Table 1.
Host | Endophytic microbes | Function | References |
---|---|---|---|
BACTERIA | |||
Oryza sativa | Paenibacillus polymyxa | Glucanase production, anti-phytopathogenic microbe | Liu et al., 2017 |
Cucumis melo | Proteobacteria, Frimicutes, Actinobacteria | – | Glassner et al., 2017 |
Oryza sativa | Micrococcus yunnanensis, Micrococcus luteus, Enterobacter soli, Leclercia adecarboxylata, Pantoea dispersa, Staphylococcus epidermidis | IAA production, plant growth promotion | Shahzad et al., 2017c |
Oryza sativa | Enterobacter asburiae, Pantoea dispersa, Pseudomonas putida | IAA production, phosphate-solubilizing, antifungal, plant growth promotion | Verma et al., 2017 |
Phragimates australis | P. fluorescens, Psedomonas sp., Pantoea sp., Enterobacter sp. | Phosphorus-solubilizing, protease production, anti-fungal, plant growth promotion | White et al., 2017 |
Triticum aestivum | Panibacillus sp., Pantoea sp., Bacillus sp. | IAA production, antifungal, siderophore production, phosphate-solubilizing, plant growth promotion | Díaz Herrera et al., 2016 |
Tylosema esculentum | Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium, Bacillus sp., Curtobacterium, Microbacterium, Mucilaginibacter, Chitinophaga | Plant growth promotion, phytohormone and metabolite production | Chimwamurombe et al., 2016 |
Oryza sativa | Bacillus amyloliquefaciens | Phytohormone production, growth promotion | Shahzad et al., 2016 |
Lycopersicum esculentum | Bacillus subtilis | Plant growth promotion, phytohormone and metabolite production | Xu et al., 2014 |
Zea mays | Undibacterium, Sphingomonas, Acinetobacter, Burkholderia, Pantoea, Limnobacter, Burkholderia, Pantoea, Staphylococcus, Serratia, Cronobacter, Enterobacter, Escherichia, Acinetobacter | – | Liu et al., 2013 |
Arachis hypogaea | B. thuringiensis, B. cereus, B. amyloliquefaciens, B. megaterium, B. subtilis, Bacillus sp., Paenibacillus sp., Pseudomonas sp., B. thioparans, Cyanobacterium | Antifungal | Sobolev et al., 2013 |
Phaseolus vulgaris | Bacillus massilensis, Bacillus sp. Bacillus pumilus, Bacillus flexus, Bacillus korlensis, Bacillus silvestris, Paenibacillus, Enterococcus, Staphylococcus, Arthrobacter, Kocuria, Micrococcus, Brachybacterium, Methylobacterium, Paracoccus, Acinetobacter | – | Rosenblueth et al., 2012 |
Triticum aestivum; Elymus trachycaulus; Agropyron fragile | Actinobacteria, Firmicutes, Gammaproteobacteria | – | Ringelberg et al., 2012 |
Oryza sativa | Pseudomonas protegens, Pseudomonas sp., Stenotrophomonas maltophilia, Uncultured Stenotrophomonas clone, Ochrobactrum tritici, Ochrobactrum sp., Ochrobactrum grignonense Sphingomonas yanoikuyae, Flavobacterium johnsoniae, Flavobacterium sp., Paenibacillus humicus, Paenibacillus sp. Agromyces mediolanus, Curtobacterium citreum, Curtobacterium sp., Curtobacterium herbarum, Frigoribacterium faeni, Microbacterium oleivorans, Microbacterium sp., Mycobacterium abscessus Plantibacter flavus | Plant growth promotion, mitigating biotic and abiotic stress | Hardoim et al., 2012 |
Zea mays | Bacillus sp, Methylobacterium, Tukamurella, Alcaligenes, Erwinia, Microbacterium, Rhodococcus | – | Rosenblueth et al., 2012 |
Cucurbita pepo | Bacillus sp., Pseudomonas chlororaphis, Lysobacter gummosus, P. chlororaphis, Paenibacillus polymyxa, Serratia plymuthica | Antifungal | Fürnkranz et al., 2012 |
Vitis vinifera | Bacillus altitudinis, Bacillus simplex, Bacillus thuringiensis, Paenibacillus amylolyticus, Staphylococcus aureus subsp. aureus | Tissue colonization | Compant et al., 2011 |
Fraxinus | Pantoea agglomerans, Staphylococcus succinus, Aerococcus viridans | Antibiotic production | Donnarumma et al., 2011 |
Oryza sativa | Pantoea agglomerans, Acinetobacter sp., Curtobacterium citreum, Microbacterium sp., Pantoea ananatis, Pseudomonas sp., Paenibacillus sp., Pantoea sp., Staphylococcus cohnii, Curtobacterium citreum, Microbacterium sp., Sphingomonas sp., Rhizobium larrymoorei, Curtobacterium sp., Sphingomonas sp. | Phytohormone and metabolite production, phosphate-solubilizing, antifungal, plant growth promotion | Ruiza et al., 2011 |
Glycine max | Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, Sphingomonas | Phytate-solubilizing | López-López et al., 2010 |
Nicotiana tabacum | Enterobacter sp., Xanthomonadaceae, Pseudomonas sp., Enterobacter sp., Pseudomonas fulva, Sanguibacter sp., Stenotrophomonas sp., Clostridium aminovalericum, Stenotrophomonas sp., Sanguibacter sp. | Mitigating metal toxicity, promote plant growth | Mastretta et al., 2009 |
Oryza sativa | Bacillus pumilus, Kocuria palustris, Pantoea ananatis, Methylobacterium radiotolerans, Methylobacterium fujisawaense | Enzyme production, osmotic stress tolerance | Kaga et al., 2009 |
Eucalyptus | Bacillus sp., Enterococcus sp., Paenibacillus sp., Methylobacterium sp. | Growth promotion | Ferreira et al., 2008 |
Zea mays | Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., Sphingomonas sp. | Antifungal | Rijavec et al., 2007 |
Oryza sativa | Xanthomonas translucens, Pantoea ananatis, Methylobacterium aquaticum, Sphingomonas melonis, Sphingomonas yabuuchiae, Bacillus subtilis, Bacillus pumilus, Micrococcus luteus, Acidovorax sp., Curtobacterium flaccumfaciens, Paenibacillus amylolyticus, Xanthomonas translucens | Enzyme production, osmotic stress tolerance | Mano et al., 2006 |
Coffea Arabica | Bacillus sp., Burkholderia cepacia—GC subgroup B, Burkholderia gladioli GC subgroup A, Burkholderia gladioli—GC subgroup B, Clavibacter michiganense insidiosum, Curtobacterium flaccumfaciens-flaccumfaciens, Curtobacterium flaccumfaciens-poinsettiae, Escherichia vulneris, Micrococcus sp., Pantoea agglomerans, Pseudomonas putida biotype A, Pseudomonas putida biotype B, Stenotrophomonas sp., Stenotrophomonas maltophilia, Yersinia frederiksenii | – | Vega et al., 2005 |
Fragaria | Pseudomonas fluorescens, Pseudomonas sp. | – | Kukkurainen et al., 2005 |
Glycine max | Agrobacterium radiobacter, Aeromonas sp., Bacillus spp., Chryseomonas luteola, Flavimonas oryzihabitans, Sphingomonas paucimobilis | Seedling growth, root colonization | Oehrle et al., 2000 |
FUNGI | |||
Invasive Phragmites | Alternaria sp., Phoma sp., Penicillium corylophilum | Improved seed germination and seedling growth | Shearin et al., 2017 |
Dendrobium friedericksianum | Fusarium sp., Beauveria sp., Tulasnella violea, T. violea, Epulorhiza sp., Trichosporiella multisporum | Growth promotion | Khamchatra et al., 2016 |
Cinchona ledgeriana | Diaporthe sp. | Alkaloid production | Maehara et al., 2016 |
Toona sinensis Roem | Cladosporium sp. | Antioxidant potential | Rahmawati et al., 2016 |
Lolium perenne | Neotyphodium sp. | – | Wiewióra et al., 2015 |
Schedonorus phoenix | Epicholë ceonophiala | Improved resistance against herbivores and environmental stresses | Young et al., 2013 |
Dactylis glomerata | Epichloë typhina | Improved host plant growth and photosynthesis | Rozpadek et al., 2015 |
Centaurea cyanus; Papaver rhoeas; Senecio vulgaris; Centaurea nigra; Plantago lanceolata; Rumex acestosa |
Acremonium strictum, Alternaria alternate, Aspergillus niger, Aureobasidium pullulans, Botrytis cinerea, Chaetomium cochliodes, Clodosporium cladospriodes, Cladosporium oxysporum, Cladosporium sphaerospermum, Colletotrichum dematium, Epicoccum nigrum, Fusarium avenaceum, Fusarium equiseti, Fusarium merismoides, Fusarium tricinctum, Fusarium sp. A, Geotrichum candidum, Mucor hiemalis, Penicillium sp A, Penicillium sp. B, Phialophora verrucosa, Rhabdospora coricea, Sterile sp. A, Sterile sp. B | Hodgson et al., 2014 | |
Laelia speciosa | Helotiales sp. | – | Ávila-Díaz et al., 2013 |
Ipomoea carnea | Collelotrichum sp., Fusarium sp. | Antimicrobial | Tayung et al., 2012 |
Swietenia macrophylla King | – | α –Glucosidase inhibition | Ramdanis et al., 2012 |
Festuca arundinacea | Neotyphodium oenophialum | Ergovaline and loline alkaloid production and improved protection against herbivores | Pennell et al., 2010 |
Lolium perenne | Epichloë festucae var. lolii | Improved drought tolerance | Kane, 2011 |