NLP task with specific purposes including sentiment classification and relation extraction.

After our model receives input words, each input word is mapped to pre-trained word embed-

ding vectors by the lookup process. If the word embedding set does not contain an input word,

we generate a random vector for the input word.

We used the PubMed-and-PMC-w2v word embedding, which is obtained from published

materials (http://evexdb.org/pmresources/vec-space-models/) [25]. The word embedding is

initialized with Word2vec using gensim [26]. The total vocabulary size of the word embedding

is 4,087,446, and we use the words in the DDI’13 corpus only. The dimension size of the word

embedding is 200.

Recursive neural network with treeLSTM

The LSTM architecture [21] is a popular variation of the recurrent neural network that is capa-

ble of processing variable sized sequential data, such as sentences. To apply the LSTM architec-

ture to the tree-structured information propagation, a tree-LSTM model was developed [27].

The tree-LSTM model can update the hidden state from the output states of more than one

child node. In addition, there is a forget gate for every child node, so the model can select and

integrate information from each child. The whole architecture of our model is presented in

Fig 2.

After receiving a parsed input sentence (parse tree) to train our model, we look up the pre-

trained word embedding to map each input word to real-valued vectors. If a node is not a leaf,

the word representation vector is randomly initialized. Our model is based on the recursive

neural network architecture of the child sum tree-LSTM model in [27, 28]. Let xj denote the

concatenation result of the vector representation of a word in a sentence with feature vectors.

For any node j, we have two forget gates for each child and write the sub-node expression of

the forget gates for k-th child as fjk. The B(j) is the set of values (including hk and ck) from chil-

dren of node j; since we use a binary tree, the size of B(j) is 2. i, f, o, c, h are the input gate, forget

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 5 / 17

http://evexdb.org/pmresources/vec-space-models/
https://doi.org/10.1371/journal.pone.0190926


gate, output gate, memory cell, and the hidden state, respectively. u is a temporary value that

could be added to the memory cell state. drop(x) in Eq (8) is a recurrent dropout [29] function.

The mask is a sampled vector from the random distribution with probability keep_p that is

used to decide which element is kept or dropped. The binary tree-LSTM equations are

described below.

~hj ¼
X

k2BðjÞ

hk; ð1Þ

ij ¼ sðWi½xj;
~hj � þ biÞ; ð2Þ

fjk ¼ sðWf ½xj; hk� þ bf Þ; ð3Þ

oj ¼ sðWo½xj;
~hj � þ boÞ; ð4Þ

uj ¼ tanhðWu½xj;
~hj � þ buÞ; ð5Þ

cj ¼ ij � dropðujÞ þ
X

k2BðjÞ

fjk � ck; ð6Þ

hj ¼ oj � tanhðcjÞ ð7Þ

dropðxÞ ¼
mask � x; if train phase;

x; otherwise

(

ð8Þ

Fig 2. The architecture of our recursive neural network model. Our model is a variation of the binary tree-LSTM model.

(1) The words in a sentence. The names of drug targets are underlined. (2) Vector representation of a word through the word

embedding lookup process. (3) Subtree containment feature represents the importance of a node. (4) Position feature vector

representing the relative distance of two target drugs from the current word position. (5) An example of the position feature

vector. The current word is “accelerated.” (6) The size of the concatenated vector input x0 of our model is 10 (size of the

subtree containment feature; (3) in the figure) + 20 (size of the position feature; (4) in the figure) + 200 (size of the word

embedding; (2) in the figure).

https://doi.org/10.1371/journal.pone.0190926.g002

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0190926.g002
https://doi.org/10.1371/journal.pone.0190926


We use a fully-connected layer as the output layer in Eqs (9) and (10). The fully-connected

layer output size is the number of classes (2 for detection, 5 for type classifier). At each node j,

we choose the predicted label ŷj for a given output. However, since the predicted value of the

internal nodes in the tree is not important, we take only the predicted values extracted from

the root node of the entire sentence when the final score is calculated.

We use the softmax cross-entropy classifier to calculate the cost function in Eq (11). m is

the total number of items in the training set. To alleviate the class imbalance problem, we mod-

ified the loss function of the detection classifier so that the positive instances were given a

three times greater loss than the negative instances.

p̂ðyjxjÞ ¼WðfcÞhj þ bðfcÞ ð9Þ

ŷ ¼ arg max
y

p̂ðyjxjÞ ð10Þ

JðyÞ ¼ �
1

m

Xm

k

yklogðsoftmaxðp̂ðykjxkÞÞÞ ð11Þ

We use the Adam optimizer [30] for gradient descent optimization. In the next sections, we

present two features that we used to improve the performance of our model.

Position embedding feature. It is helpful to identify which words are the two target

nouns of interest. Several existing studies [10, 31] used position embedding to represent the

relative distance of two target drugs from each word position in a sentence.

Every word in a sentence has two relative distances, [d1, d2], where di is the relative distance

to ith target drug from the current word. For instance, in the sentence shown in Fig 2-(1), d1 is

-2 and d2 is 2 as the current word (“accelerated”) is located two words behind the first drug

name and two words before the second drug name. In the training phase, each relative distance

is converted into a vector with a size of 10 according to the relative distance to a target drug.

Since there are two distances, the total vector size of the position feature is 20. Table 2 shows

the vector representation based on the relative distances.

Since our recursive neural network model processes parse trees rather than sentences, after

the input sentence is parsed into a tree, the leaf nodes have position features, but the internal

nodes lack the relative distance information. We address the problem by choosing the smaller

absolute value of the relative distance of children nodes.

Table 2. Vector representation according to the distance between one of the target drugs and a current word.

relative distance -5 -4 -3 -2 -1 0 1 2 3 4 5 6–10 11–15 16–20 21–1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

Note: When the distance difference is 5 or less, the vector is assigned to each difference value. If the distance is greater than 5, the same vector is given in units of 5. We

skip the columns ranged from -6 to -1 of the relative distance due to space limitation.

https://doi.org/10.1371/journal.pone.0190926.t002

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0190926.t002
https://doi.org/10.1371/journal.pone.0190926


Subtree containment feature. We designed the subtree containment (context) feature to

represent the importance of nodes. Context words around target drugs are important features

in the sequential models [8, 10]. We changed the context concept to be compatible with the

recursive neural network architecture. When one of the target drugs exists in the leaves of the

current node, this feature is given a value of one (context:true); otherwise, it is given zero (con-

text:false). In the training phase, this feature is transformed into a vector of size 10. If the value

is one, every element in a vector is one; otherwise, every element in a vector is zero, such as the

case in Fig 2-(3).

An input vector of a node in a tree uses the subtree containment feature vector, the position

feature vector, and the vector representation of a word in a given sentence. The size of the

whole input vector xj is 10 + 20 + 200.

Regularization. The original tree-LSTM model [27] used l2 regularization. Later, the tree-

LSTM model was implemented with the TensorFlow fold library [28] using recurrent dropout

[29] instead of the l2 regularization. Recurrent dropout is a dropout variant that improves per-

formance by minimizing memory loss which is especially more common when dropout is

applied to a recurrent neural network. We used recurrent dropout instead of l2 regularization,

and found recurrent dropout to be effective.

Results

Experimental settings

We use TensorFlow [32] to implement our models. TensorFlow version 1.1 is a popular open

source library for machine learning and deep learning. The code is written in Python 3.4. We

implement our model using TensorFlow Fold located at the following link (https://github.

com/tensorflow/fold). Most deep learning libraries such as TensorFlow assume machine learn-

ing models are static, which makes it difficult to use them with dynamic structured models

(e.g., recursive neural network). The TensorFlow Fold is specifically designed to deal with this

problem.

Hyperparameter. As the DDI datasets do not have a standard development set, we con-

ducted five-fold cross validation using the training set to select the optimal parameters. Table 3

illustrates the hyperparameter search process. We found the optimal parameters by moving

one parameter within the specified test range by a specified test unit while other parameters

were fixed. The epochs are the stopping point for each task. It is interesting to note that the

epoch was set to 30 in the PKDDI in vitro dataset because of the large variation of validation

performance. Zhang et al. [33] pointed out that the in vitro dataset has more complex sen-

tences than the in vivo dataset.

DDI’13 data

In the DDI’13 corpus, the number of negatives is six times larger than the number of positives.

Imbalanced data is a major cause of poor performance in machine learning. Most of the high-

performance studies used negative instance filtering to improve the performance of machine

learning. However, after the preprocessing step, the final dataset sizes of each study were dif-

ferent. We used almost the same number of data pairs from the released code and data of the

previous study [10]. Nevertheless, some inevitable differences exist because we removed dupli-

cate sentences from the training and the test set. We did not change the training data; however,

the size of the training data in the paper [10] is different from that of the released data. The

positive drug pairs removed from the test set are considered as false negatives, as in the previ-

ous works. We confirmed that there are no duplicates in the preprocessed training set or the

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 8 / 17

https://github.com/tensorflow/fold
https://github.com/tensorflow/fold
https://doi.org/10.1371/journal.pone.0190926


preprocessed test set. Table 4 shows the statistics of the DDI’13 corpus. We also count the

number of instances of each class (S1 Table).

Existing models for comparison. Among the existing studies that performed well on the

DDI’13 corpus, the study by Kim et al. [8] used a linear kernel-based model with a rich set of

lexical features. The authors proposed a two-stage method to achieve high performance. FBK-

irst [9] utilized the negation scope information. A negation cue (e.g. no) is an important signal

that can reverse the meaning of a particular text segment and the negation scope is the text seg-

ment that is the subject of negation. The authors of FBK-irst used an SVM classifier with a

non-linear kernel.

The following neural network based models were proposed for the DDI’13 challenge. The

Syntax Convolutional Neural Network (SCNN) model [10] uses word embeddings of the

shortest dependency paths, position features and POS information to represent the input sen-

tences. The Multi-Channel Convolutional Neural Network (MCCNN) model [11] uses several

word embeddings for a CNN. Multiple word embeddings have more coverage than only one

word embedding, because they can cover a rare word if it exists in at least one word embed-

ding. The CNN-bioWE model [12] and the CNN-rand model [13] both implemented the Con-

volutional Neural Network (CNN) model combined with position embedding. The CNN-

Table 4. The statistics of the DDIExtraction Challenge’13 corpus after preprocessing.

Positive Negative Total Ratio

Original TrainingSet 4,020 23,772 27,792 1:5.9

Zhao TrainingSet 3,840 8,989 12,829 1:2.3

Our TrainingSet 3,854 8,987 12,841 1:2.3

Original TestSet 979 4,782 5,761 1:4.9

Zhao TestSet 971 2,084 3,055 1:2.2

Our TestSet 971 2,049 3,020 1:2.1

https://doi.org/10.1371/journal.pone.0190926.t004

Table 3. Search process to find the best hyperparameters used for our model.

Parameter Test Range Test Unit Selected

Common Hidden Unit Size 64–256 32 128

Subtree Containment Size 1–10 1 10

Batch Size 100–200 20 100

Binary tree-LSTM Learning Rate 0.0005–0.005 0.0001 0.0008

DDI’13 Detection Keep Probability 0.5–1.0 0.05 0.75

Detection Epoch 30–150 10 100

Binary tree-LSTM Learning Rate 0.0005–0.005 0.0005 0.0007

DDI’13 Classification Keep Probability 0.5–1.0 0.05 0.9

Classification Epoch 30–150 10 130

Binary tree-LSTM Learning Rate 0.0005–0.005 0.0005 0.003

PK DDI in vivo Keep Probability 0.5–1.0 0.05 0.75

Classification Epoch 30–150 10 80

Binary tree-LSTM Learning Rate 0.0005–0.005 0.0005 0.001

PK DDI in vitro Keep Probability 0.5–1.0 0.05 0.6

Classification Epoch 30–150 10 30

Note: We found the optimal parameters by moving one parameter within the specified range by a specified unit while the other parameters were fixed. The keep

probability is used for the dropout. The epochs are the stopping points for each task.

https://doi.org/10.1371/journal.pone.0190926.t003

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0190926.t004
https://doi.org/10.1371/journal.pone.0190926.t003
https://doi.org/10.1371/journal.pone.0190926


bioWE model uses word embedding trained on MEDLINE abstracts [34]. The CNN-rand

model uses a random initialized word embedding matrix. The Matrix-Vector Recursive

Neural Network (MV-RNN) model [17] was re-implemented for the DDI’13 Challenge. The

MV-RNN model assigns a vector and a matrix to every node in a parse tree to learn the syntac-

tic and semantic information. The Joint AB-LSTM [14] used LSTM based architectures with

an attention mechanism to achieve high performance.

The SCNN model and our model report the results of both the one-stage and two-stage

methods. The Joint AB-LSTM model used the one-stage method for DDI type classification

and the two-stage method for detection.

Performance. The performance is measured using micro-averaged F1-scores. The typical

F1-score is defined as F1-score = (2PR)/(P+R), where P denotes precision and R denotes recall.

The micro averaged F1-score is calculated by summing the individual true positives, false

positives, false negatives, and true negatives for different classes and applying the F1-score

equation.

We report the performance of both our single model and our ensemble model. Our ensem-

ble method trains the same model 10 times and sums the weight results to obtain the final

result. The ensemble group’s members are structurally identical, but each ensemble member

has random weight initialization. The trained ensemble members with random weight initiali-

zation produce different weight results. [35]. Since DDI extraction is a challenging task, it is

difficult to reproduce the exact same result at the same stopping point (epoch) for the single

model, and we mitigated this problem to some extent in the ensemble model. For the evalua-

tion of our single model, we test its performance five times and report the average to provide

more rigorous results. For the evaluation of our ensemble model, we sum the output probabili-

ties (logits) of ensemble members, which are from the same repeated experiment. The results

are provided in Table 5.

For type classification, the performance of DDI type classifier of our two-stage method is

lower than that of our one-stage method. Although the performance of the detection classifier

of our two-stage method is state-of-the-art, there still are false negatives in the results. The

Table 5. Comparison between our proposed model and existing models.

Detection Type Classification

P (%) R (%) F (%) P (%) R (%) F (%)

MV-RNN Modelmv - - - 52.0 48.0 50.0

CNN-rand Modelr - - - 69.86 56.1 62.23

Kim Modelk - - 77.5 - - 67.0

FBK-irst Modelf 79.4 80.6 80.0 64.6 65.6 65.1

SCNNs One-Stage Model 74.7 76.8 75.7 69.1 65.1 67.0

SCNNs Two-Stage Model 77.5 76.9 77.2 72.5 65.1 68.6

CNN-bioWE Modelb - - - 75.72 64.66 69.75

MCCNN Modelmc - - 79.0 75.9 65.2 70.2

Joint AB-LSTM Modelj 86.3 75.0 80.3 73.4 69.6 71.48

Our One-Stage Model (Single) 82.1 78.5 80.1 74.4 69.3 71.7

Our One-Stage Model (Ensemble) 85.5 77.8 81.5 77.8 69.6 73.5

Our Two-Stage Model (Single) 80.6 84.2 81.8 77.7 66.1 71.4

Our Two-Stage Model (Ensemble) 83.6 84.0 83.8 79.3 67.2 72.7

Note: P, R and F denotes Precision, Recall and F1 score, respectively. Modelmv [17], Modelr [13], Modelk [8], Modelf [9], SCNNs [10], Modelb [12], Modelmc [11], Modelj

[14].

https://doi.org/10.1371/journal.pone.0190926.t005

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0190926.t005
https://doi.org/10.1371/journal.pone.0190926


false negative instances that occur in the detection stage do not have the opportunity for classi-

fication, resulting in a slightly lower performance.

The detection classifier of our two-stage method outperforms our one-stage method in

detection because the two-stage method categorizes the classes to positive and negative groups,

which increases the number of training instances per class. On the other hand, the number of

instances per class for the one-stage method is small because the one-stage method needs to

learn five classes at a time. We also compared predicted performance of each of the four types

of our model with the types of other models (S2 Table).

The effect of features. We performed subsequent experiments to evaluate the effective-

ness of the features used in our model. We started with our best performing ensemble model,

and removed the features individually while tracking any changes in performance. We test the

performance of the models with different features five times and average the results. The abla-

tion study results are shown in Table 6.

Without the position or subtree containment features, the F1-score slightly drops. When

both features are removed, the F1-score drops sharply. To detect whether a DDI between two

target drugs exists, our model needs a signal to specify the locations of the target drug pair in a

sentence. The two features act as effective signals for our model. In some cases, fine-tuning the

pre-trained word embeddings in the training process produced better results [36]. However,

in our experimental setting, our model achieved better performance by keeping the word

embedding static. This can be attributed to overfitting due to a lack of data that is required for

learning. We also made a table that compares the input features of our model and the input

features of other models (S3 Table).

PK DDI data

DDIs have been recognized as an important concept in pharmacology. Wu et al. [18] released

the original PK DDI corpus and Zhang et al. [33] later used the same data format as the

DDI’11 corpus. We utilized the second version of the PK DDI data, which is more refined

than the original (https://sbmi.uth.edu/ccb/resources/ddi.htm). The PK DDI corpus was man-

ually created from 428 Medline abstracts. The authors of the PK DDI corpus differentiated the

data into in vivo DDIs and in vitro DDIs. The in vivo PK DDI studies focus on cases where

metabolism and efficacy of a drug are influenced by another drug. The in vitro DDI studies

usually determine whether a target drug is an inhibitor or an inducer of other drugs. Because

all the data is limited in size, we did not perform negative instance filtering. Table 7 displays

the statistics of the PK DDI corpus data.

Table 6. Changes in our model’s performance in DDI detection by removing several features of our model.

Removed Features P (%) R (%) F (%)

Ensemble + All Features 83.6 84.0 83.8

Single + All Features 80.6 84.2 81.8

Single + All Features—Static Word Embed 69.8 81.9 75.3

Single + All Features—Subtree feature 78.6 84.2 81.2

Single + All Features—Position feature 78.0 85.5 81.4

- Subtree feature 46.0 82.6 58.9

- Static Word Embed 45.1 76.4 56.7

Note: P, R and F denote Precision, Recall and F1 score, respectively. We test the performance of our single model five

times and average the results. For the ensemble performance, we sum the output probabilities of the ensemble

members.

https://doi.org/10.1371/journal.pone.0190926.t006

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 11 / 17

https://sbmi.uth.edu/ccb/resources/ddi.htm
https://doi.org/10.1371/journal.pone.0190926.t006
https://doi.org/10.1371/journal.pone.0190926


Existing models for comparison. Zhang et al. [33] used a refined-semantic class annota-

tion method which replaces several important terms related to the PK DDI process with more

generic terms. Zhang et al. implemented the all-paths graph kernel method which uses depen-

dency graphs that represent sentence structures [37]. In addition to the semantic class annota-

tion, Zhang et al. also used predicate-argument structures (PASs) in place of the dependency

parser result. We denote the dependency parsing version results as DEP_ReSC and the PAS

version results as PAS_ReSC, both of which results are obtained from the previous study [33].

The PK DDI corpus has only baseline results tested by the authors of the data. We tried to

use the baseline results of the DDI’13 corpus for the PK DDI corpus. However, the existing

studies that released the code provide the pre-processing code part only for the DDI’13 corpus

or lack details on how to pre-process data other than the DDI’13 corpus. Also, machine learn-

ing models that do not go through hyper-parameter adjustments will obtain lower perfor-

mance; therefore, we report only the baseline results obtained from the previous study [33].

Performance. The performance is measured using F1-score. We report the performance

of both our single and ensemble models. The performance of our single model is measured

based on the average results of five repeated experiments. For the ensemble performance, we

sum the output probabilities of the 10 ensemble members. The performance results are listed

in Tables 8 and 9.

Our model outperforms other baseline models on both the in vitro, and in vivo datasets.

Both datasets were difficult to use for training because their size is smaller than that of the

DDI’13 corpus. While the model of Zhang et al. [33] improves performance using re-anno-

tated data, our model achieves better performance without using re-annotated data.

The effect of features. We remove features individually to evaluate the effectiveness of

the features and report changes in performance. We test the performance of our model with

Table 7. The statistics from the PK DDI corpus after preprocessing.

Positive Negative Total Ratio

in vivo DDI training data 781 2,809 3,590 1:3.5

in vivo DDI test data 213 676 889 1:3.1

in vitro DDI training data 544 3,984 4,528 1:7.3

in vitro DDI test data 146 837 1,015 1:5.7

https://doi.org/10.1371/journal.pone.0190926.t007

Table 8. Comparison of in vivoPK DDI results of our model and those of existing models.

Precision (%) Recall (%) F1-score (%)

PAS_ReSC [31] 84.8 68.5 75.8

DEP_ReSC [31] 80.8 83.1 81.9

Our Model (Single) 82.1 83.3 82.6

Our Model (Ensemble) 85.0 82.6 83.8

https://doi.org/10.1371/journal.pone.0190926.t008

Table 9. Comparison of in vitroPK DDI results of our model and those existing models.

Precision (%) Recall (%) F1-score (%)

PAS_ReSC [31] 74.8 62.5 68.1

DEP_ReSC [31] 70.7 67.9 69.3

Our Model (Single) 80.3 65.9 72.3

Our Model (Ensemble) 81.2 67.9 74.0

https://doi.org/10.1371/journal.pone.0190926.t009

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 12 / 17

https://doi.org/10.1371/journal.pone.0190926.t007
https://doi.org/10.1371/journal.pone.0190926.t008
https://doi.org/10.1371/journal.pone.0190926.t009
https://doi.org/10.1371/journal.pone.0190926


different features five times and report the average of the results. The ablation study results are

in Table 10. As in the case of the DDI’13 corpus, the more features are removed, the lower the

overall score.

Discussion

Robustness of our model

The preprocessing method contributes to performance improvement by filtering numerous

noisy instances. We examined the performance of our two-stage detection classifier (single) on

the original DDI’13 Challenge data to determine the impact of preprocessing methods on per-

formance and the robustness of our model. Our model trained on the non-preprocessed data

obtains an F1-score of 80.3%; however, our model trained on the preprocessed data achieved

an F1-score of 81.8%. Our model trained on the non-preprocessed data suffered a 1.5% drop

in performance. Although our model does not depend heavily on preprocessing, a very simple

preprocessing method such as the one applied to our data, may improve the performance.

Regularization analysis

The original tree-LSTM model [27] used l2 regularization, but we implemented recurrent

dropout [29] to achieve better performance. To compare l2 regularization and recurrent drop-

out, we searched the best λ value for l2 regularization. We report the performance of the two-

stage detection classifier (single) using the l2 regularization technique. The best λ value for l2

regularization is 1.0 and the F1-score of the two-stage detection classifier (single) using l2 regu-

larization model is 79.8%, while that of our recurrent dropout model is 81.8%.

Error analysis

We examine the cases where our best ensemble based model fails to detect an interaction

between target drugs. We explain the three most common error cases below and miscellaneous

errors in the “ETC” group. We provide examples of the three most common cases in Table 11.

Case 1. When a strong hint for a positive instance does not exist in the training set.
It is difficult to accurately detect interaction if there is an expression that was not present in

the training process. In such a case, a detection classifier is set only to find DDIs based on the

words contained in the word embedding. However, it is difficult to find DDIs because the

word embedding is trained on unsupervised language models. For example, the instance num-

ber 1 in Table 11 has the strong positive indicator “cross-resistance”, but the word does not

appear in the training set. Errors of the first case constitutes 5% of all the errors.

Table 10. Performance changes of our model on the PK DDI in vivo dataset by removing features.

Removed Features P (%) R (%) F (%)

Ensemble + All Features 85.0 82.6 83.8

Single + All Features 82.1 83.3 82.6

Single + All Features—Subtree feature 78.8 84.2 81.3

- Position feature 55.7 74.4 62.8

- Static Word Embed 51.8 70.7 59.5

Note: P, R and F denotes Precision, Recall and F1 score, respectively. The same experiment was repeated five times

and the results were averaged.

https://doi.org/10.1371/journal.pone.0190926.t010

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0190926.t010
https://doi.org/10.1371/journal.pone.0190926


Case 2. When a sentence has a complex structure and the target drugs are positioned far from
the primary information.

A complex sentence structure consists of at least one independent and possibly many sub-

ordinate clauses. In this case, the words around the drug pairs are insufficient to accurately

detect the interaction since the subordinate clauses do not contain important information. For

example, the instance number 2 in Table 11 has a complex sentence structure. The sentence is

semantically divided at the “,and 60%” part, because the clause immediately before the “,and

60%” part is a subordinate clause and the “, and 60%” part is associated with the first indepen-

dent clause. The NLP parser can divide clauses, but it does not give information about which

clause contains the main information (e.g., “SKELID is decreased” by using the target drug).

Errors of the second case account for 17% of the total errors. The errors in the first and second

cases are false negatives.

Case 3. Relations are described using unclear terms and falsely recognized as positive
instances.

There are several sentences which have structures or expressions that are similar to true

instances but are actually false instances. For example, instance number 3 in Table 11 states

that the interaction between the two drugs has been studied in previous researchers but the

existence of the interaction is not described conclusively in the sentence. Our model misclassi-

fies the instance because the strong relation word “interaction” appears in the sentence. Errors

of the third case composes 46% of the total errors. The third case has only false positives.

Last, the “ETC” case is a set of error instances that do not belong to the three cases men-

tioned above. The instances of the “ETC” case do not share apparent similarities. The “ETC”

case comprises 32% of the total errors.

There is a are total of four error cases, but the solutions for each error cases are almost the

same. Using a larger amount of data or applying the attention mechanism can prevent our

model from misclassifying interactions. Large data will reduce the variance of our model, and

possibly reduce the number of error cases mentioned above. Currently we use the DDI chal-

lenge’13 corpus, but we expect to improve performance when we apply our model to larger

data in the future. The attention mechanism helps a neural network model to locate the impor-

tant part of the sentence in the training process [38]. However, applying the attention mecha-

nism to the recursive neural network models is a difficult task and we leave it as a future work.

Conclusion

Our recursive neural network model achieved better performance than the existing models on

both the DDI’13 corpus and PK DDI corpus. We implemented the tree-LSTM architecture to

understand the natural language sentences. We showed that a position feature and a subtree

Table 11. Examples of three common types of error cases.

Num DDI Sentence

1 True There is usually complete cross-resistance between PURINETHOLdrug0 (mercaptopurinedrug1) and

TABLOIDdrug2 brand Thioguaninedrug3.

2 True The bioavailability of SKELIDdrug0 is decreased 80% by calciumdrug1, when calciumdrug2 and

SKELIDdrug3 are administered at the same time, and 60% by some aluminumdrug4—or

magnesiumdrug5 -containing antacidsdrug6, when administered 1 hour before SKELIDdrug7.

3 False The drug interaction between proton pump inhibitorsdrug0 and clopidogreldrug1 has been the subject

of much study in recent years.

Note: Underlined drug names are target drugs.

https://doi.org/10.1371/journal.pone.0190926.t011

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 14 / 17

https://doi.org/10.1371/journal.pone.0190926.t011
https://doi.org/10.1371/journal.pone.0190926


containment feature can effectively locate the target drugs in a sentence. Our recursive neural

network model outperformed the state-of-the-art model by 4.4% and 2.8% in the detection

and classification tasks, respectively. We also tested our recursive neural network model on in
vivo and in vitro DDI data separately. Our detection model performed 2.3% and 6.7% better

on in vivo and in vitro data, respectively. As the volume of published information rapidly

grows, techniques for accurately extracting information from the literature become increas-

ingly more important. We hope that our model can be a useful part of the solution to handling

overwhelming amounts of data. The source code of our detection model is available at https://

github.com/arwhirang/DDI-recursive-NN.

Supporting information

S1 Table. The number of instances in each of the four types of the DDIExtraction Chal-

lenge’13 corpus after preprocessing.

(DOCX)

S2 Table. The F1-score comparison result of the individual classes.

(DOCX)

S3 Table. The comparison of the input features used in our method with those of other

baselines.

(DOCX)

Acknowledgments

We thank Susan Kim for suggestions and editing of the manuscript.

Author Contributions

Conceptualization: Kyubum Lee, Jaewoo Kang.

Formal analysis: Sangrak Lim.

Funding acquisition: Jaewoo Kang.

Investigation: Sangrak Lim.

Methodology: Sangrak Lim.

Software: Sangrak Lim.

Supervision: Jaewoo Kang.

Validation: Sangrak Lim.

Writing – original draft: Sangrak Lim.

Writing – review & editing: Kyubum Lee, Jaewoo Kang.

References
1. Magro L., Moretti U., Leone R. Epidemiology and characteristics of adverse drug reactions caused by

drug–drug interactions. Expert opinion on drug safety. 2012; 11(1), 83–94. https://doi.org/10.1517/

14740338.2012.631910 PMID: 22022824

2. Law V., Knox C., Djoumbou Y., Jewison T., Guo AC., Liu Y., et al. Drugbank 4.0: shedding new light on

drug metabolism. Nucleic acids research. 2013; 42(D1), D1091–D1097. https://doi.org/10.1093/nar/

gkt1068 PMID: 24203711

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 15 / 17

https://github.com/arwhirang/DDI-recursive-NN
https://github.com/arwhirang/DDI-recursive-NN
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190926.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190926.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190926.s003
https://doi.org/10.1517/14740338.2012.631910
https://doi.org/10.1517/14740338.2012.631910
http://www.ncbi.nlm.nih.gov/pubmed/22022824
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkt1068
http://www.ncbi.nlm.nih.gov/pubmed/24203711
https://doi.org/10.1371/journal.pone.0190926


3. Whirl-Carrillo M., McDonagh E., Hebert J., Gong L., Sangkuhl K., Thorn C., et al. Pharmacogenomics

knowledge for personalized medicine. Clinical Pharmacology & Therapeutics. 2012; 92(4), 414–417.

https://doi.org/10.1038/clpt.2012.96

4. Drugs.com [Internet] Prescription drug information, interactions and side effects. 2000; Available from:

https://www.drugs.com/.

5. Baxter K., Preston CL. Stockley’s drug interactions Pharmaceutical Press London; 2015

6. Fda’s adverse event reporting system. [Internet] 2017; Available from: https://www.fda.gov/drugs/

informationondrugs/ucm135151.htm

7. Segura Bedmar I., Martı́nez P., Herrero Zazo, M. Semeval-2013 task 9: Extraction of drug-drug interac-

tions from biomedical texts (ddiextraction 2013). Association for Computational Linguistics. 2013

8. Kim S., Liu H., Yeganova L., Wilbur WJ. Extracting drug–drug interactions from literature using a rich

feature-based linear kernel approach. Journal of biomedical informatics. 2015; 55, 23–30. https://doi.

org/10.1016/j.jbi.2015.03.002 PMID: 25796456

9. Chowdhury MFM., Lavelli A. Fbk-irst: a multi-phase kernel based approach for drug-drug interaction

detection and classification that exploits linguistic information. SemEval@ NAACL-HLT. 2013; 351, 53.

10. Zhao Z., Yang Z., Luo L., Lin H., Wang J. Drug drug interaction extraction from biomedical literature

using syntax convolutional neural network. Bioinformatics. 2016; 32(22), 3444–3453. https://doi.org/10.

1093/bioinformatics/btw486 PMID: 27466626

11. Quan C., Hua L., Sun X., Bai W. Multichannel convolutional neural network for biological relation extrac-

tion. BioMed Research International. 2016 https://doi.org/10.1155/2016/1850404

12. Liu S., Tang B., Chen Q., Wang X. Drug-drug interaction extraction via convolutional neural networks.

Computational and mathematical methods in medicine. 2016.

13. Suárez-Paniagua V., Segura-Bedmar I., Martı́nez P. Exploring convolutional neural networks for drug–

drug interaction extraction. Database. 2017 https://doi.org/10.1093/database/bax019 PMID: 28605776

14. Sahu SK., Anand A. Drug-drug interaction extraction from biomedical text using long short term memory

network; 2017. Preprint. Available from: arXiv:1701.08303. Cited 20 October 2017

15. Socher R., Lin CC., Manning C., Ng AY. Parsing natural scenes and natural language with recursive

neural networks. In Proceedings of the 28th international conference on machine learning (ICML-11).

2011;pages 129–136

16. Socher R., Huval B., Manning CD., Ng AY. Semantic compositionality through recursive matrix-vector

spaces. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning. 2012;pages 1201–1211.

17. Suárez-Paniagua V., Segura-Bedmar I. Extraction of drug-drug interactions by recursive matrix-vector

spaces. In 6thInternational Workshop on Combinations of Intelligent Methods and Applications (CIMA).

2016;page 65.

18. Wu HY., Karnik S., Subhadarshini A., Wang Z., Philips S., Han X., et al. An integrated pharmacokinetics

ontology and corpus for text mining. BMC bioinformatics. 2013; 14(1), 35. https://doi.org/10.1186/1471-

2105-14-35 PMID: 23374886

19. Björne J., Kaewphan S., Salakoski T. Uturku: drug named entity recognition and drug-drug interaction

extraction using svm classification and domain knowledge. In Second Joint Conference on Lexical and

Computational Semantics (* SEM). 2013;volume 2, pages 651–659

20. Lee S., Kim D., Lee K., Choi J., Kim S., Jeon M., et al. Best: next-generation biomedical entity search

tool for knowledge discovery from biomedical literature. PloS one. 2016; 11(10), e0164680. https://doi.

org/10.1371/journal.pone.0164680 PMID: 27760149

21. Hochreiter S., Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8), 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

22. Chen D., Manning CD. A fast and accurate dependency parser using neural networks. Proceedings of

the 2014 conference on empirical methods in natural language processing (EMNLP). 2014;pages 740–

750

23. Bengio Y., Ducharme R., Vincent P., Jauvin C. A neural probabilistic language model. journal of

machine learning research. 2003; 3(Feb), 1137–1155.

24. Mikolov T., Chen K., Corrado G., Dean J. Efficient estimation of word representations in vector space;

2013. Preprint. Available from: arXiv:1301.3781. Cited 20 October 2017

25. Pyysalo S., Ginter F., Moen H., Salakoski T., Ananiadou S. Distributional Semantics Resources for Bio-

medical Text Processing. In Proceedings of LBM. 2013; pp. 39–44.

26. Řehůřek R., Sojka P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of

the LREC 2010 Workshop on New Challenges for NLP Frameworks. 2010;pages 45–50

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 16 / 17

https://doi.org/10.1038/clpt.2012.96
https://www.drugs.com/
https://www.fda.gov/drugs/informationondrugs/ucm135151.htm
https://www.fda.gov/drugs/informationondrugs/ucm135151.htm
https://doi.org/10.1016/j.jbi.2015.03.002
https://doi.org/10.1016/j.jbi.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25796456
https://doi.org/10.1093/bioinformatics/btw486
https://doi.org/10.1093/bioinformatics/btw486
http://www.ncbi.nlm.nih.gov/pubmed/27466626
https://doi.org/10.1155/2016/1850404
https://doi.org/10.1093/database/bax019
http://www.ncbi.nlm.nih.gov/pubmed/28605776
https://doi.org/10.1186/1471-2105-14-35
https://doi.org/10.1186/1471-2105-14-35
http://www.ncbi.nlm.nih.gov/pubmed/23374886
https://doi.org/10.1371/journal.pone.0164680
https://doi.org/10.1371/journal.pone.0164680
http://www.ncbi.nlm.nih.gov/pubmed/27760149
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1371/journal.pone.0190926


27. Tai KS., Socher R., Manning CD. Improved semantic representations from tree-structured long short-

term memory networks; 2015. Preprint. Available from: arXiv:1503.00075. Cited 20 October 2017

28. Looks M., Herreshoff M., Hutchins D., Norvig P. Deep learning with dynamic computation graphs; 2017.

Preprint. Available from: arXiv:1702.02181. Cited 20 October 2017

29. Semeniuta S., Severyn A., Barth E. Recurrent dropout without memory loss; 2016. Preprint. Available

from: arXiv:1603.05118. Cited 20 October 2017

30. Kingma D., Ba J. Adam: A method for stochastic optimization; 2014. Preprint. Available from:

arXiv:1412.6980. Cited 20 October 2017

31. Zeng D., Liu K., Lai S., Zhou G., Zhao J. Relation classification via convolutional deep neural network.

In COLING. 2014;pages 2335–2344.

32. Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems; 2016. Preprint. Available from: arXiv:1603.04467.

Cited 20 October 2017

33. Zhang Y., Wu HY., Xu J., Wang J., Soysal E., Li L., et al. Leveraging syntactic and semantic graph ker-

nels to extract pharmacokinetic drug drug interactions from biomedical literature. BMC Systems Biol-

ogy. 2016; 10(3), 67. https://doi.org/10.1186/s12918-016-0311-2 PMID: 27585838

34. Medline.com [Internet] MEDLINE contains journal citations and abstracts for biomedical literature from

around the world. Available from: https://www.nlm.nih.gov/databases/download/pubmed_medline.html

35. Kadlec R., Schmid M., Bajgar O., Kleindienst J. Text understanding with the attention sum reader net-

work; 2016. Preprint. Available from: arXiv:1603.01547. Cited 20 October 2017

36. Kim Y. Convolutional neural networks for sentence classification; 2014. Preprint. Available from:

arXiv:1408.5882. Cited 20 October 2017

37. Airola A., Pyysalo S., Björne J., Pahikkala T., Ginter F., Salakoski T. All-paths graph kernel for protein-

protein interaction extraction with evaluation of cross-corpus learning. BMC bioinformatics. 2008; 9(11),

S2. https://doi.org/10.1186/1471-2105-9-S11-S2 PMID: 19025688

38. Bahdanau D., Cho K., Bengio, Y. Neural machine translation by jointly learning to align and translate.

2014. Preprint. Available from: arXiv:1409.0473. Cited 20 October 2017

DDI extraction using recursive NN

PLOS ONE | https://doi.org/10.1371/journal.pone.0190926 January 26, 2018 17 / 17

https://doi.org/10.1186/s12918-016-0311-2
http://www.ncbi.nlm.nih.gov/pubmed/27585838
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://doi.org/10.1186/1471-2105-9-S11-S2
http://www.ncbi.nlm.nih.gov/pubmed/19025688
https://doi.org/10.1371/journal.pone.0190926

