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ABSTRACT IQG-607 is a metal complex previously reported as a promising anti-
tuberculosis (TB) drug against isoniazid (INH)-resistant strains of Mycobacterium
tuberculosis. Unexpectedly, we found that INH-resistant clinical isolates were resistant
to IQG-607. Spontaneous mutants resistant to IQG-607 were subjected to whole-
genome sequencing, and all sequenced colonies carried alterations in the katG gene.
The katG(S315T) mutation was sufficient to confer resistance to IQG-607 in both MIC
assays and inside macrophages. Moreover, overexpression of the InhA(S94A) protein
caused IQG-607’s resistance.
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The pentacyano(isoniazid)ferrate(II) complex (Na3[FeII(CN)5(INH)] · 3H2O), also known
as IQG-607, is an isoniazid (INH) analog that contains a cyanoferrate moiety bound

to the pyridinic nitrogen of the INH molecule (Fig. 1) (1). So far, two alternative
hypotheses were proposed to explain its mechanism of action. Enzymatic inhibition
studies demonstrated that IQG-607 inhibits the wild-type NADH-dependent enoyl-[acyl
carrier protein] reductase (InhA) enzyme (Enzyme Commission no. EC 1.3.1.9) and its
structural mutants (I21V, S94A, and I47T) in a time-dependent manner (2, 3). Interest-
ingly, this inhibition was observed in the absence of NAD� or NADH and without
requiring activation by the catalase-peroxidase KatG (EC 1.11.1.21), suggesting that
IQG-607 could be used against INH-resistant Mycobacterium tuberculosis strains whose
mechanism of resistance involves mutations in the katG (Rv1908c) gene (2, 3). Another
possible explanation involves an intramolecular electron transference mediated by the
metal center that would self-activate the INH moiety from IQG-607 inside the host
macrophages, thus forming a hypothetical adduct with NADH (4). Despite the extensive
characterization of IQG-607 interaction with the InhA enzyme, its activity in mice (5),
and its favorable toxicological profile in rats (6) and mini pigs (7), it is still unknown if
the compound is active against M. tuberculosis strains carrying mutations in the katG
gene, hence our work focused on elucidating the mechanism of resistance of the M.
tuberculosis to the compound IQG-607 by employing a genetic approach with a set of
different INH-resistant strains.

We first tested the compound activity against several multidrug-resistant tubercu-
losis (MDR-TB) clinical isolates by determining MICs on Middlebrook 7H9 liquid medium
as described previously (8). Eight MDR-TB clinical isolates carried the most common
mutation found in the katG gene (Ser315Thr) (9), while one INH-susceptible clinical
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isolate carried the wild-type gene. As shown in Table 1, all strains were resistant to both
INH (MIC � 25 mg/liter) and IQG-607 (MIC � 100 mg/liter), except for the CDCT-28
isolate. This result was unexpected, since it suggests an association between the
presence of the katG(S315T) mutation and an increase of at least 64� in the MIC values
of IQG-607.

Next, spontaneous mutants resistant to IQG-607 were isolated on 7H10 plates using
compound concentrations above the MIC (�2 mg/liter). We confirmed the resistance
phenotype by determining MICs of six colonies (named IQG1 to 6) selected from the
highest compound concentration tested (16 mg/liter). The six selected mutants dis-
played cross-resistance only to INH (Table 2). We retested the resistance of one
representative mutant (IQG1) by monitoring its growth rate, as previously described
(10), in the presence of IQG-607 or INH above their MIC values, and indeed neither of
the compounds prevented the growth of this mutant (see Fig. S1 in the supplemental
material).

We performed the whole-genome sequencing (by MiSeq platform) of three colonies
(IQG1 to 3) to uncover the mutations associated with the resistance phenotype, and we
found that all colonies carried mutations in the katG gene. This result was confirmed by
target DNA sequencing of the six mutants (IQG1 to 6) using several primers described
in Table S1 in the supplemental material. Indeed, all six mutants carried alterations in
the katG gene (Table 2). IQG1, 2, and 5 had a single deletion of cytosine 120 (120del1),

FIG 1 Chemical structure of IQG-607 (Na3[FeII(CN)5(INH)] · 3H2O). This inorganic complex contains a
pentacyanoferrate(II) moiety bound to the nitrogen atom of the heterocyclic ring of isoniazid. This moiety
is thought to activate the isoniazid molecule.

TABLE 1 Activity of IQG-607 and several anti-TB compounds against nine clinical isolatesa

Isolatec katG mutation
inhA promoter
genotype rpoB mutation

MIC (mg/liter) forb

INH IQG-607 RIF MFX

H37Rv WT WT WT 0.39 1.56 �0.2 �0.2
CDCT-1 S315T WT H526D �100 �100 �100 �0.2
CDCT-2 S315T C(�15)T H526D 100 �100 �100 �0.2
CDCT-3 S315T WT D516V 25 �100 6.25 �0.2
CDCT-4 S315T WT S531L �100 �100 �100 �0.2
CDCT-5 S315T WT D516V 50 �100 �100 �0.2
CDCT-10 S315T WT H526D 100 �100 �100 �0.2
CDCT-16 S315T C(�15)T D516V 100 �100 �100 �0.2
CDCT-27 S315T WT WT 25 �100 �0.2 �0.2
CDCT-28 WT WT D516A 0.39 1.56 �0.2 �0.2
aTB, tuberculosis; WT, wild type.
bMIC values reported here were observed in two independent experiments or were the highest value found
among three independent tests. INH, isoniazid; IQG-607, pentacyano(isoniazid)ferrate(II); RIF, rifampin; MFX,
moxifloxacin.

cClinical isolate identification.

Abbadi et al. Antimicrobial Agents and Chemotherapy

February 2018 Volume 62 Issue 2 e02222-17 aac.asm.org 2

http://aac.asm.org


which changed the reading frame of katG and introduced a premature stop codon at
position 45. The resultant defective protein lacks almost all the residues from the
N-terminal domain, including the key active site residues (11) and the entire C-terminal
domain. The deletion of adenine 1298 (1298del1) in the mutant IQG4 introduced a
premature stop codon at position 467 and led to a truncated protein lacking only the
C-terminal domain. These findings are in agreement with previous work using INH to
select spontaneous mutants (12, 13). The W91R mutation found in IQG3 was already
described in clinical isolates at a very low frequency (14–17), and it is expected to confer
resistance to INH by a still unclear mechanism, possibly involving a disruption of an
important H-bonding network in the active site of KatG (18). To the best of our
knowledge, the H417D mutation found with IQG6 has never been described in either
clinical isolates or in laboratory strains. Although the role of this particular histidine
residue is not known, some studies have already uncovered the importance of the
neighbor residue Arg-418 for catalysis and its involvement in INH resistance (18–20).

To establish a causal relationship between the clinically relevant mutation
katG(S315T) and resistance to IQG-607, we knocked out the wild-type katG gene from
M. tuberculosis H37Rv strain by using an allelic exchange approach (21) and comple-
mented it with the wild-type, furA�katG(WT), or the mutated allele, furA�katG(S315T)
(see Fig. S2 in the supplemental material). MIC for IQG-607 increased by more than
64-fold in the mutated strain (Table 2), clearly suggesting that the compound depends
on KatG to be active. However, MIC assays lack the oxidizing environment of the
macrophage, and therefore would not allow a route for the redox-mediated self-
activation of IQG-607 previously proposed (4). To test this premise, we infected murine
macrophages as described previously (22) with ΔfurA::katG laboratory strains carrying
the wild-type gene or the S315T mutant and treated them with IQG-607. The mutant
strain preserved its resistance phenotype toward IQG-607 inside macrophages (Fig. 2),
indicating that the host intracellular environment is not sufficient to trigger the
self-activation mechanism proposed for IQG-607, which reinforces the necessity of the
KatG enzyme for the activity of IQG-607.

Finally, we evaluated the antimicrobial activity of IQG-607 in mycobacterial cells
constitutively overexpressing the S94A mutant InhA enzyme, a mutation that is known
to cause INH resistance (23). The mutant inhA gene (Rv1484) was cloned into an
integrative plasmid (pNIP40/b) under the control of the hsp60 promoter. In addition to
the expected resistance to INH and also to ethionamide (ETH), the expression of the
InhA(S94A) mutant enzyme (see Fig. S3 in the supplemental material) resulted in
mycobacteria also resistant to IQG-607 (Table 2). This result genetically validated the
InhA protein as the target of IQG-607. However, it also showed that the Ser-94 residue

TABLE 2 Activity of IQG-607, INH, ETH, and MFX against several laboratory strains of M. tuberculosis

Strain katG genotype
inhA promoter
genotype inhA genotype

MIC (mg/liter) fora

INH ETH MFX IQG-607

H37Rv WT WT WT 0.39 3.13 0.08 1.56
IQG1b 120del1 WT WT �100 3.13 0.16 �100
IQG2 120del1 WT WT �100 1.56 0.08 �100
IQG3 T(271)C WT WT �100 3.13 0.16 �100
IQG4 1298del1 WT WT �100 1.56 0.08 �100
IQG5 120del1 WT WT �100 1.56 0.02 �100
IQG6 C(1249)G WT WT �100 3.13 0.08 �100
pNIP::furA�katG(WT) WT WT WT �0.2 3.13 �0.2 0.78
pNIP::furA�katG(S315T) G(944)Cc WT WT �100 0.78 �0.2 �100
pNIP::Ø WT WT WT 0.39 6.25 �0.2 1.56
pNIP::InhA(WT) WT WT WT 0.39 6.25 �0.2 3.13
pNIP::InhA(S94A) WT WT T(280)Gd 25 �100 �0.2 �100
aMIC values reported here were observed in two independent experiments or were the highest value found among three independent tests. ETH, ethionamide.
bIQG1-6 refers to the IQG-607 spontaneous mutant strains.
cThis mutation changes the serine-315 residue by a threonine (S315T).
dThis strain still expresses the underlying level of the wild-type inhA gene but carries the mutant inhA gene [T(280)G], cloned into the integrative plasmid pNIP40/b.
This mutation changes the serine-94 residue by an alanine (S94A).
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is essential for the compound’s interaction with the enzyme, somehow contradicting
the inhibition observed against the purified InhA(S94A) enzyme (3).

In conclusion, we demonstrated that IQG-607 does not activate itself inside macro-
phages or mycobacteria. As with INH, IQG-607 also requires the activity of KatG in order
to be active against M. tuberculosis strains. These findings challenge its planned usage
against INH-resistant strains. Nonetheless, the compound has already been reported to
be less toxic than INH in a preclinical study using mice (5, 24). This is a remarkable
feature, since INH was previously associated with hepatotoxicity in animal and humans
due to its toxic metabolites, such as hydrazine (25). We performed a checkerboard assay
as previously described (26) and found that IQG-607 has an indifferent effect when
combined with other anti-TB drugs (see Table S2 in the supplemental material),
showing it could be used in association. Further experiments will be required to
understand its metabolism inside mycobacteria and to establish its utility as an INH
surrogate with low toxicity.
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