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Abstract

Generating accurate 3D models from cone-beam computed tomography (CBCT) images is an 

important step in developing treatment plans for patients with craniomaxillofacial (CMF) 

deformities. This process often involves bone segmentation and landmark digitization. Since 

anatomical landmarks generally lie on the boundaries of segmented bone regions, the tasks of 

bone segmentation and landmark digitization could be highly correlated. However, most existing 

methods simply treat them as two standalone tasks, without considering their inherent association. 

In addition, these methods usually ignore the spatial context information (i.e., displacements from 

voxels to landmarks) in CBCT images. To this end, we propose a context-guided fully 

convolutional network (FCN) for joint bone segmentation and landmark digitization. Specifically, 

we first train an FCN to learn the displacement maps to capture the spatial context information in 

CBCT images. Using the learned displacement maps as guidance information, we further develop 

a multi-task FCN to jointly perform bone segmentation and landmark digitization. Our method has 

been evaluated on 107 subjects from two centers, and the experimental results show that our 

method is superior to the state-of-the-art methods in both bone segmentation and landmark 

digitization.

1 Introduction

Craniomaxillofacial (CMF) deformities include acquired and congenital deformities of the 

head and the face. It is estimated that approximate 16.8 million Americans require surgical 

or orthodontic treatment to correct the CMF deformities based on computed tomography 

(CT) scans. Comparing to the spiral multi-slide CT (MSCT) scan, cone-beam CT (CBCT) 

scan has the advantages of lower radiation exposure and cost, thus it has been widely used in 

doctor’s offices. To design accurate treatment plans, it is important to generate a 3D model 

of CMF structures (e.g., midface, and mandible) and digitize anatomical landmarks for 
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quantitative analysis. However, due to severe image artifacts (e.g., imaging noise, 

inhomogeneity, and truncation), it is challenging to accurately segment bony structures and 

digitize anatomical landmarks on CBCT images.

The current clinical gold-standard is to manually perform bone segmentation and landmark 

digitization, which is very time-consuming and labor-intense. Current published reports 

regarding automated bone segmentation and landmark digitization can be generally divided 

into (1) multi-atlas (MA) based methods [1] and (2) learning based methods [2,3]. In the 

multi-atlas based methods, the segmentation and landmark digitization can be completed by 

transferring the labeled regions and landmarks from multi-atlas images to the target image 

via image registration [4]. This process can be computationally expensive (e.g., taking 

hours) due to the requirement of non-linear registration between multi-atlas images and the 

target image. In addition, because of the morphological variations across different subjects, 

it is often difficult to accurately perform bone segmentation and landmark digitization by 

only using non-linear registration. In the learning based approaches, human-engineered 

features are often first extracted from CBCT images and then fed into a model for bone 

segmentation and landmark digitization. Since feature extraction and model training are 

independent of each other, the learned features and model may not be coordinated with each 

other, which may lead to sub-optimal performance. Recently, there are reports on using deep 

learning based methods to incorporate the feature learning and the model training into a 

unified framework. Ronneberger et al. [5] proposed a U-net framework to perform image 

segmentation, achieving remarkable performance in biomedical image segmentation. Payer 

et al. [6] proposed a fully convolutional network (FCN) for landmark heatmap regression, 

producing good results in landmark localization using limited training data. However, these 

methods focus on a single task, i.e., either image segmentation or landmark localization, 

without using the inherent association between two tasks.

It is assumed that the tasks of bone segmentation and landmark digitization are highly 

associated because the landmarks generally lie on the boundaries of segmented bone 

regions. Accordingly, previous learning-based approaches have adopted organ segmentation 

to aid the landmark digitization [7], but still treating bone segmentation and landmark 

digitization as separate tasks. Motivated by the recent success of multi-task learning [8,9] 

and deep learning, we propose a joint bone segmentation and landmark digitization (JSD) 

framework via a context-guided FCN. To our knowledge, this is the first report on 

integrating bone segmentation and landmark digitization into a unified framework.

Figure 1 illustrates the schematic diagram of our proposed JSD framework. We first develop 

FCN-1 to learn the displacement maps for multiple landmarks from an input image to model 

the spatial context information in the whole image. The size of each displacement map is the 

same size as the input image, and each element in the displacement map records the 

displacement from the current voxel location to a respective landmark in a specific axis 

space. We then develop FCN-2 to simultaneously perform bone segmentation and landmark 

digitization by using both the displacement maps estimated by FCN-1 and the original image 

as the input. The technical contributions of this proposed method can be summarized as 

follows. First, we propose to use the displacement maps for explicitly modeling the spatial 

context information in CBCT images. Second, using the estimated displacement maps as 
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guidance, we introduce a joint learning framework for bone segmentation and landmark 

digitization via a context-guided FCN.

2 Materials and Methods

Data Description

We use 107 CT images acquired from two centers, including 77 CBCT images (0.4 × 0.4 × 
0.4 mm3 or 0.3 × 0.3 × 0.3 mm3) of 77 patients with non-syndromic dentofacial deformities, 

and 30 MSCT images (0.488 × 0.488 × 1.25 mm3) of normal subjects. According to 

different types of deformity, the patients are categorized into three classes: Skeletal Class I 

(the mandible is retrognathic caused by mandibular retrusion, maxillary protrusion, or the 

combination), Skeletal Class II (the mandible is prognathic caused by mandibular 

protrusion, or maxillary retrusion, or the combination), and Skeletal Class III (the profile is 

orthognathic by either double-jaw protrusion, retrusion or vertical deformity). Among 77 

patients, 20 patients are Skeletal Class I, 21 were Skeletal Class II, and 36 are Skeletal Class 

III. The study is approved by Institute Review Board prior to the data collection 

(IRB#Pro00013802). The 30 normal MSCT images, which have been collected in a 

completely irrelevant study, are used as additional training data. All studied CT images were 

manually segmented by two experienced CMF surgeons using the Mimics software. As 

shown in Fig. 1 (right), 15 most clinically relevant anatomical landmarks were also manually 

digitized by the same CMF surgeons.

Displacement Map Regression via FCN-1

For a 3D image Xn with V vox-els, we represent a displacement map as a 3D volume of the 

same size as Xn, with each element denoting the displacement from a voxel to a certain 

landmark in a specific axis space. That is, for the l-th landmark in Xn, there are 3 

displacement maps (i.e., , , and ) corresponding to x, y, and z axes, respectively. 

Given L landmarks, we have 3L displacement maps for each input image. As shown in Fig. 

2 (left), the first sub-network (i.e., FCN-1) is developed to learn a non-linear mapping from 

the input image to the displacement maps. Using a set of training images and their 

corresponding target displacement maps, FCN-1 adopts a U-net architecture [5] to capture 

both the global and the local structural information of input images. Specifically, FCN-1 

consists of a contracting path and an expanding path. The contracting path follows the 

typical architecture of a CNN. Every step in the contracting path consist of two 3 × 3 × 3 

convolutions, followed by a rectified linear unit (ReLU) and a 2 × 2 × 2 max expanding 

pooling operation with stride 2 for down-sampling. Each step in the path consists of a 3 × 3 

× 3 up-convolution, followed by a concatenation with the corresponding feature map from 

the contracting path, and two 3 × 3 × 3 convolutions (each followed by a ReLU). Due to the 

contracting path and the expanding path, such network is able to grasp a large image area 

using small kernel sizes while still keeping high localization accuracy. Note that the output 

of the last layer in FCN-1 is normalized into [−1, 1]. Let Xn,v represent the v-th (v = 1, ⋯ , 
V) voxel of the image Xn. In the a-th (a ε{x, y, z}) axis space, we denote the l-th (l = 1, ⋯, 

L) displacement map of Xn as  and its v-th element as . The target of FCN-1 is to 
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learn a non-linear mapping function to transform the original input image onto its 

corresponding 3L displacement maps, by minimizing the following loss function:

(1)

where f(Xn,v, W1) is the estimated displacement by using the network coefficients W1, and 

N is the number of training images in a batch.

Joint Bone Segmentation and Landmark Digitization via FCN-2

Using the displacement maps learned in FCN-1 as guidance, we further design a sub-

network (i.e., FCN-2) with a U-net architecture to jointly perform bone segmentation and 

landmark digitization. As shown in Fig. 2 (right), FCN-2 uses a stacked representation of 

displacement maps and the original image as the input, through which the spatial context 

information is explicitly incorporated into the learning process. In addition, such 

representation could guide the network to focus on the informative regions, and thus may 

help alleviate the negative influence of image artifacts. Note that the output of the last layer 

for bone segmentation is transformed to probability scores by using the softmax function, 

and that for landmark digitization are normalized to [0, 1]. Denote  as the ground-truth 

segmentation map for the c-th (c = 1, ⋯, C) category, with the v-th element as . Here, a 

CT image is segmented into C = 3 categories (i.e., midface, mandible, and background). We 

denote  as the ground-truth landmark heatmap for the l-th (l = 1, ⋯, L) landmark in Xn, 

with its v-th element as . The objective of FCN-2 is to minimize the following loss 

function:

(2)

where the first term is the cross-entropy error for bone segmentation and the second term is 

the mean squared error for landmark digitization. Here, 1 {·}is an indicator function, with 1 

{·} = 1 if {·} is true; and 0, otherwise.  indicates the probability of the 

v-th voxel in the image Xn being correctly classified as the category  using the network 

coefficients W2. The second term in Eq. (2) compute the loss between the estimated value 

g(Xn,v, W2) and the ground-truth  in the l-th landmark heatmap.

Implementation Details

For each landmark, we generate a heatmap using a Gaussian filtering with the standard 

derivation of 2 mm, and then stretch the values to the range of [0, 1]. For optimizing the 
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network coefficients, we adopt the stochastic gradient descent (SGD) algorithm combined 

with the backpropagation algorithm. In the training stage, we first train FCN-1 using a CT 

image and its corresponding target displacement maps as the input and the output, 

respectively. With FCN-1 frozen, we then train FCN-2 for joint bone segmentation and 

landmark digitization, by using the stacked representation of the estimated displacement 

maps from FNC-1 and the original image as the input, while landmark heatmaps and 

segmentation maps as the output. Finally, using the learned coefficients as initialization, we 

further train FCN-1 and FCN-2 jointly. In addition, the training process is done in a sliding 

window fashion (with the fixed window size of 96 × 96 × 96). Then, we can feed a new 

testing image of any size into the trained model, since FCN only contains the convolutional 

computation.

3 Experiments

Experimental Settings

Before training the model, all images are spatially normalized to have the same resolution 

(i.e., 0.4 × 0.4 × 0.4 mm3), and are also intensity-normalized to have similar intensity 

distributions via a histogram matching technique. For 77 sets of patient CBCT images, we 

adopt a 5-fold cross-validation strategy. The 30 sets of normal MSCT images are used as 

additional training samples for model learning in each of 5 folds. To evaluate the accuracy of 

the bone segmentation (separating the bony structures of the mandible from the midface), we 

use three evaluation metrics, including (1) Dice similarity coefficient (DSC), (2) sensitivity 

(SEN), and (3) positive predictive value (PPV). To evaluate the accuracy of landmark 

digitization (landmark placement on the predetermined anatomical locations), we adopt the 

detection error as the evaluation measure.

We first compare our JSD method with two state-of-the-art methods: (1) MA based method 

[1], and (2) random forest (RF) based method with Harr-like features. In the latter method, 

we use the RF classifier for bone segmentation [10] and the RF regressor for landmark 

digitization [11]. Note that both MA and RF methods treat the bone segmentation and the 

landmark digitization as two independent tasks, while our JSD method jointly treats them as 

highly correlated tasks. To evaluate the specific contributions of two strategies (i.e., using 

displacement maps as guidance, and joint learning of two tasks) adopt in our JSD method, 

we further compare JSD with its two variants: JSD1 and JSD2. Specifically, JSD1 only 

adopts FCN-2 in Fig. 2 to separately perform bone segmentation and landmark digitization 

without using the joint learning strategy and displacement maps as guidance. JSD2 simply 

adopts FCN-2 for the jointly learning of two tasks without using displacement maps as 

guidance.

Results

Table 1 shows the experimental results achieved by the proposed JSD method and the four 

aforementioned methods in bone segmentation and landmark digitization. In the task of bone 

segmentation, comparing to the state-of-the-art MA and RF based methods, our JSD method 

achieves at least a 6.33% and a 5.06% improvement in terms of DSC in the segmentation of 

mid-face and mandible, respectively. Moreover, JSD generally yields better results than its 
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variants (i.e., JSD1, and JSD2) in bone segmentation. It implies that the proposed two 

strategies, i.e., using displacement maps as guidance and the joint learning of two tasks, can 

improve the learning performance of JSD in the task of bone segmentation. In the task of 

landmark digitization, our JSD method achieves an error of 1.10 mm that is significantly 

better than the results achieved by the MA and the RF based methods. Also, the digitization 

performance achieved by JSD is more accurate than that of JSD1 (1.78 mm) and JSD2 (1.33 

mm). More specifically, we further report the landmark digitization error for each of 15 

anatomical landmarks in Fig. 3. As can be seen from Fig. 3, the proposed JSD method 

achieves the lowest errors compared with the competing methods, especially for tooth 

landmarks. It is worth noting that it is very challenging to accurately localize tooth 

landmarks since there are large variations across subjects in the local appearance of tooth 

landmarks. We have performed McNemar’s test to compare the landmark detection results 

achieved by our method and competing methods, and got very small (<0.001) p-values. It 

suggests the performance difference between our method and each competing method is 

significant. In addition, note that it is clinically acceptable if the landmark detection error for 

CBCT images is less than 1.50 mm. The average error achieved by our JSD method is less 

than 1.50 mm, indicating the great potential of our method in clinical applications.

We further visually illustrate the results of bone segmentation and landmark digitization 

achieved by our JSD method for two patients with CMF deformity in Fig. 4. Each row in 

Fig. 4 reports the results for a specific subject. For the convenience of visualization, we 

show the 2D probability maps for the segmented midface and mandible in 3 views, given in 

Fig. 4(a) and (b), respectively. In addition, we overlap the heatmaps of 15 anatomical 

landmarks onto a single 3D image, and illustrate the results in 3 views in Fig. 4(c). The 

corresponding 3D rending volumes are provided in the online Supplementary Materials. 

From Fig. 4(a)–(b), we can see that in the bone segmentation task, our method can 

accurately separate midface and mandible. From Fig. 4(c), we can see that our method can 

estimate clear and smooth landmark heatmaps. All these results demonstrate the 

effectiveness of our proposed method.

4 Discussion and Conclusion

We have proposed a joint CMF bone segmentation and landmark digitization (JSD) 

framework via a context-guided multi-task FCN. Specifically, to capture the spatial context 

information of images, we propose to use displacement maps for modeling the displacement 

information from voxels to anatomical landmarks in the input image. We further develop a 

context-guided FCN model for jointly performing bone segmentation and landmark 

digitization. Experimental results suggest that JSD is superior to the state-of-the-art 

methods.

There are still several limitations in the current study. First, there are only 107 images at 

hand for model learning. It is interesting to augment the training images by using synthetic 

data (e.g., by using deformable transformation or Generative Adversarial Networks) to 

further improve the robustness of our proposed method. Besides, it is reasonable to 

automatically learn the optimal weights for these different tasks from data. Moreover, we 

have only 15 landmarks and do not require too much memory. For more landmarks, we can 
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select several salient landmarks to provide the context information, instead of using all 

landmarks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Pipeline of the proposed JSD framework, with 15 anatomical landmarks.
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Fig. 2. 
Overview of our context-guided multi-task FCN.
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Fig. 3. 
Landmark digitization errors achieved by different methods for 15 landmarks.
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Fig. 4. 
Results of our JSD method on two typical patients with CMF.
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