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Abstract

Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since 

these methodologies are based on different principles there are concerns about the concordance of 

data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide 

analysis of differential gene expression has not been rigorously assessed in clinically derived 

ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess 

potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in 

anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected 

from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL 

remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of 

biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating 

that each platform has high internal reproducibility. Correlations between the RNA-seq data and 

the individual microarrays were low, but correlations between the RNA-seq values and the 
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geometric mean of the microarrays values were moderate. The cross-platform concordance for 

differentially expressed transcripts or enriched pathways was linearly correlated (r=0.64). RNA-

Seq was superior in detecting low abundance transcripts and differentiating biologically critical 

isoforms. Additional independent validation of transcript expression was undertaken using 

microfluidic PCR for selected genes. There was a higher correlation between the PCR data and the 

RNA-seq as well as the microarrays data. These findings demonstrate that RNA-seq has 

advantages over microarrays for transcriptome profiling of ligament tissues when available and 

affordable.

Graphical abstract

Transcriptome profiling of anterior cruciate ligament tears as a function of time-from-injury 

comparing microarrays to RNA-seq showed that the cross-platform concordance for differentially 

expressed transcripts or enriched pathways was linearly correlated (r=0.64). RNA-Seq was 

superior in detecting low abundance transcripts and differentiating biologically critical isoforms. 

Thus, RNA-seq is an extremely promising tool for the assessment of mRNA expression and 

identification of differentially expressed transcripts, comparable, and to some extent superior, to 

existing microarrays platforms in the analysis of ligamentous tissues.
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INTRODUCTION

Microarrays and RNA-seq technologies have revolutionized gene discovery studies. The 

ability to simultaneously examine thousands of gene transcripts using a genome-wide 

transcriptome profiling approach puts these technologies in the forefront of high throughput 

screening. These technologies have a broad spectrum of applications including but not 
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limited to identification of differentially expressed gene transcripts between healthy and 

diseased cells (and tissues), providing new insights into developmental processes, 

pharmacogenomics, and the examination of gene regulation1; 2. Because of their popularity 

in the scientific community, cost-effectiveness, and ease of analysis, microarrays remain the 

most extensively used approach in transcriptome profiling. Nevertheless, hybridization 

issues with degraded clinically derived RNA, low abundance transcripts, and the availability 

of probes for known genes on the chip are the drawbacks of microarrays technology3. Like 

microarrays, RNA-seq also has some potential pitfalls with the use of degraded RNA 

samples, however, unlike microarrays, there are several protocols available that can 

circumvent some, if not all, of the problems associated with RNA-seq such as to remove 

bases adapters and overrepresented or low-quality sequences4–6.

RNA-seq utilizes high throughput sequencing technology to directly sequence gene 

transcripts and is emerging as an alternative for whole-genome transcriptome profiling7. 

RNA-seq has considerable advantages for examining transcriptome profile structure such as 

the detection of novel transcripts and splice junctions, although it does pose novel 

algorithmic and logistical challenges for data analysis and storage8. It does not depend on 

genome annotation for prior probe selection and avoids the related biases introduced during 

hybridization of microarrays8. Despite the fact that many computational methods have been 

developed for alignment of reads, quantification of genes or gene transcripts and 

identification of differentially expressed genes, there is great variability in the maturity of 

the available computational tools8; 9.

Using the microarrays approach, we have recently identified a number of gene transcripts 

that showed repressed expression with time-from-injury in human anterior cruciate ligament 

(ACL) tears using the 24-sample microarrays data set10. We observed that the largest 

differences in expression of gene transcripts exist between acute (<3 month from injury) and 

chronic (>12 months from injury) groups with little differences between acute and 

intermediate (3–12 months from injury) and chronic and intermediate groups. The 

differentially expressed gene transcripts were enriched for numerous biological processes 

that were consistent with the initial repair activity in the injured ligament to repair. To the 

best of our knowledge, no study has compared RNA-seq and microarrays transcriptome 

profiles in any area of musculoskeletal research. Studies performed on other tissues have 

focused on the concordance between RNA-seq and microarrays8; 11; 12. Our study focused 

on both the consistencies, as well as differences, between these technologies and further 

investigated the reasons for any observed discrepancies. The purpose of the present study 

was to evaluate the relative concordance between the two assays and to determine the 

benefits of RNA-seq over the microarrays for evaluating injured ligament tissues.

METHODS

Study design

Informed written consent was obtained from study patients approved by the Institutional 

Review Board of Washington University. Patients with clinically diagnosed ACL tear were 

recruited (Table 1). Patients of any age, body mass index, and sex were included and patients 

with other concomitant intra-articular or associated extra-articular injuries and those 
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undergoing revision ACL reconstruction were excluded. Previously we reported gene 

expression differences as a function of time-from-injury using RNA from 24 ACL tissues via 

microarrays. Here, we selected a subset of RNA samples (N = 8) from the 24-sample cohort 

and performed Illumina RNA-seq. As we already know that most important differences in 

gene expression exist between acute and chronic ACL tears10, we randomly selected 

samples from acute (N=5) and chronic (N=3) groups only for RNA-seq analysis. We 

compared the 8-sample RNA-seq data with the microarrays data using 24-sample cohort (14 

acute, 4 chronic, while keeping the 6 intermediate samples in the model) as well as with 

microarrays data from the same 8 samples on which RNA-seq was performed.

Tissue collection, processing and RNA isolation

Fragments of torn ACL were collected at the time of ACL reconstruction surgery10. Tissues 

immersed in TRIzol reagent (Invitrogen) were homogenized using Polytron System 

(Kinematica AG). RNA was prepared using TRIzol-chloroform method followed by 

purification using Minispin columns (Qiagen)13. Quality and quantity of RNA samples was 

ascertained with the use of Agilent 2100 Bioanalyzer (Agilent Technologies). Mean RNA 

integrity number (RIN) was 4.7 (range 3.0 to 6.9). RNA was aliquoted after preparation and 

RIN did not change with time.

Microarrays hybridization

A total of 30-ng of RNA was amplified by WTA2 kit (Sigma-Aldrich) and 2.5-µg of 

complementary DNA was labeled with Kreatech ULS labeling kit (Kreatech Diagnostics). 

Labeled samples were purified with QIAquick polymerase-chain-reaction (PCR) purification 

columns (Qiagen) and quantitated on a Nanodrop spectrophotometer (NanoDrop 

Technologies). The labeled DNA was hybridized using Agilent Human 8×60K microarrays 

chips (Agilent Technologies) at 65°C for 20h followed by routine washing. The microarrays 

were scanned on an Agilent SureScan scanner to detect Cy5 fluorescence. Gridding and 

analysis of images were performed using Agilent Feature Extraction software v10.7.3.1.

Microarrays data analysis

Data were imported into the R/Bioconductor package Limma. The raw probe fluorescence 

signals were background subtracted, expressed in log2 format for normal distribution, and 

then quantile normalized to adjust gene expression signals for differences in hybridization 

efficiency. Genes with Limma quantile normalized expression levels <10% over the 95th 

percentile of negative background control probes in more than half the samples were pre-

filtered to increase the signal to noise ratio among lower expressing genes and to reduce the 

number of genes tested and corrected for by the Benjamini-Hochberg method of adjusting p-

values i.e. false-discovery rate (FDR). The Limma probe-level data were then averaged by 

probe identification and all probes were annotated with the R/Bioconductor package 

biomaRt14 to Ensembl Release 76 (GRch38.76). The quality and performance of the 

samples were then assessed with a spearman correlation matrix (Supplementary Fig. 1) of all 

probe-averaged quantile normalized logged intensities that passed the pre-filter as well as 

multidimensional scaling plots (Supplementary Fig. 2A) to assess the variance between and 

within conditions. Significance testing was performed with Limma’s generalized-linear 

model using moderated t-statistics and robustly trended estimates of residual standard errors 
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to control for outlier sample variances due to varying degrees of hybridization and sample 

performance with factors controlling for other confounders (age, sex, body-mass-index, and 

variation in RNA integrity number). The residual standard errors were then plotted to 

confirm the trended fit conformed to the observed mean-variance relationship 

(Supplementary Fig. 2B). To create a comprehensive list of differentially expressed genes, 

we applied a ≥1.5 fold-change as the minimum threshold with secondary levels of FDR 

adjusted p-values ≤0.05 based on previous experience15–17.

RNA-seq library preparation

RNA quality was assessed prior to RNA-seq analysis with an Agilent Bioanalyzer. Library 

preparation was performed with 10-ng of total RNA. All samples were DNase-I treated to 

remove residual DNA and ds-cDNA was prepared using the SeqPlex RNA kit (Sigma-

Aldrich) per manufacturer’s protocol. The cDNA was then blunt ended, an A base added to 

the 3’ ends, and then Illumina sequencing adapters were ligated to the ends. Ligated 

fragments were then amplified for 12 cycles using primers incorporating unique index tags. 

Fragments from all samples were then pooled and sequenced on an Illumina HiSeq-2500 

across two lanes of sequencing in two different flow cells using single reads extending 50 

bases, targeting 30M read per sample.

RNA-seq data analysis

RNA-seq reads were aligned to Homo sapiens Ensembl GRCh38.76 with STAR v2.0.4b18. 

Approximately, 28–43 million reads were obtained per sample. Low quality reads (<10%) 

were eliminated, resulting in 24–41 million mapped reads. In total, 11–25 million uniquely 

mapped read pairs per sample were obtained and aligned to the human reference genome as 

shown in (Supplementary Fig. 3). Gene counts were derived from the number of uniquely 

aligned unambiguous read by Subread:featureCount version 1.4.519. Transcript counts were 

produced by Sailfish version 0.6.320. Sequencing performance was assessed for total number 

of aligned reads, total number of uniquely aligned reads, genes and transcripts detected, 

ribosomal fraction, known junction saturation, and read distribution over known gene 

models with RSeQC version 2.321. In order to determine that the total number of aligned 

reads properly represented all known exon-exon junctions, junction saturation curves 

(Supplementary Fig. 4A) and 3’/5’ end bias plots (Supplementary Fig. 4B) were created 

with RSeQC to verify that those reads aligned uniformly across known transcripts.

All gene-level and transcript counts were then imported into the R/Bioconductor package 

EdgeR22 and TMM (trimmed mean of M-values) normalized to adjust for differences in 

library size. Genes or transcripts not expressed in any sample were excluded from further 

analysis. Performance of the samples were assessed with a spearman correlation matrix 

(Supplementary Fig. 5A) and multidimensional scaling plots (Supplementary Fig. 5B) of the 

first 2 eigenvectors to confirm that time-from-injury was the largest source of variation and 

that within-group variance was less than those between groups. A plot of the tagwise and 

fitted trended dispersions estimates generated by EdgeR showed that the mean-variance 

relationship among biological replicates met the assumptions of the negative binomial model 

(Supplementary Fig. 5C). Generalized linear models with robust dispersion estimates were 

created to test for gene/transcript level differential expression between acute and chronic 
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time-from-injury with additional blocking factors controlling for differences due to age, 

gender, body-mass-index, and sample quality based on variation in RNA integrity values. 

The fit of the trended and tagwise dispersion estimates were then plotted to confirm proper 

fit of the observed mean to variance relationship where the tagwise dispersions are 

equivalent to the biological coefficients of variation of each gene (Supplementary Fig. 5C). 

Differentially expressed genes and transcripts were then filtered for FDR adjusted p-values 

≤0.05. The EdgeR analysis revealed that 49% of all differentially expressed genes with 

unadjusted p-value ≤0.01 could be derived from the time-from-injury component of the 

fitted additive generalized linear model alone for RNA-seq (Supplementary Fig. 6A) and 

52% for microarrays (Supplementary Fig. 6B).

Gene isoforms

We selected POSTN as an example for isoform analysis for a the following specific reasons: 

(i) we have previously reported that its expression was highly down-regulated in chronic 

tears compared to acute tears10, which is consistent with RNA-seq data from the current 

study, (ii) this gene plays an important role in tissue repair and degeneration23–26, and (iii) 

there are six known transcript variants for this gene27. The process of accurately quantifying 

and validating isoforms (splice variants) of known genes is still an ongoing endeavor, but 

recent tools utilizing advanced expectation-maximization algorithms such as Sailfish, 

Salmon, RSEM, and Kallisto has made that process more efficient and accurate versus older 

methods such as Bayesian methods such as Cufflinks28. The examination of gene alternative 

splice isoforms has always been difficult at best or impossible with microarrays technology. 

Affymetrix now offers several new array types that attempt to query the expression of 

isoforms at the exon level, but de-convoluting the expression of genes with many isoforms 

has proven difficult due to the many to one relationship of the expressed exons to known or 

novel isoforms. Because RNA-seq reads can span known exons in the form of reads aligned 

across exon-exon or exon-retained intron junctions, it is now possible to de-convolute 

isoform expression patterns using advanced statistical modeling on the placement and 

numbers of unique and unambiguously aligned reads within exons with the number of reads 

aligned across known exon-exon or exon-retained intron junctions that define known 

expressed isoforms. Here, we used Sailfish20 to estimate the expression of isoforms using an 

expectation-maximization model on k-mers matched to a k-mer index derived from FASTA 

file comprised of all known isoforms of all known genes found in the Ensembl release 76 

reference transcriptome.

Gene ontology

To highlight the biological interpretation of the large set of transcripts, grouping of genes/

transcripts based on functional similarity was achieved using GeneGo MetaCore tools as 

described previously15. The altered biological processes (gene ontology distribution) were 

ranked based upon enrichment score and p-values. Gene ontology was performed for the 

differentially expressed genes between acute and chronic ACL remnants from 8-sample 

microarrays and RNA-seq analyses. In addition, we conducted gene ontology and network 

analysis on genes common to microarrays and RNA-seq to see if these genes are interlinked 

or they function in relation to each other using GeneGo MetaCore Direct Interaction path.
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Microfluidic quantitative PCR

The expression of 12 transcripts differentially expressed by microarrays and RNA-seq was 

validated via microfluidic-based PCR 96.96 Dynamic Arrays (Fluidigm Corp.) as described 

previously17. Analysis of data was performed using 2−ΔCt method with peptidylprolyl 

isomerase A (PPIA, cyclophilin A) as the housekeeping gene. PPIA was selected as 

housekeeping gene based on our previous work as it showed relatively stable expression 

across all the samples10. We applied non-parametric two-tailed Mann-Whitney test 

(GraphPad) to observe the differences in transcript expression between any of the two time-

from-injury categories. Data are presented as mean ± standard error of the mean.

Data deposition

The raw data is available on National Center of Biotechnology Information Gene Expression 

Ontology website (http:www.ncbi.nlm.nih.gov/projects/geo) with accession numbers 

GSE61385 (microarray) and GSE65469 (RNA-seq).

RESULTS

Gene transcripts differentially expressed by time-from-injury

We detected 2816 gene transcripts significantly differentially expressed (at any fold-change) 

between acute and chronic tears in 24-sample microarrays (Supplementary Table 1), 2447 in 

8-sample microarrays (Supplementary Table 2) and 6549 in RNA-seq samples 

(Supplementary Table 3). The number of genes differentially expressed between acute and 

chronic ACL tissues for each cohort is shown in Fig. 1A for any fold-change and in Fig. 1B 

at ≥1.5 log2 fold-change and P≤0.05. We noted that 424 gene transcripts were common to all 

three analyses at any fold-change (Supplementary Table 4) and 42 gene transcripts were 

common to all three analyses at ≥1.5 log2 fold-change (Table 2). Using a stringent criterion 

of FDR of <0.05, no significant gene transcripts were found for 24-sample microarray, only 

61 in 8-sample microarrays (Supplementary Table 1) and 2112 in RNA-seq (Supplementary 

Table 2).

Concordance between microarrays and RNA-seq

We investigated the concordance between 8-sample microarrays and RNA-seq based on the 

expression profile of gene transcripts differentially expressed between acute and chronic 

tears. We observed that RNA-seq data had a tighter distribution of fold-changes around zero 

and a characteristic fantail indicative of lower signal to noise ratios at the lowest levels of 

detectable gene expression (Supplementary Fig. 7A). Despite the higher ratio of attributable 

gene expression to the time-from-injury condition, the Limma microarrays data 

demonstrated lower signal to noise throughout the spectrum of gene expression as can be 

seen by the more diffuse cloud of signals in the MA plot (Supplementary Fig. 7B). A 

violin/box plot of the distribution of the observed log2 fold-changes across the two Lima 

microarrays analyses and single EdgeR RNA-seq dataset show that RNA-seq dataset has a 

much larger tighter and more elongated range of observed log2 fold-changes that indicates 

the RNA-seq data also exhibits signs of less log2 fold-change compression (Supplementary 

Fig. 7C). Further examination of the rank ordered observed p-values across all three datasets 
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illustrate that the RNA-seq data not only exhibits less signs of log fold-change compression, 

but higher degrees of statistical sensitivity as well (Supplementary Fig. 7D).

The correlation between log2 fold-changes between microarrays and RNA-seq datasets were 

computed by plotting an XY plot after filtering the gene-lists of both datasets for just those 

that were expressed greater than 8 log counts-per-million across all samples in the RNA-seq 

dataset. The results were then plotted with the RNA-seq data on the y-axis and the 

microarrays data on the x-axis and a least-sum-squares linear regression model and LOESS 

model was then fitted to the data. The measured Spearman and Pearson correlation 

coefficients across these high expressing genes were respectively 0.64 and 0.54, indicating 

that the cross-platform concordance was relatively moderate across the two similar RNA-seq 

and microarrays datasets, particularly when focused on highly expressed genes (Fig. 2). The 

correlation coefficients and XY plots become incomprehensible when low expressing genes 

are included (data not shown).

An added advantage of RNA-seq is the ability to query the distribution of aligned reads 

across gene bodies. In this case, we have found that many of the differences between the two 

platforms can be attributed to the less than ideal RNA quality that is typical for operating 

room derived specimens, especially those coming from damaged tissues. RSeQC end bias 

analysis clearly shows that the reads sequenced and successfully aligned across all known 

genes by STAR have clear signs of RNA degradation indicated by drops in coverage across 

the 5 prime end and middle of a hypothetical normalized 100 base pair gene body 

(Supplementary Fig. 4B). This signature of degradation limits the depth of sequencing 

across the 5 prime end of known genes, but does not render them undetectable as long as 

there is some part of the degraded transcript that can be sequenced, but hybridization of 

these RNA fragments to probes targeting these regions in the reference genome are very 

negatively impacted due to a loss of hybridization efficiency. The high correlations between 

the two platforms for high expressing genes suggests that although the integrity of the 

samples were compromised, reasonable comparisons of relative expression can still be 

gained when limited to high expressing genes that may have less degradation or more 

tolerant of degradation due to sheer numbers of transcripts. Consequently, in future studies 

to identify biomarkers transferrable between two gene-expression measurement platforms, 

an emphasis should be placed on the above-median expressed genes when sample RNA 

integrity is less than optimal.

Gene isoforms

The complexity inherent in quantifying isoforms is readily apparent in the visualization of 

the aligned reads across POSTN with sashimi plots created by the Integrated Genomic 

Viewer (IGV). The plot clearly shows the convolution of reads aligned across exon-exon 

junctions of a single gene with multiple known isoforms (10 known isoforms; 6 of which are 

protein-coding and 4 are processed transcripts) and necessitates the use of advanced 

statistical modeling for the estimation of isoform level expression (Fig. 3A). Here we used 

Sailfish to quantify the expression of known Ensembl GRCh38 isoforms and measure their 

differential expression using the same statistical model and methods outlined for our gene 

level analysis with EdgeR. A closer examination of the EdgeR analysis of the Sailfish 
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estimated counts per isoform revealed that POSTN-001 (−9.40 log2 fold-change) and 

POSTN-004 (−8.17 log2 fold-change) comprised the most differentially regulated isoforms 

driving the repression of the POSTN gene in chronic tears. A closer examination of the 

mean log2 fold-change observed by EdgeR across all the annotated isoforms of POSTN 
yield a value of −3.95 which closely follows the gene-level observed fold-change from 

EdgeR of −3.22 (Fig. 3B). The difference most likely comes from the uncertainty in 

accurately estimating the isoform expression of a complex transcript with any given 

statistical model rather than the absolute integer count value of reads aligned across all 

exons of a gene as was done with the gene-level analysis.

In order to pseudo-validate our isoform findings, we followed the logic that genes are the 

summation of their isoforms and that the observed gene-level log2 fold-change is 

approximately the mean of a given gene’s isoforms and used a method similar to the 

Bioconductor package tximport to sum the Sailfish estimated counts to the gene-level as 

illustrated by Soneson et. al.29 The summed estimated counts for isoforms were then 

expressed as counts-per-million (CPM) in order to adjust for differences in library size 

across samples and then compared to the counts-per-million of the genes used in our prior 

analyses in the form of a spearman correlation matrix (Fig. 3C). The spearman correlation 

matrix supports our prior expectation that the summation of expressed isoforms to the level 

of their parent genes in the data follows a positive trend with high correlation (87%). The 

relative accuracy of isoform expression was further bioinformatically interrogated by 

averaging the observed isoform-level EdgeR log2 fold-changes for all isoforms of a given 

gene to their gene-level and then measuring the correlation of these changes to those of the 

same genes from a nearly identical EdgeR analysis of the genes previously described. An 

XY plot shows that the observed mean isoform and gene changes follow a linear trend with 

a Pearson correlation across all genes of 68% and 89% for all genes previously identified as 

having a Benjamini-Hochberg FDR adjusted p-values less than or equal to 0.05 (Fig. 3D). 

This supports the assumption that the Sailfish estimated counts for isoforms are reasonably 

accurate and differential expression analysis of these counts is statistically sound, especially 

when focused on isoforms of genes previously identified as statistically significant. Where 

larger deviations between gene and isoform differential expression are observed, we have 

found that they are primarily limited to low expressing genes or genes with many isoforms 

where only one or two isoforms are driving the expression, such as is the case with POSTN. 

This may explain the differences we have observed in observed gene-level expression 

between the microarrays and RNA-seq datasets where the probes of the microarrays appear 

to favorably hybridize to the higher expressing isoforms of POSTN.

Gene transcripts common to microarrays and RNA-seq and their biological significance

Further interrogation of the differentially expressed transcript in microarrays and the RNA-

seq cohorts showed that 424 gene transcripts were found to recur across the datasets and 

majority of these were down-regulated in chronic tears. At a fold-change cutoff of ≥1.5 log2 

fold 42 genes were common to the three platforms. Only two gene transcripts (G0S2 and 

PLIN4) were up-regulated while other 40 gene transcripts were down-regulated in chronic 

versus acute tears and were common across three analyses (Table 2, Fig. 4). Examples 

include COL1A1, COL1A2, COL3A1, COL5A2, COL6A1, COL6A3, COL12A1, TGFBI, 
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POSTN, MMP9, VEGFA, PLUA, FSCN1, MAFB, HMOX1, AEBP1, and EMILIN1. Gene 

ontology of these 40 transcripts was represented by several important biological processes 

relevant to ACL healing (Table 3) such as extracellular matrix organization, blood vessel 

development, multicellular organismal metabolic process, regulation of cell-substrate 

adhesion, collagen metabolic process, cell motility, wound healing, blood vessel 

morphogenesis, cellular component organization or biogenesis, epithelial to mesenchymal 

transition, and response to hypoxia. Furthermore, network analysis showed that out of 40 

transcripts down-regulated and common to microarrays and RNA-seq analyses, 18 were 

interlinked in a module clearly indicating that they correlate to a function, signifying their 

role in the same biological process (Fig. 5). Using lists of all gene transcripts differentially 

expressed between acute and chronic remnants identified by 8-sample microarrays and 

RNA-seq, we noted that only a small number of biological processes were common between 

the two platforms: only 7/50 processes were common between the two platforms for the 

gene transcripts elevated in chronic remnants (Supplementary Table 5) compared to 19/50 

for the gene transcripts repressed in chronic remnants (Supplementary Table 6).

Validation of microarrays and RNA-Seq data

With the use of Fluidigm PCR, we validated expression of 14 gene transcripts based on 

biological interest or magnitude of their expression between acute and chronic ACL tears for 

7 down-regulated in acute (Fig. 6A–G) and 7 up-regulated in acute (Fig. 6H–N). Expression 

pattern of all transcripts was highly concordant with microarrays and RNA-seq data. 

Therefore, it can be concluded that PCR data for the 14 gene tested showed 100% 

concordance (in expression pattern) with RNA-seq and microarrays data.

DISCUSSION

This study comparing microarrays and RNA-seq to evaluate gene expression in ACL tears 

confirms that several transcripts representing important, distinct biological processes vary 

with time-from-injury. Overall, microarrays and RNA-seq show a significant difference 

between acute and chronic tears.

A number of studies have compared RNA-Seq and hybridization-based arrays in other 

tissues and have reported that RNA-seq has a broader dynamic range and detected low 

abundance transcripts and biologically critical isoforms, which were not possible with 

microarrays8; 30–34. Several investigators have proposed empirical protocols and statistical 

frameworks for the analysis of gene expression using RNA-seq, with a majority agreeing 

that RNA-seq data is negative-binomially distributed in nature and that count-based methods 

of differential expression analysis (EdgeR, DESeq2, or optionally Limma Voom) of the 

same gene across two or more conditions containing an appropriate number of biological 

replicates is the ideal method that yields the fewest false positives, highest true positives, and 

proper modeling of all known sources of biological or technical variation32; 35–38. The 

choice of tools or methods is largely determined by familiarity with the tools themselves, the 

ability to optimize the tools for their experimental conditions, and ease of use. Our decision 

to use STAR, subread:FeatureCounts, Sailfish, and EdgeR are largely guided by these same 

principles and analysis with similar tools such as Salmon with tximport for isoform and gene 
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expression measurements, and DESeq2 or Limma Voom for differential expression analysis 

would yield very similar findings (data not shown, but available on request). Furthermore, 

numerous other studies have reviewed in detail the challenges and benefits associated with 

its technology and application7; 39–42 and have advocated the use of RNA-seq in 

transcriptome profiling of RNA samples.

Advantages of RNA-seq over microarrays include a higher number of differentially 

expressed gene transcripts than microarrays as it is based on sequencing rather than 

hybridization, which is independent of both probe availability and expression intensity7; 43 

but is dependent on sequencing depth. The precision of expression measurements, especially 

for transcripts present in low abundance, is limited by the background levels of hybridization 

as well as hybridization properties44. Thus, although comparing hybridization results across 

arrays can detect gene expression differences among samples45, hybridization outcomes 

from a single sample may not provide a true assessment of the relative expression of 

different transcripts. Furthermore, arrays are generally limited to probing transcripts with 

relevant probes on the array and therefore accurate measurements of expression levels and 

the reliable detection of genes with low abundance are challenging to accomplish. This 

could be due to a number of reasons such as sub-optimal choice of probes, imperfect probe 

design, and incorrect probe annotations. However, a well-designed data analysis 

methodologies can resolve some, if not all, of these issues46.

While the focus of this study was to assess how RNA-seq might be used to characterize gene 

expression differences between samples, sequence data may help answer other questions that 

are difficult to address using arrays. In particular, array technologies can measure expression 

only of genes that have corresponding probes on the array, and, in most cases, probes are 

designed only to cover a very small portion of a gene. Consequently, it is not possible to 

detect novel transcribed regions or the presence of alternative splice forms of a gene. Both of 

these problems can potentially be overcome using the RNA-sequencing data. Since 

microarrays only yield gene level differences without any knowledge of the transcript 

variants (isoforms), RNA-seq could identify specific isoforms that each gene has with P 

values and fold-change, thereby providing new information on which specific isoforms are 

actually responsible for the gene expression differences. For instance, we knew that POSTN 
gene is significantly suppressed in chronic tears, but did not know which particular isoforms 

of POSTN drove the expression. RNA-seq informed us that isoforms 1, 3, 4 and 202 have 

−9.40, −4.08, −8.17 and −4.88-fold expression and other isoforms such as 201 remained 

unchanged or showed subtle differences in expression between acute and chronic tears 

(−0.19 fold). Estimating isoform-specific gene expression (especially where one isoform has 

greater influence on phenotype than others) may be important for deeper understanding of 

complex biological processes and for disease susceptibility genes mapping. Nevertheless, 

identification of splice variants using RNA-seq methodology assumes that an adequate 

number of reads span exon–exon junctions43. This may not hold true when a sample is 

sequenced in only a single lane, and additional data are perhaps needed to circumvent this 

issue. Furthermore, sample quality and proper library preparation are as important as 

sequencing depth when it comes to sequencing bias.
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It is also worth mentioning that gene transcripts differentially expressed between acute and 

chronic remnants using the 24-sample cohort did not pass the most stringent criterion of 5% 

FDR and thus we had to limit the data to less stringent criterion of 5% P value. While 

reporting only P value-based significance level is not ideal, it is not entirely incorrect. In 

contrast, the 8-sample cohort yielded some (61 gene transcripts) and RNA-seq yielded 

numerous (2112 gene transcripts) that passed the 5% P values as well as 5% FDR 

thresholds. This observation represents a clear advantage of RNA-seq over the microarrays 

and it gives more reliable gene list, although additional validation by PCR, in situ 

hybridization or protein expression by immunostaining is still necessary.

This study compared the RNA-seq and microarrays using human ACL tear tissues 

measuring gene expression as a function of injury chronicity. We clearly observed several 

advantages associated with the use of RNA-seq over the microarrays in conjunction with 

current study. RNA-seq gave almost 40 times more gene transcripts than the microarrays for 

the same set of samples indicating that the former is more comprehensive. RNA-seq is more 

robust in identifying gene transcripts than microarrays, which are limited by the number of 

hybridized probes, background noise, and incorrect annotations. In addition, RNA-seq 

provided information about transcript variants and isoforms. RNA-seq is more sensitive than 

microarrays, as it can detect gene transcripts with very low expression, and is more accurate 

than microarrays across the spectrum of the expression.

We made two additional interesting observations when we compared microarrays with 

RNA-seq. First, RNA-seq data had a tighter distribution of fold-changes around zero and a 

characteristic fantail indicative of lower signal to noise ratios at the lowest levels of 

detectable gene expression. Second, RNA-seq data exhibited less signs of log fold-change 

compression and but higher degrees of statistical sensitivity. This supports the observed 

higher sensitivity and dynamic range of RNA-seq over conventional microarrays gene 

expression approaches as evidenced by the large differences in significant gene expression 

between the two platforms allowing for increasing levels of statistical stringency. The 

differences between the two microarrays datasets are a result of the exclusion of the 

intermediate condition and the absence of related factors for age, sex, body-mass-index, and 

RNA integrity number. When coefficients of a statistical model are changed, so do the 

resulting proportion of variances to the remaining factors thereby inducing differences of 

statistical results even in the case where many of the samples within the statistical models 

are identical. Had these ACL tissues come from genetically identical mice, it most likely 

would not have been necessary to include additional factors in the statistical modeling and 

the differences between acute and chronic across the two microarrays analyses would be 

negligible.

Our data showed relatively moderate cross-platform concordance across the two similar 

RNA-seq and microarrays datasets. This suggests that the above-median expressed genes 

may have a good transferability between the two platforms and that the differences in the 

observed log2 fold-changes and statistical significance may be a result of the limitations of 

hybridization based technologies and degraded tissue specimens as evidenced by nearly no 

correlation across low to medium expressors and only moderate correlation across high 

expressing genes.
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We identified a discrete set of biological processes based on differentially expressed gene 

transcripts by 8-sample microarrays and RNA-seq. Although there was a larger overlap in 

the biological processes from gene transcripts repressed in chronic remnants between the 

two platforms, there is no reason to give preference to the biological processes from one 

platform over the other. However, here discuss some the biological processes that were 

enriched for gene transcripts common to all platforms.

A number of important gene transcripts were common across all analysis, with and most (40 

out of 42) were repressed in chronic tears than acute tears, which is consistent with our prior 

study10. Similarly, the biological processes represented by these repressed genes 

demonstrated that pathways associated with tissue repair and matrix synthesis were inhibited 

in chronic tears, again as previously reported10. Finally, the gene transcripts repressed in 

chronic tears were not independent but rather work in concert as evidenced by the biological 

processes and network analysis.

This study has some limitations. While our analysis covered mRNA expression, we did not 

examine other species of RNA (e.g. micro-RNAs and long non-coding RNAs). Our analysis 

of isoform detection was limited primarily to the POSTN gene. In addition, the data on 

transcript isoforms is largely computational and were not validated by PCR. Further studies 

will test the expression of specific isoforms by PCR and western blot in cells and tissues. In 

this study, we did not use single-end 150 bp or paired-end sequencing to evaluate the 

differences in sequencing types. However, available literature suggests that there is a 

saturation point where increased depth of sequencing does not increase the knowledge 

gained from gene or isoform level differential expression analysis. Junction saturation plots 

of all known exon-exon junctions are very good at showing at what point a particular set of 

samples would benefit from further sequencing. The characteristic signature in this case 

would be a plateau of saturation. In the case of paired-end sequencing, the extra information 

to be gained over single-end sequencing would largely benefit the estimation of isoform 

level expression since longer split reads would span more exon-exon junctions that could be 

used to determine what isoforms of a given gene are expressed over other isoforms9; 47. If 

one of the primary goals of a study is to evaluate splice variants, chimeric fusion genes, or 

expressed single nucleotide polymorphisms (allele specific expression), then both higher 

depths of sequencing and paired-end sequencing would be the best choice. None of these 

three factors were primary goals in this study and were therefore not evaluated.

In conclusion, RNA-seq appears to be an extremely promising tool for the assessment of 

mRNA expression as well as identification of differentially expressed gene transcripts, 

comparable, and to some extent superior, to existing microarrays platforms in the analysis of 

ligamentous tissues. As the costs of sequencing are falling rapidly, RNA-seq is becoming 

widely embraced in the research community for accurate gene profiling. Future research into 

musculoskeletal biology should strongly consider the use of RNA-seq where appropriate and 

feasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Venn diagrams representing the number of differentially expressed gene transcripts for each 

comparison as well as their overlaps between the three comparisons are shown for any fold-

change (A) or at a fold-change set at log2 fold of ≥ 1.5 (B at a P ≤ 0.05). The numbers of 

differentially expressed gene transcripts shown in parenthesis for each comparison and the 

numbers shown in overlapping areas represent the number of gene transcripts common to 

any two or three comparisons.
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Figure 2. 
XY plot of log2 fold-changes between N = 8 microarrays and RNA-seq datasets. The gene-

lists of both datasets were filtered for just those that were expressed greater than 8 log 

counts-per-million across all samples in the RNA-seq dataset. The results were then plotted 

with the RNA-seq data on the y-axis and the microarrays data on the x-axis and a linear and 

LOESS model was then fitted to the data. Spearman and Pearson correlation coefficients 

were then measured, respectively.
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Figure 3. 
(A) Display of aligned reads across POSTN with sashimi plots created by the Integrated 

Genomic Viewer (IGV) demonstrating the convolution of reads aligned across exon-exon 

junctions that make the use of statistical modeling necessary for the estimation of isoform 

level expression. (B) Barplot of the estimated log2 fold-changes observed by EdgeR on the 

estimated counts of reads per known isoform of POSTN. (C) The summed estimated counts 

for isoforms were compared to the counts-per-million of the genes used in our prior analyses 

in the form of a spearman correlation matrix. This matrix supports our prior expectation that 

the summation of expressed isoforms to the level of their parent genes in the data follows a 

positive trend with high correlation (87%). (D) The relative accuracy of isoform expression 

was further interrogated by averaging the observed isoform-level EdgeR log2 fold-changes 

for all isoforms of a given gene to their gene-level and then measuring the correlation of 

these changes to those of the same genes from a nearly identical EdgeR analysis of the genes 

previously described. An XY plot shows that the observed mean isoform and gene changes 

follow a linear trend with a Pearson correlation across all genes of 68% and 89% for all 

genes previously identified as having a Benjamini-Hochberg FDR adjusted P values ≤0.05. 

This supports the assumption that the Sailfish estimated counts for isoforms are reasonably 

accurate and differential expression analysis of these counts is statistically sound, especially 

when focused on isoforms of genes previously identified as statistically significant.
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Figure 4. 
Barplot representing the mean log2 fold-change of 40 recurring genes across the N = 24 

microarrays dataset, N = 8 microarrays dataset, and the N = 8 RNA-seq dataset. Individual 

points indicate the mean log2 fold-change for each dataset.
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Figure 5. 
The molecular networks using 40 genes down-regulated in chronic remnants and common 

across microarrays and RNA-seq analyses were generated by GeneGo MetaCore are shown. 

Pathway analysis showed that these genes represent extracellular matrix organization and 

demonstrate significant interactions with each other pathways. Green arrows indicate 

activation, red arrows indicate inhibition, and gray arrows indicate unspecified interaction.
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Figure 6. 
Validation of transcripts by microfluidic quantitative PCR. We validated the expression of 14 

gene transcripts via microfluidic-based quantitative PCR based either on their biological 

significance or magnitude of their expression between acute and chronic groups. The 

expression pattern of 7 down-regulated in acute group (A–G) and 7 up-regulated in acute 

group (H–N) was highly concordant with microarrays and RNA-seq data sets.
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Table 1

Characteristics of study patients according to type of analysis

Assay Category Acute Intermediate Chronic

Microarray n 14 6 4

Average TFI (months) 1.53 3.92 40.53

Mean age (Range) in years 31.6 (13–63) 37.8 (14.49) 45.0 (20–63)

Mean BMI 26.3 24.6 28.2

Sex 7 female, 7 male 2 female, 4 male 2 female, 2 male

RNA-seq n 5 - 3

Average TFI (Range) months 1.41 - 50

Mean age (Range) years 31.6 (16–50) - 45.7 (20–63)

Mean BMI 25.5 - 29.9

Sex 2 female, 3 male - 1 female, 2 male

TFI = time-from-injury; BMI = body mass index
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Table 3

Biological processes repressed in chronic group compared to acute group*

Biological process P value FDR Gene

Extracellular matrix organization 1.305E-12 1.140E-09 LOXL2, PAI1, Collagen V, PLOD2, COL16A1, OSF-2, COL27A1, 
Collagen XII, EMILIN-1, PXDN, Lysyl oxidase, COL5A1, COL6A3

Blood vessel development 1.052E-08 4.476E-06 FAP48, LOXL2, VEGF-A, PAI1, Collagen V, PLAU (UPA), Notch, 
SRPUL, NOTCH1 precursor, Lysyl oxidase, COL5A1

Multicellular organismal metabolic 
process

6.479E-08 1.225E-05 CEL, Collagen V, COL16A1, Collagen XII, COL5A1, COL6A3

Regulation of cell-substrate adhesion 8.132E-07 7.689E-05 VEGF-A, PAI1, PLAU (UPA), Notch, EMILIN-1, NOTCH1 
precursor

Collagen metabolic process 9.639E-07 8.634E-05 Collagen V, COL16A1, Collagen XII, COL5A1, COL6A3

Cell motility 1.508E-06 1.128E-04 Carbohydrate sulfotransferases, LOXL2, VEGF-A, Fascin, Collagen 
V, PLAU (UPA), Notch, Seprase, SRPUL, NOTCH1 precursor, 
COL5A1

Wound healing 2.381E-06 1.559E-04 VEGF-A, PAI1, Collagen V, PLAU (UPA), Notch, Histone H3.1, 
NOTCH1 precursor, Lysyl oxidase, COL5A1, HIST1H3D

Blood vessel morphogenesis 4.722E-06 2.232E-04 FAP48, LOXL2, VEGF-A, PAI1, PLAU (UPA), Notch, SRPUL, 
NOTCH1 precursor

Cellular component organization or 
biogenesis

5.737E-06 2.537E-04 SC65, Carbohydrate sulfotransferases, LOXL2, VEGF-A, PAI1, 
Stathmin, Fascin, Collagen V, PLOD2, COL16A1, OSF-2, LOXL3, 
COL27A1, Collagen XII, Notch, UBE2C, Histone H3.1, EMILIN-1, 
PXDN, NOTCH1 precursor, Lysyl oxidase, COL5A1, COL6A3, 
HIST1H3D

Epithelial to mesenchymal transition 6.726E-06 2.862E-04 LOXL2, LOXL3, Notch, NOTCH1 precursor

Response to hypoxia 1.108E-05 3.849E-04 LOXL2, VEGF-A, PAI1, PLOD2, PLAU (UPA), Notch, NOTCH1 
precursor

*
Common across microarray (n=24 and n=8) and RNA-seq (n=8 analysis);

FDR = false discovery rate
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