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Abstract

Eosinophilic esophagitis (EoE) is an emerging disease that is distinguished from gastroesophageal 

reflux disease (GERD) by the expression of a unique esophageal transcriptome and the interplay 

of early life environmental factors with distinct genetic susceptibility elements at 5q22 (TSLP) and 

2p23 (CAPN14). Rare genetic syndromes have uncovered the contribution of barrier disruption, 

mediated in part by defective desmosomes and dysregulated transforming factor beta (TGF-β) 

production and signaling, to EoE pathophysiology. Experimental modeling has defined a 

cooperative role of activated eosinophils, mast cells, and the cytokines IL-5 and IL-13, mediated 

by allergic sensitization to multiple foods. Understanding these processes is opening the way to 

better treatment based on disrupting allergic inflammatory and T helper type 2 cytokine–mediated 

responses including anti-cytokine therapeutics and dietary therapy.

Keywords

Allergy; Desmosome; Genetics; Inflammation

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Gastroenterology. Author manuscript; available in PMC 2019 January 01.

Published in final edited form as:
Gastroenterology. 2018 January ; 154(2): 333–345. doi:10.1053/j.gastro.2017.06.065.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eosinophilic esophagitis (EoE) is a chronic, T helper type 2 (Th2)–associated inflammatory 

disease characterized by predominant and marked eosinophilic inflammation of the 

esophagus (a peak count of ≥15 eosinophils per high-power field of esophageal biopsy tissue 

[eos/hpf]); the diagnosis has been traditionally limited to patients who have persistent 

esophageal eosinophilia after a documented proton-pump inhibitor (PPI) trial1 but it has 

recently been recommended that PPI responsiveness is not part of the diagnostic criteria but 

rather an appropriate and effective treatment for some patients (Molina-Infante J Gut 2016 

and Lucendo United European Gastro Journal 2017). The disease is associated with upper 

gastrointestinal symptoms that vary with age and can include fibrostenotic complications. 

EoE is triggered by allergen exposure, typically food allergens, and is responsive to topical 

glucocorticoids and dietary elimination therapy (Figure 1). The pathogenesis of EoE is being 

extensively studied, and there have been recent advances concerning the genetic and 

environmental contributors, as well as the cellular and molecular etiology. This has led to 

numerous new therapies targeting these molecular pathways, which are currently being 

tested for disease treatment. Herein, we will focus on recent advances concerning the 

pathogenesis of EoE.

Genetic etiology

The prevalence of EoE is approximately 1/2000 and has a known male predominance, with a 

male-to-female ratio approaching 3:1.2,3 EoE has a strong hereditability pattern, with 

familial associations having relative risk ratios as high as 64-fold amongst brothers.4 

Proband concordinace in monozygotic twins is 58%, substantiating a genetic etiology.5 

Several different studies, including candidate-gene identification and genome-wide 

association studies (GWAS) have identified multiple genes that are likely contributing to the 

development of EoE. These genes include thymic stromal lymphopoietin (TSLP), calpain 14 

(CAPN14), EMSY, LRRC32, STAT6 and ANKRD27 (Table 1). However, it is important to 

note that dizygotic twins have a 36% concordance, whereas non-twin siblings have a 2.4% 

concordance; the stark difference demonstrates the substantial influence of a shared twin 

environment, likely via epigenetic mechanisms, at least partially.5 Consistent with this, the 

strongly associated EoE genes CCL26 (encoding eotaxin-3, a potent eosinophil 

chemoattractant and activating factor induced by IL-3) and CAPN14 (encoding CAPN14) 

are under epigenetic regulation.6,7

A section of the human genome, known as the EoE transcriptome, has a conserved 

expression in the esophagus of patients with EoE; this region is not dysregulated in patients 

with gastroesophageal reflux disease (GERD).8 The most highly expressed gene, compared 

to controls, is the IL-13–induced gene CCL26.8,9 The EoE transcriptome is distributed 

throughout the genome, but the strongest “hot spot” for transcriptional changes occurs at 

1q21, which encodes for the epidermal differentiation complex (EDC). This region contains 

genes that are involved in squamous epithelial cell differentiation, such as filaggrin; these 

genes are notably downregulated in EoE, consistent with a loss of epithelial cell 

differentiation and impaired barrier function.10,11

GWAS have identified TSLP as a major candidate gene. TSLP is released by activated 

epithelial cells and has an important role in promoting Th2 differentiation by inducing the 

O'Shea et al. Page 2

Gastroenterology. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Th2-polarizing capacity of dendritic cells.12 Levels of TSLP are significantly higher in 

patients with atopic diseases, including EoE.13 CAPN14 encodes a proteolytic enzyme that 

is specific to the esophagus and is induced by IL-13.14 Unlike TSLP, which is associated 

with multiple allergic disorders, CAPN14 may account for the tissue specificity of 

esophageal disease in EoE, as CAPN14 invokes a pathway that alters basic epithelial cell 

functions including barrier integrity.14 STAT6 has been shown to be important for Th2 

development and is a signaling intermediate for IL-4 and IL-13 post IL-4 receptor alpha 

(IL-4Ra) engagement. LRRC32 is a TGF-beta binding protein, and EMSY is involved in 

transcriptional regulation.

Taken together, this genetic profile supports a microenvironment predisposed to develop 

allergic and eosinophilic inflammation of the esophagus (Table 1). It is notable that the 

genes implicated in EoE are distinct from those involved in GERD and inflammatory bowel 

disease and are much closer to those involved in allergen sensitization and squamous 

epithelial cell dysfunction.

Allergic milieu predisposes to eosinophilic inflammation

Multiple lines of evidence support an allergic etiology as an underlying mechanism for EoE. 

First, patients with EoE have a high incidence of concurrent atopic disease (Figure 1).3 

Recent evidence shows that EoE is correlated with higher rates of asthma and airway 

hyperresponsiveness.15 Sensitization to cutaneous, ingested, and/or inhaled allergens is 

likely necessary in the development of EoE, and in some patients, seasonal allergens may 

play a role.16–18 Second, the success of dietary antigen elimination has provided profound 

insights into the role of food allergens in EoE. Removing the 6 most common food allergens 

leads to clinicopathologic remission in 50–75% of children and adults, and further studies 

and clinical experiences reveal that adding some of these allergens back into the diet leads to 

reoccurrence of the mucosal eosinophilia.19,20 Third, murine models using sensitization and 

challenges with oral ovalbumin, peanut, or inhaled aspergillus or dust mite antigen lead to 

IL-5–, IL-13–, and eotaxin-dependent esophageal eosinophilia.16,21–24

The role of Th2 cytokines remains central to our understanding of EoE. Early mouse studies 

revealed the important nature of IL-5, a required interleukin for eosinophilopoiesis, in 

driving mucosal esophageal eosinophilia and in potentially mediating tissue remodeling. The 

clinical relevance of IL-5 is partially underscored by studies that revealed humanized anti–

IL-5 antibodies significantly, but not completely, reduced esophageal eosinophilia compared 

to placebo; however, there was no difference in clinical symptoms between individuals 

treated with anti–IL-5 antibody or a placebo, suggesting an incomplete effect. Additional 

strategies to inhibit IL-5–induced eosinophilia include the use of the eosinophil-depleting 

IL-5Rα antibody benralizumab, though this has not yet been formally studied in EoE.25

Later studies determined the critical nature of IL-13 to EoE. IL-13 is well recognized for its 

role in other atopic diseases, such as asthma, atopic dermatitis, and chronic sinusitis; in both 

basic and clinical studies, IL-13 is shown to contribute to eosinophil chemotaxis, goblet cell 

hyperplasia, collagen deposition, and smooth muscle contractility. In patients with EoE, the 

esophagus expresses elevated levels of IL-13, and IL-13–overexpressing transgenic mice 
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develop an EoE-like inflammatory response in the esophagus, which has an esophageal 

transcriptome that partially overlaps with the EoE transcriptome.26 IL-13 also promotes 

EoE-like changes by promoting eosinophil recruitment by inducing eosinophil-activating 

chemokines such as eotaxin 3; by inducing tissue remodeling, including collagen deposition 

and angiogenesis. IL-13 also disrupts the epithelial barrier via a mechanism involving 

downregulation of the desmosomal protein desmoglein 1 (DSG1); preliminary studies have 

shown that this process is CAPN14 dependent, as CAPN14 is markedly induced by IL-13 

and dysregulated expression of CAPN14 impairs epithelial architecture and barrier 

formation, including promotion of DSG1 degradation.27 The first clinical trial of a 

monoclonal antibody against IL-13 showed improved markers of esophageal barrier function 

and tissue remodeling and decreased inflammation.28 The results of a phase 2 study of a 

different anti–IL-13 antibody showed a marked decrease in esophageal eosinophilia, 

including in cases that were previously non-responsive to steroids; in this study, endoscopic 

severity and symptoms also improved with active therapy.29 Along these lines, blocking 

IL-4Rα (dupilumab) may prove useful in EoE, as this strategy has shown benefit in 

prospective trials for atopic dermatitis; a phase 2 study of this agent in EoE is ongoing 

(clinicaltrials.gov NCT02379052) (Table 2).

Increasing evidence suggests that IgE does not have a prominent role in the pathogenesis of 

EoE. Though patients with EoE have increased levels of food-specific IgE compared to 

control individuals, the level of food-specific IgE is only relatively modestly increased in 

patients with EoE compared with patients with food anaphylaxis. In addition, elevated serum 

food-specific IgE does not necessarily predict EoE-triggering foods.30 Consistent with these 

findings, anti-IgE therapy (omalizumab) in humans was neither effective in reducing levels 

of esophageal eosinophilia nor clinical symptoms in clinical trials.31,32 Recent evidence 

suggests a potential role for tissue-resident IgG4, including total and food antigen–specific 

IgG4, in the pathogenesis of EoE. Immunohistochemical analysis of esophageal mucosal 

biopsies from adult subjects revealed IgG4 staining only in those with active EoE and not 

controls.32 Interesting, cases of EoE that respond to dietary treatment have elevated ratios of 

esophageal and plasma food-specific IgG4 and tissue values that decrease during disease 

remission.33 IgG4 is generally thought to be a neutralizing antibody as it only weakly binds 

to IgG receptors, does not fix complement or engage antibody-dependent cellular 

cytotoxicity, and undergoes Fab-arm exchange and hence has limited ability to cross-link 

receptors.34 It is interesting to speculate that EoE may be part of a spectrum of IgG4-related 

diseases, which often involve extensive, eosinophil-associated tissue-remodeling processes.
35

Th2 cytokines are likely produced by the recently described pathogenic effector Th2 cells 

(peTH2 cells), which were identified at higher numbers in the blood of patients with EoE 

compared to control individuals.36–37 These peTH2 cells are chemoattractant receptor-

homologous molecule–positive (CRTH2+), hematopoietic prostaglandin D synthase–

positive (HPSD+), and CD161high CD4 T cells.36–37 CRTH2 is present on peTH2 cells, 

eosinophils, and basophils and is involved in the chemotaxis of these cells via its response to 

prostaglandin D2. A recent clinical trial in patients with severe EoE with a CRTH2 

antagonist demonstrated a statistically significant decrease, but not complete resolution, in 

esophageal eosinophilic inflammation.38 In addition, group 2 innate lymphocytes that are 
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capable of expressing IL-5, -9, and -13 have been shown to be elevated in active EoE and to 

correlate with the degree of esophageal eosinophilia.39 Another cell type that has been 

shown to be a source of Th2 cytokines in EoE, at least in murine models of EoE, is the 

invariant natural killer (iNKT) cell and their depletion attenuates experimental EoE, 

highlighting the potential importance of this cell as a contributor and therapeutic target.40–43 

Mucosal mast cells influx and degranulate into the EoE esophageal epithelium and resolve 

following successful therapy.44,45 In contrast, it appears that subepithelial connective tissue 

mast cells are relatively static in the esophagus. Murine models demonstrate that mast cells 

increase smooth muscle mass.46 In addition, via producing pro-fibrotic factors such as TGF-

β1, mast cells likely play a role in esophageal remodeling.47,48 A new IL-9–producing 

mucosal mast cell (MMC9s) described in immediate hypersensitivity may play a role in 

EoE, but this remains to be explored.49

A recent advance in treating IgE-mediated food allergy is oral immunotherapy (OIT). 

However, 10-20% of cases will fail OIT due to recurrent gastrointestinal symptoms.50 

Recent meta-analysis has shown that EoE is observed in about 3% of esophageal biopsies 

from patients with OIT and abdominal symptoms were seen in 8-15%.51,52 In addition, 

recent examination of patients with IgE-mediated food allergy has shown that EoE occurs in 

4.7% compared to 0.4% in the general population, indicating a link between atopic 

phenotypes and EoE.52 Since patients have a tendency to drop out of IgE desensitization 

trials due to abdominal pain and without undergoing esophageal biopsy, it is possible that 

these rates are underestimates. Conversely, because the patients are highly atopic, they might 

also have pre-existing undiagnosed or sub-clinical EoE that is exacerbated by the 

immunotherapy.53 The link between OIT and EoE provides insight about the underlying 

pathoetiology, which undoubtedly involves food antigen–driven adaptive immune responses 

that involve the interplay of IgE-mediated responses (e.g., IL-4), EoE-mediated responses 

(e.g., IL-5 and IL-13), and checkpoints such as IgG4 and likely T regulatory cells (Figure 2).

Microbial imbalance may contribute to esophagitis

Similar to patterns in other atopic diseases, an emerging body of evidence suggests a role for 

intestinal dysbiosis in the pathogenesis of EoE. Host commensal populations may be skewed 

toward a Th2 profile by early life events such as Caesarian section delivery and antibiotic 

exposure during infancy, which appear to increase the risk of EoE in both children and 

adults.54–57 Of note, similar risk factors have been identified in other atopic conditions and 

inflammatory bowel disease.58

Although early investigations revealed only a few bacterial populations in the esophagus, 

culture-independent techniques uncovered a microbial content with over 300 species. In an 

effort to define the role of bacteria in EoE, two recent investigations determined esophageal 

microbial patterns in children and adults with EoE. Collectively, the results revealed striking 

differences, as well as many similarities, between the oral and esophageal cavities. For 

instance, the Prevotella and Streptococcus genera were similar in the two sites, whereas the 

Firmicutes genus was increased in the esophagus.59 Comparisons between active EoE and 

normal controls revealed increased Proteobacteriae in subjects with active disease and 

Streptococus in controls.60 Ingesting EoE-triggering foods leads to changes in the 
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esophageal microbiome, with the emergence of Granulicatella and Campylobacter genera on 

mucosal biopsies.59 An interesting observation relates to the association of herpes simplex 

viral infection with EoE. Case reports identify a preceding herpes simplex virus infection in 

some patients who go on to develop EoE; however, whether the viral infection and EoE 

development are related is presently unknown.61 The exact pathogenetic mechanisms that 

microbes contribute to the initiation, perpetuation, or even prevention of mucosal 

eosinophilia remain to be determined. It remains to be determined if esophageal eosinophilia 

leads to the changes in microbiome and/or if the dysbiosis influences EoE development.

Interestingly, commensal bacteria in a mouse model may limit food sensitization.62 In 

support of this is the observational finding of an inverse relationship between Helicobacter 
pylori infection and EoE, which has been demonstrated in several independent populations 

at different centers.63–66 This is intriguing as the rapid decrease in H. pylori prevalence over 

the past several decades matches the increase in EoE prevalence. From a mechanistic 

standpoint, H. pylori polarizes the immune system to a Th1 milieu, whereas lack of H. pylori 
results in a Th2 environment similar to what is seen in EoE.64,67 Despite this association, 

there have been no mechanistic studies that confirm a protective role of H. pylori. In 

addition, H. pylori infection is also protective against atopy but this effect wanes after 

childhood, indicating that the protective effect is complex, multifactorial and not EoE 

specific (Lionetti W J Gastro 2014 and Taye et al CEA and den Hollander ref).

Practical aspects of future human studies of the microbiome in EoE will need to focus on 

determining methods of collection of samples (e.g., mucosal biopsies or scrapings), specific 

host features (e.g., antibiotics, mouthwashes, PPIs), and the impact of EoE-related 

treatments. In addition, it is interesting to speculate that stool microbial content could have a 

diagnostic or monitoring role as a non-invasive tool for EoE.

Eosinophil transmigration and activation

The esophageal epithelium is composed of non-keratinized, stratified squamous epithelium 

that is bathed by a layer of mucus and covers the rete pegs with its vascular elements. 

Though the normal gastrointestinal tract contains eosinophils in varying density in times of 

good health, the normal esophageal mucosa does not contain any eosinophils. Thus, 

identifying eosinophils and their progenitor cells in the esophageal mucosa indicates a 

pathogenic role for these cells in an inflammatory response.68 In this realm, studies have 

elucidated pathogenic mechanisms related to eosinophil migration in EoE. Blanchard et al. 
identified that the CCL26 gene is the most upregulated gene in EoE human esophageal 

tissue.8 Eotaxin 3 acts through the G-protein coupled receptor CCR3, leading to eosinophil 

chemotaxis. Eotaxin-3 is upregulated by IL-13, a key EoE-related cytokine in vitro, and 

genetic deletion of the murine eotaxin receptor gene CCR3 leads to diminished esophageal 

eosinophilia in vivo. Periostin is also directly induced by IL-13 and promotes eosinophil 

adhesion and recruitment by direct and indirect mechanisms.69 It is notable that periostin is 

one of the top upregulated genes in the EoE transcriptome. Whether transmigration across 

the endothelial surface follows a different pathway than other diseases is not certain. 

Staining studies reveal increases in vascular cell adhesion molecule 1 and CD31 expression 
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during active EoE. Immunostaining revealed decreased CD18 following topical 

corticosteroid treatment.70

Following transmigration across the epithelial space, eosinophil activation is evidenced by 

the intense pattern of eosinophil-derived granule protein deposition observed in active 

disease. Eosinophil-derived major basic protein (MBP), eosinophil-derived neurotoxin 

(EDN), eosinophil cationic protein (ECP), and eosinophil peroxidase (EPO) are not only 

deposited in the epithelium of patients with EoE but also may carry functional consequences 

relevant to EoE pathogenesis.71 For instance, EDN activates dendritic cells, which promote 

the Th2 cell response. ECP increases membrane permeability of target cells, EPO may 

perpetuate tissue-injuring peroxidase formation, and MBP can disrupt epithelial barrier.71–73 

Translational studies have also shown that measurements of these proteins in gastrointestinal 

secretions may be indicative of EoE activity.74,75

Barrier dysfunction contributes to esophageal inflammation

The basal layer of esophageal tissues from patients with EoE becomes hyperplastic, and its 

integrity as a barrier structure is impaired as evidenced by dilated intercellular spaces and 

spongiosis.10 Using impedance monitoring, van Rhijn et al. demonstrated a significantly 

decreased esophageal barrier during active EoE compared to inactive EoE in adult subjects.
76 Ussing chamber analyses identified similar findings with mucosal biopsies.10 

Ultrastructural studies show not only increased intercellular spaces but also decreased 

junctional proteins. It is important to note, as discussed later, that inborn errors in barrier 

formation predispose to EoE, indicating that intrinsic defects are contributory, at least in rare 

cases. Barrier dysfunction is associated with impaired epithelial turnover as hyperplastic 

basal cells replace the normally differentiated epithelium, which exhibit a loss of tissue 

identity markers.77 This process is likely mediated by increased expression of follistatin, a 

natural inhibitor of bone morphogenetic protein (BMP) signaling, resulting in impaired basal 

progenitor cell differentiation.78 A dysfunctional barrier could facilitate passage of 

allergenic molecules to a genetically predisposed microenvironment.

Mechanistically, CAPN14 is overexpressed by the esophageal epithelia in patients with EoE, 

and IL-13 stimulation of esophageal epithelia results in impaired barrier function and 

overexpression of CAPN14. In vitro overexpression of CAPN14 in esophageal epithelial 

cells results in diminished barrier function and architectural changes indicative of barrier 

impairment, such as epidermal clefting and loss of the normal expression pattern of DSG1 

and filaggrin,27 a cutaneous structural protein that is important to barrier integrity and 

downregulated by IL-13.79 Proof for the importance of this pathway in the pathoetiology of 

EoE and other atopic diseases is illustrated by the rare genetic disease, SAM (severe 

dermatitis, multiple allergies and metabolic wasting) syndrome, in which the desmosomal 

proteins DSG1 or desmoplankin (DSP) are disrupted due to homozygous loss-of-function 

mutations in either gene.80,81 Loss of DSG1 or DSP leads to weakened barrier function in 

squamous surfaces, providing an entry pathway for allergens. Further re-enforcing the 

importance of barrier function is the capability of IL-13 to downregulate formation of not 

only filaggrin, but also DSG1.80 Notably, DSG1 and filaggrin are downregulated in EoE, 

and gene silencing of DSG1 in esophageal epithelial cells is sufficient to induce many of the 
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features of EoE including acantholysis and barrier impairment.10 In addition, patients with 

atopic dermatitis, which often is associated with loss of function mutations in filaggrin, 

exhibit this impaired barrier function, emphasizing the ability of barrier impairment to pre-

dispose to atopic diseases of the squamous epithelium.79 Notably, disruptive mutations in 

filaggin are enriched in patients with EoE, independent of the presence of atopic dermatitis, 

indicating the direct involvement of filaggrin in EoE susceptibility.82

Esophageal fibrosis and strictures are a chronic feature of EoE

Emerging clinical evidence supports that the likely outcome of unbridled eosinophilia is 

esophageal fibrosis and stricture formation. Esophageal remodeling is defined by histologic 

parameters in the epithelium, including basal zone hyperplasia, dilated intercellular spaces, 

rete peg elongation, and desquamation, and by subepithelial lamina propria features such as 

increased vascularization and fibrosis.3,83–85 The confounding aspect of this pathogenic 

process is why remodeling sometimes directs mucosal healing without sequelae and other 

times goes on to develop clinically relevant long and short segment narrowing. In this 

regard, it is notable that CAPN14 has been implicated in eliciting and repairing the epithelial 

damage associated with EoE, suggesting that remodeling could involve a genetically 

controlled balance between these two processes.27,86 Epithelial products such as 

plasminogen activator inhibitor 1 (aka serpineE1) correlate with the severity of lamina 

propria fibrosis.85 Such epithelial markers of subepithelial fibrosis may be clinically 

valuable because the size and adequacy of esophageal tissue procurement for lamina propria 

evaluation is variable. In addition, features of epithelial mesenchymal transition with 

increased vimentin-positive epithelial cells have been documented as part of the remodeling 

process.87,88 In the lamina propria, potential markers of remodeling include the pro-fibrotic 

factor, transforming growth factor beta (TGF-β) and its signaling molecules pSMAD2 and 

pSMAD3.23,83

A validated endoscopic scoring system, EoE Endoscopic Reference Score (EREFS), 

characterizes the gross features thought to reflect remodeling, such as the presence and 

severity of strictures, rings, narrowing, and crepe paper esophagus.89 Additional features, 

such as the endoscopic “pull” sign, which occurs during biopsy procurement, has been 

reported as a sign of remodeling.90 Studies in children and adults have shown that that 

esophageal narrowing may be better captured by esophagram, whereas >50% of strictures 

may be missed by isolated endoscopic assessment.91 The ultimate consequence of 

esophageal remodeling and fibrosis is stiffening and dysmotility of a normally compliant 

tube capable of coordinated contractions that propel the food bolus distally.92,93 Dysmotility 

is alluded to by the fact that food impactions can occur in the absence of frank stricture 

formation. Using an endoscopic functional lumen imaging probe (EndoFLIP), strictured and 

non-strictured EoE esophagi have been shown to be more rigid than non-inflamed esophagi.
94 In addition, the fibrostenotic esophagus is more prone to dysmotility.95 The natural 

history of untreated EoE in adults is to progressive fibrostenosis and preliminary pediatric 

studies show that esophageal rigidity begins in childhood.92,93 (Figure 1)

Using translational studies of pediatric esophageal biopsies and primary human esophageal 

cells, the presence of remodeling in both children and adults and the activation of the TGF-β 
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pathway in EoE has been elucidated.83,87,96–98 TGF-β has a number of molecular 

consequences including increasing fibrotic gene expression, altering fibroblast phenotype to 

myofibroblast, and increasing esophageal smooth muscle cell contraction via the expression 

of contractile proteins, such as the sarcoendoplasmic reticulum protein phospholamban, and 

via the induction of periostin.47,69,84,85,98,99 Further, independent of inflammation, a rigid 

environment increases esophageal smooth muscle cell gene expression of phospholamban 

and collagen I and induces smooth muscle hypertrophy.100 Similar changes occur in EoE 

fibroblasts.98 These data suggest that the mechanical environment significantly alters 

structural cell function and document an inflammation-independent pathway for esophageal 

remodeling.

Whether remodeling and fibrosis can be reversed may depend on patient age and/or the 

duration of disease.93,101–106 It is clear that the subset of children who respond 

histologically to topical corticosteroid therapy can have improvements in histologic 

remodeling and that this can be sustained long term.107 In addition, epithelial mesenchymal 

transition can resolve following successful therapy.87 Adult data show that topical steroids 

can improve esophageal diameter and decrease food impactions, but whether histologic 

remodeling or the process of fibrostenosis can be uniformly reduced remains unclear.104,108 

Indeed, the patient with the fibrostenotic esophagus is often the most challenging to treat.109 

The fact that a rigid environment alone alters the function of esophageal structural cells 

coupled with the clinical observations of therapy-resistant disease underscores the 

importance of finding non-steroidal, remodeling-altering treatments.110

Association with other conditions provides insight into pathogenetic 

mechanisms

Notably, EoE has known associations with several genetic conditions (Table 3), particularly 

connective tissue disorders with hypermobility syndromes, such as Loeys-Dietz syndrome 

and Ehlers-Danlos syndrome, hypermobility type.111 A common denominator between these 

two conditions is the increased production and/or signaling of TGF-β, which is thought to 

lead to increased contractility of smooth muscle, tissue remodeling, and Th2 responses.47,84 

Another condition associated with increased production of TGF-β is a loss-of-function 

mutation in ERBB2-interacting protein (ERBIN), a protein that negatively regulates TGF-β 
signaling.112 EoE is also associated with other syndromes including PTEN hamartoma 

tumor syndrome (PHTS), hyper-IgE syndromes, and SAM syndrome.80 EoE has also been 

associated with Netherton's syndrome, which is caused by autosomal dominant mutations in 

the protease inhibitor SPINK5, which are normally expressed in the skin.113 In addition, 

EoE has been associated with esophageal granular cell tumors; whether this is a disease 

association or a concerning consequence of EoE is not certain.114 Finally, EoE has been 

associated with a number of autoimmune conditions including Hashimoto's thyroiditis, 

rheumatoid arthritis, celiac disease, inflammatory bowel disease, combined variable 

immunodeficiency, multiple sclerosis, and Sjögren's syndrome.115 Table 3 summarizes the 

known Mendelian diseases associated with EoE and attempts to synthesize what we can 

learn from them.
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Closing

The recent formation of the Consortium of Eosinophilic Gastrointestinal Disease 

Researchers (CEGIR), which is part of the Rare Diseases Clinical Research Network 

(RDCRN) of the NIH, will undoubtedly lead to better understanding and treatment of EoE 

and related rare eosinophil-associated gastrointestinal diseases. CEGIR is focused on 

defining the natural history of eosinophilic gastrointestinal disorders, developing disease 

criteria, identifying improved dietary intervention strategies, and training the next generation 

of clinical and research leaders in the field. In the short time since EoE has received 

attention (i.e., the last two decades), there has been much progress in understanding its 

pathogenic bases. We have furthered the perspective that EoE is unlike GERD and 

inflammatory bowel disease but rather closely aligned with an allergic etiology and thus 

involves the interplay of a different set of experts and clinical interventions than is typically 

encountered in the gastroenterology practice. Accordingly, this review article integrated the 

input of experts in gastroenterology and allergy, consistent with the composition of CEGIR. 

Collectively, we are establishing that EoE is a unique disease process, characterized by the 

expression of a marked esophageal transcriptome that provides deep insight into the effector 

phase of the disease. Transcriptome analysis from only a single biopsy has similar sensitivity 

and specificity as histologic characterization,116,117 and the routine usage of this test has the 

potential to transform clinical care.118,119 We have reviewed the likely importance of the 

interplay of early life environmental factors and distinct genetic susceptibility elements, with 

a focus on 5q22 (TSLP) and 2p23 (CAPN14), the two loci that have been genetically 

replicated and most studied in the context of EoE. We have shown that rare genetic 

syndromes can predispose to EoE and provide valuable insight into disease mechanisms that 

may not only be operational in the rare disease but also informative for the common patient. 

These studies have uncovered the contribution of barrier disruption, mediated in part by 

defective desmosomes and dysregulated TGF-β production and signaling. Experimental 

modeling has defined a cooperative role of activated eosinophils, mast cells, and the 

cytokines IL-5 and IL-13, likely mediated by allergic sensitization to multiple foods. Figure 

3 synthesizes our understanding of the pathophysiology of EoE. Understanding these 

processes is opening the way to better treatment based on disrupting allergic inflammatory 

and Th2 cytokine– mediated responses including anti-cytokine therapeutics and dietary 

therapy.
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Figure 1. Clinical, pathologic, and therapeutics of EoE
Allergens drive eosinophilic esophagitis (EoE); however, current (glucocorticoid and dietary 

therapy) and future interventions can treat the disease. The presenting symptoms are shown, 

leading to esophageal inflammation, remodeling, rigidity, and dysfunction.
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Figure 2. Pathophysiologic overview of EoE
Environmental factors, including foods and the microbiome, interact with the esophageal 

epithelium to elicit production of the pro-atopy cytokines IL-33 and TSLP. Activated T 

regulatory and Th2 cells secrete bioactive cytokines including TGF-β, IL-4, IL-13, and IL-5, 

which elicit barrier disruption, tissue remodeling, and eosinophilic inflammation.
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Figure 3. Factors that contribute to the development of EoE
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Table 1
EoE genetic risk loci (statistically significant and replicated)

Genetic risk loci Genes encoded Odds ratio 
for most 
associated 
SNP at each 
locus

Genetic mechanism Pathogenic mechanism

2p23 CAPN14 1.98

Promoter variant leads to 
genotype-dependent 
expression of CAPN14, 
likely involving epigenetic 
mechanism

CAPN14 is a proteolytic enzyme specific 
to the esophagus that is induced by IL-13 
and involved in epithelial homeostasis 
and repair

5q22 TSLP WDR36 0.74

Multiple risk alleles 
associated with genotype-
dependent expression of 
TSLP

TSLP induces Th2 cell development and 
activates eosinophils and basophils

11q13 LRRC32 EMSY 2.49
Not yet described LRRC32 is a TGF-beta binding protein. 

EMSY is involved in transcriptional 
regulation.

12q13 STAT6 1.5
STAT6 is the primary 
mediator of IL-4 and IL-13 
signaling

STAT6 is a downstream signaling 
mediator of IL-4Rα and important for 
Th2 development

19q13 ANKRD27 PDCD5 RGS9BP 1.6

Not yet described ANKRD27 inhibits the SNARE 
complex; PDCD5 is involved in 
apoptotic pathways. RGS9BP is not 
expressed in the esophagus or by 
immune cells.

Abbreviations: EoE, eosinophilic esophagitis; SNP, single-nucleotide polymorphism; TSLP, thymic stromal lymphopoietin. Risk shown is positive 
and hence adjusted for being a common or rare allele.
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Table 2
Emerging Therapies in EoE

Emerging Therapies Type Mechanism

RPC4046 Anti–IL-13 antibody IL-13 regulates multiple genes within the EoE transcriptome including eotaxin 3, 
desmoglein 1, periostin, and filaggrin

OC000459 CRTH2 inhibitor CRTH2 is important for chemotaxis of eosinophils

Reslizumab/Mepolizumab Anti–IL-5 antibody IL-5 specifically stimulates expansion of eosinophils

Dupilumab Anti–IL-4Rα antibody IL-4rα is a high-affinity receptor for IL-4, which induces Th2 cell differentiation

Benralizumab Anti–IL-5Rα antibody IL-5Rα is the high-affinity receptor for IL-5, which stimulates expansion of eosinophils

Abbreviations: CRTH2, chemoattractant receptor-homologous molecule
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Table 3
Mendelian diseases associated with EoE

Mendelian disease associated 
with EoE

Inheritance Genetic mutation Plausible etiologic mechanism

Hyper-IgE syndrome Atopic dermatitis Deleterious mutations in signal 
transducer and activator of 
transcription 3 (STAT3)

Dysregulated response to IL-6 and possibly 
IL-5

Hyper-IgE syndrome Allergic rhinitis Loss-of-function mutations in 
dedicator of cytokinesis 8 
(DOCK8)

Loss of T cell homeostasis; lack of durable 
secondary antibody response against specific 
antigens

Ehlers-Danlos syndrome, 
hypermobility type

Atopic dermatitis Unknown – other subtypes of 
Ehlers-Danlos syndrome are 
caused by mutations in collagen 
genes

Disrupted joint and skin development; 
increased activity of transforming growth 
factor beta (TGF-β) due to altered binding by 
extracellular matrix

ERBIN Deficiency Atopic dermatitis Loss-of-function mutation in 
ERBB2-interacting protein 
(ERBIN)

Increased TGF-β pathway activation in T cells 
with increased Th2 responses

Loeys-Dietz syndrome (LDS) Allergic rhinitis Mutations in TGF-β receptors 1 
and 2 (TGFBR1 and TGFBR2, 
respectively)

Enhanced TGF-β signaling

Netherton's syndrome Allergic rhinitis Loss-of-function mutations in skin 
protease inhibitor, kazal type 5 
(SPINK5)

Unrestricted protease activity of kallikrein 5 
and 7 (KLK5, KLK7)

PTEN hamartoma tumor syndrome 
(PHTS)

Atopic dermatitis Mutations in phosphatase and 
tensin homolog (PTEN)

Inhibited regulation of the 
phosphatidylinositol-4,5-bisphosphate 3-
kinase (PI3K) signaling pathway

Severe atopy syndrome associated 
with metabolic wasting (SAM) 
syndrome

Allergic rhinitis Homozygous mutations in 
desmoglein 1 (DSG1) or 
desmoplankin (DSP)

Disrupted epithelial barrier
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