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models. A quantitative trait loci on LG09, detected by both 
the additive and non-additive models, is located near a GAI 
homolog and is presented in detail. Overall, this study shows 
the added value of non-additive modeling of allelic effects 
for identifying genomic regions that control traits of inter-
est and that could participate in the heterosis observed in 
hybrids.

Keywords  Genome-wide association study · Sunflower · 
Multi-locus · Non-additive effect

Introduction

Currently, several tools are available to geneticists and 
breeders to identify the genetic control of traits of inter-
est and to improve the performance of animals and plants. 
A powerful tool for mapping the genes controlling com-
plex traits, association genetics essentially evaluates statis-
tical correlations between the alleles at a given locus and 
the observed phenotype (Ersoz et al. 2007). Genome-wide 
association studies (GWAS) have been widely used in the 
genetics of humans, animals, and plants (Yu et al. 2006; 
Kang et al. 2008; Zhang et al. 2010; Zhou et al. 2012; Wang 
et al. 2016). The method was first applied to human genet-
ics (Corder et al. 1993), and the first association study on 
agronomic data was conducted in 2001 (Thornsberry et al. 
2001) in maize with regard to flowering time.

Flowering time (FT) is a key trait in plant biology. Its 
evolution has been crucial for the domestication of many 
crop species and their dissemination into new climatic 
regions (Colledge and Conolly 2007; Izawa 2007; Blümel 
et al. 2015). It is highly heritable, and the gene regulatory 
network controlling flowering time is very well described, 
making it an excellent trait to combine quantitative genetics 
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and functional genomics. The impact of environmental cues 
on flowering time is well documented in the model plant 
Arabidopsis thaliana where a study (Li et al. 2010) identified 
SNPs that can explain up to 45% of the phenotypic variation 
of flowering time in a large panel of natural accessions. In 
sunflower, GWAS are more recent: Fusari et al. (2012) on 
disease resistance, and Nambeesan et al. (2015) on branch-
ing performed their GWAS with data collected on inbred 
lines, whereas Cadic et al. (2013) studied the genetic control 
of FT in a panel evaluated in 15 environments as hybrids.

Many crops, such as maize, sunflower and winter oil seed 
rape, are cultivated as hybrids. Hybrid vigor, or heterosis, 
was first observed by Kolreuter (1766). Genetic mechanisms 
underlying heterosis have been suggested, but their relative 
importance is not clearly elucidated (Lamkey and Edwards 
1999). Different hypotheses including dominance (Bruce 
1910; Jones 1917), overdominance (Crow 1948), and sub-
sequently epistasis have been proposed (Williams 1959). 
Most GWAS models have been designed to consider only 
the additive effects of markers. Several studies have shown 
that non-additive effects constitute a major part of the varia-
tion of complex traits. These studies consider the intra-locus 
effects (Gengler et al. 1997; Norris et al. 2010), namely 
dominance, or inter-locus effects called epistasis (Huang 
et al. 2012; Mackay 2014). The work of Yang et al. (2014) 
on corn showed an increase in the proportion of heritability, 
explained because the model considered the dominance, thus 
allowing a better overview of heterosis. Mackay (2014) also 
stated that epistasis might be linked to missing heritability 
and small additive effects. Before them, Zhou et al. (2012) 
demonstrated on rice hybrids that the accumulation of multi-
ple effects, including dominance and overdominance, might 
partially explain the genetic basis of heterosis. In human 
genetics, it has also been shown that models considering 
non-additive intra-locus effects yield new information, as in 
the case for the study by He et al. (2015), which found three 
new quantitative trait loci (QTLs) associated with kidney 
weight, compared to additive models. In contrast, Tsepilov 
et al. (2015) showed in humans that it is preferable to use 
non-additive effects only for traits where the non-additive 
function is known because additive models already capture 
a small part of the non-additive variability.

Mixed models are among the methods used to perform 
association analysis. They take into account the dependence 
between individuals by introducing a covariance structure 
for the genetic value of each individual and was proposed by 
Yu et al. (2006). The main drawback of the mixed model is 
its computational burden. So, new methods were proposed 
to accelerate the algorithm speed, EMMA (Kang et al. 2008) 
that avoid redundant matrix calculation, EMMAX (Kang 
et al. 2010) that is an approximation method with the ability 
to handle a large number of markers and finally GEMMA 
(Zhou and Stephens 2012) that is exact and efficient. All 

these methods are based on single-locus tests, but the traits 
can be controlled by many loci, with broader effects, and 
these models do not yield a good estimate of the markers 
effects in this case.

The identification of causal polymorphisms with the 
adjustment of more than one polymorphism at a time is 
complicated by the presence of linkage disequilibrium. Sev-
eral multi-locus approaches have been proposed, including 
penalized regressions (Hoggart et al. 2008), Lasso (Yi and 
Xu 2008; Wang et al. 2011; Waldmann et al. 2013), and even 
the elastic net (Waldmann et al. 2013). Segura et al. (2012) 
proposed a regression method with inclusion by forward 
selection. This method involves EMMAX that reassesses the 
genetic and residual variances at each step of the algorithm. 
An assessment of the model quality, based on a selection 
criterion, is then performed.

The aim of our study was to evaluate different GWAS 
models that take dominance into account to detect associa-
tions in a hybrid panel and patterns of genetic control puta-
tively involved in heterosis. For this purpose, we used the 
sunflower and flowering time as an example of the genetic 
control of complex traits, and we performed this study in 
a variety of environments to introduce realistic phenotypic 
variability. Several models involving intra-locus non-addi-
tive effects that are appropriate for a GWAS were tested. We 
sought to compare these models and conventional additive 
models of GWAS based on a multi-locus method similar to 
the one reported in Segura et al. (2012).

Materials and methods

Dataset collection

We collected data on the flowering time of sunflower (Heli-
anthus annuus L.) from various French experiments con-
ducted in 2013 by private partners (Biogemma, Caussade 
Semences, Maisadour Semences, RAGT2n, Soltis, Syngenta 
France) and by the French National Institute for Agricul-
tural Research (INRA) as part of the SUNRISE project. Five 
experimental sites in different environments of regions in 
Southwestern France were planted with different hybrids 
from a set of 452 hybrids (between 303 and 444 hybrids 
per environment). Hybrids for this study were obtained by 
crossing 36 males and 36 females in an incomplete factorial 
design. They were chosen so that every parent was repre-
sented equivalently in the hybrid population (between 12 
and 15 hybrids per parent).

In each environment, each measure of flowering time cor-
responded to one plot, planted with individuals of a single 
genotype. Each plot varied from 10 to 18 m2 depending on 
the environment, and the plant density (corresponding to the 
number of plants per m2) was 5.8 on average and varied from 
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three to eight plants per m2. Flowering time was recorded 
when 50% of the plants in a plot were flowering and was 
then converted into degree days since the sowing date rela-
tive to the base 4.8 ◦C, using the mean daily air temperature 
measured at each location.

Genotyping data

SNP genotyping was performed in the same way as in 
Badouin et  al. (2017), but here using an Illumina type 
assembly. This work allowed us to obtain genotyping data 
from the 72 parents on 2,204,423 SNPs that were coded 
depending on the allele that a parent line could transmit to 
its descendants: 0, 1, or missing (0 for the XRQ allele, 1 for 
the variant). XRQ is the line used for the reference genome, 
described precisely in Badouin et al. (2017). The genotyp-
ing data were imputed by genomic scaffolds by means of 
BEAGLE (Browning and Browning 2009). Nevertheless, 
this step of the imputation of missing data created some 
redundancy among SNPs (SNPs are in complete linkage dis-
equilibrium). Maintaining the redundancy for further GWAS 
analyses increases the computational burden. In addition, 
redundancy included in the calculation of the relatedness 
between hybrids tends to give more weight to regions con-
taining many redundant markers, decreasing the power in 
these regions (Rincent 2014). Redundant SNPs were there-
fore discarded. One last filter on minor allele frequency 
(MAF) was implemented. SNPs with MAF (calculated for 
parent genotypes before imputation) less than 0.1 were dis-
carded. A total of 478,874 non-redundant polymorphic SNPs 
were finally retained for various subsequent analyses. The 
genotypic data of hybrids were deduced from the genotypic 
data of the parents and coded as 0, 1, or 2 for homozygous 
XRQ and heterozygous and variant homozygous, respec-
tively. In addition, the male and female origin of alleles was 
recorded for heterozygous SNPs.

Phenotype adjustment

Data were first adjusted using a linear model including two 
spatial fixed factors (line and column numbers in the field), 
a replicate fixed factor if necessary, an independent random 
genetic factor, and the residual error.

GWAS

The analyses were performed using a multi-locus approach 
with forward selection as proposed by Segura et al. (2012). 
This method is based on inclusion (at every step) of the SNP 
with the smallest p-value as a fixed regressor in a model that 
contains a random polygenic effect, as in classic GWAS model 
of Yu et al. (2006). The polygenic and residual variances are 

re-evaluated at each step, and a new scan of the remaining 
genome is performed. The more integrated the regressors in 
the model, the lower is the variance attributed to the random 
polygenic term. The forward selection analysis stops when the 
proportion of variance explained by this polygenic effect is 
close to zero. Five models were compared to find chromo-
somal regions linked to flowering time. These models have 
been coded and adapted for non-additive models, based on the 
MLMM code written by Segura et al. (2012), with ASReml-R 
(Butler et al. 2009). All scripts are available on request.

Two additive models: A
AIS

 and A
XX’

 models

The first model, as described in Segura et al. (2012), takes into 
account only the additive effect of markers. Let yi denote the 
adjusted phenotype of hybrid i. Then the additive model is

where xl
i
 is the centered genotype (coded as XRQ allelic 

dose) of the ith hybrid at the lth marker locus; �l
a
 is the addi-

tive effect of the lth locus; ui denotes the random polygenic 
effect; and ei is the residual error. Let u and e be vectors 
(ui, i = 1,… , n) and (ei, i = 1,… , n), respectively, and then 
u ∼  (0, �2

u
Ka), e ∼  (0, �2

e
Id), where Ka is a kinship 

matrix (relations among hybrids), and �2
u
 and �2

e
 are poly-

genic and residual variances, respectively.
One simple way to calculate the relatedness between 

hybrids based on molecular markers is to consider the pro-
portion of shared alleles between two individuals, also called 
alike in state (AIS) relatedness.

The formula for biallelic markers (Maenhout et al. 2009) is

where L is the total number of markers, G
1
 and G

2
 are the 

vectors of genotypes for i1 and i2 (length of L, coded as XRQ 
allelic dose), and 2 denotes a vector of two. The use of this 
formula for relatedness between hybrids does not consider 
haplotypic phases. However, haplotypic phases are known 
in our factorial design. Accordingly, we consider the AIS 
between the parents and known haplotypic phases to cal-
culate the relatedness between hybrids. Thus, the AIS kin-
ship that was used in the additive model designated the AAIS 
model was calculated as the average AIS between the respec-
tive parents of hybrids.

The other relationship matrix, used in the additive model 
designated the AXX’ model, is equivalent to the unscaled kin-
ship matrix described by VanRaden (2008):

yi = � + xl
i
�l
a
+ ui + ei (AAIS and AXX� models),

AIS(i1, i2) =
G

1

�G
2
+ (2 − G

1
)�(2 − G

2
)

4L
,

KXX′ = XX′ (AXX� model),



322	 Theor Appl Genet (2018) 131:319–332

1 3

where X =
[

xl
i

]

l = 1,… ,L

i = 1,… , n

 is the centered matrix of the 

hybrid genotypes.

The additive and dominant model: AD model

A model including additive and dominant effects of SNP 
markers as proposed by Su et al. (2012) was studied next. 
The model is

where xl
i
 is the centered genotype of the ith hybrid at the lth 

marker locus; wl
i
 is defined later; �l

a
 is the additive effect of 

the lth locus; �l
d
 is the dominance effect of the lth locus; and 

ei denotes error. Ai is the random additive effect i, and Di is 
the random dominant effect i. Let A, D, and e denote vectors 
(Ai, i = 1,… , n), (Di, i = 1,… , n), and (ei, i = 1,… , n), 
respectively, and then A ∼  (0, �2

a
Ka), D ∼  (0, �2

d
Kd), 

e ∼  (0, �2
e
Id), where Ka is the additive kinship matrix; Kd 

is the dominance kinship matrix; and �2
a
, �2

d
 and �2

e
 are addi-

tive, dominance and residual variances, respectively. 
Ka = K′

XX
 as in the AXX′ model, and Kd = WW′ where 

W =
[

wl
i

]

l = 1,… ,L

i = 1,… , n

; L is the number of loci; n denotes the 

number of hybrids; and

where pl is the XRQ allelic frequency at locus l within 
the parental population that is equal to the XRQ allelic 
frequency at locus l within the hybrid population under 
Hardy–Weinberg assumptions.

The part of additive variance used in the forward selec-
tion algorithm as a stopping criterion was defined in MLMM 
(Segura et al. 2012) by �2

u

�2
u
+�2

e

. To generalize the stopping 

criteria for the AD model, we used the ratio �2
a
+�2

d

�2
a
+�2

d
+�2

e

.

The models with female and male effects: FM and FMI 
model

These models include the male and female effects of SNP 
markers. The last also includes the interaction between the 
male and female effect. Let yfm denote the adjusted pheno-
type of hybrid obtained when the female line f was crossed 
with the male line m, and then the model is

yi = � + xl
i
�l
a
+ wl

i
�l
d
+ Ai + Di + ei (ADmodel),

wl
i
=

{

−2pl(1 − pl) if i is homozygote at locus l

1 − 2pl(1 − pl) if i is heterozygote at locus l

yfm = � + xl
f
�l
f
+ zl

m
�l
m
+ Ff +Mm + efm (FM model),

yfm = � + xl
f
�l
f
+ zl

m
�l
m
+ wl

fm
�l
fm

+ Ff +Mm + Ifm + efm (FMI model),

where xl
f
 is the centered (0 or 1) allele transmitted by the 

female f at the lth marker locus; zl
m
 is the centered (0 or 1) 

allele transmitted by the male m at the lth marker locus; 
wl
fm

= xl
f
zl
m
; �l

f
 is the female effect of the lth locus; �l

m
 is the 

male effect of the lth locus; and �l
fm

 is the female–male inter-

action effect of the lth locus. Ff , Mm, and Ifm are the random 
effects of female f, male m, and their interaction, respec-
tively, and efm denotes error. Let F, M, I, and e denote vec-
tors (Ff ,  f = 1,… , nf ) ,  (Mm ,  m = 1,… , nm) ,  ( Ifm , 
f = 1,… , nf ;  m = 1,… , nm),  and (efm,  f = 1,… , nf ; 
m = 1,… , nm), respectively, where nf  and nm are the num-
bers of females and males, respectively. F ∼  (0, �2

f
Kf ), 

M ∼  (0, �2
m
Km), I ∼  (0, �2

fm
Kfm), e ∼  (0, �2

e
Id), where 

Kf  is the kinship matrix for the female; Km is the kinship 
matrix for the male; Kfm is the kinship matrix for the interac-
tion between the male and female; and �2

f
, �2

m
, �2

fm
 and �2

e
 are 

the female, male, female by male interaction, and residual 
variances, respectively. Kf = XfX

′

f
 and Km = ZmZ

′

m
 as in the 

AXX′ model but now using the centered matrix of transmitted 
alleles, Wfm =

[

xl
f
zl
m

]

l = 1,… , L

f = 1,… , n

m = 1,… , n

 is the Hadamard product 

between Xf  and Zm, and Kfm = WfmW
′

fm
.

The stopping criterion of the algorithm was defined by 
the ratio 

�2
f
+�2

m

�2
f
+�2

m
+�2

e

 and 
�2
f
+�2

m
+�2

fm

�2
f
+�2

m
+�2

fm
+�2

e

 for the FM and the FMI 

model, respectively.

Model selection and detected SNP estimation

The main problem of the multi-locus analysis is how much to 
integrate the SNPs into the model. BIC (Bayesian informa-
tion criterion), which is generally used, is not strict enough 
for model selection in large model space (Chen and Chen 
2008). Accordingly, eBIC (extended Bayesian Information 
Criterion), an extension of BIC, was developed (Chen and 
Chen 2008). It penalizes the BIC calculation by taking into 
account the number of possible models for a given number 
of regressors in the model using mathematical combination, 
also known as the binomial coefficient. For our models, the 
total and the given numbers of regressors used in mathemati-
cal combination depend on the SNP numbers and SNP mod-
eling and are as follows:

where L is the total number of SNPs; nv is the number of 
variance components other than residual variance in the 

eBIC = BIC + 2� ln

(

nvL

nvLS

)

,
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model; Ls is the given number of SNPs in the model; 

0 ≤ � ≤ 1 and 
(

nvL

nvLs

)

 is the mathematical combination of 

nvLs among nvL.
One way to choose the best � is to find k,  so that L = nk and 

then to assume � = 1 −
1

2k
 (Chen and Chen 2008).

To calculate the effects of SNPs selected by eBIC, the 
model FMI, which is the most complete model, was used. It 
was composed of all eBIC-selected SNPs. Tukeys test of mean 
comparison was then performed to analyze the significance 
of differences among the four genotypic classes (00, 01, 10, 
and 11).

Linkage disequilibrium

Linkage disequilibrium was studied to compare and pool the 
discovered SNPs among models and environments. It was cal-
culated between all pairs of SNPs selected by eBIC, using the 
classic r2 (squared Pearson’s correlation) of the hybrid parent 
genotypes (i.e., SNP correlation of 36 males and 36 females). 
The significance level of linkage disequilibrium was found 
by randomly sampling independent SNPs. A total of 10,000 
random pairs of SNPs (from 478,874) belonging to different 
chromosomes were processed. The significance threshold was 
computed as the 99% quantile of the 10,000 r2 distribution. We 
therefore focused on linkage disequilibrium values higher than 
this threshold of 0.155.

QTL definition

The use of QTLs instead of SNPs allows us to identify regions 
of interest rather than specific loci. A QTL is defined as a 
group of SNPs located on the same chromosome with link-
age disequilibrium greater than the predefined significance 
threshold (0.155, which is the 99% quantile of the 10,000 r2 
distribution of random independant SNP pairs), or an isolated 
SNP associated with a trait without the above characteristics. 
Since the 13EX03 and 13EX04 environments were not prop-
erly randomized, isolated SNPs from these environments were 
removed from the study.

For functional analysis, one SNP per QTL was selected as 
representative of the QTL. This choice was made based on 
the test p-value in an SNP by SNP model FMI. If a given SNP 
was associated with a trait in several environments, one p value 
per environment was calculated, and the minimal p-value was 
assigned to the SNP. The SNP ultimately representing the QTL 
is the one with the lowest p-value.

Results

Phenotypic data analysis

The period from sowing date to flowering time was meas-
ured in various environments. The flowering time in each 
environment was assumed to be a separate trait. Genotypic 
variance differed significantly from zero in all environments. 
The proportion of variance explained by genotypes (usually 
defined as broad sense heritability) ranged from 0.78 to 0.94 
(Table 1). The proportion of variance explained by females 
(between 0.29 and 0.40) and males (between 0.34 and 0.40) 
is similar or slightly higher for males, particularly for the 
environment 13EX02.

Flowering time is not known as a highly heterotic trait. 
However, some hybrids exhibited a visible heterotic phe-
notype, when looking at the hybrid performances accord-
ing to their parents (Figure S1), particularly in 13EX01 and 
13EX02 environments. As examples, the hybrid resulting 
from the cross between the female SF301 and the male 
SF336 on 13EX01 and that from the cross between the 
female SF217 and the male SF324 on 13EX02, showed later 
flowering time than expected if the trait was governed only 
by additive behavior. Dominance was recorded in Table 2, 
by comparing the hybrid performances to the general com-
bining ability (GCA) of their parents. Between 3 and 13 
hybrids were dominant (i.e., the phenotypic value of a hybrid 

Table 1   Summary of part of variances

For each environment (13EX01 to 13EX06), the proportion of phe-
notypic variance explained by genotypes (h2), by females (�2

f
) and by 

males (�2

m
), are presented

13EX01 13EX02 13EX03 13EX04 13EX06

 h2 0.86 0.79 0.94 0.91 0.88

 �
2

f
0.35 0.29 0.40 0.36 0.35

 �2

m
0.34 0.37 0.40 0.39 0.38

Table 2   Number of hybrids with heterotic phenotype

For each environment (13EX01 to 13EX06), hybrids phenotyped, the 
value of two standard deviation (2 SD) and hybrids with phenotypic 
value more (Dom+) or less (Dom−) than two standard deviations 
from the average of their parents were quantified

Env Nb of hybrids 2 SD Dom+ Dom−

13EX01 303 54.5 9 9
13EX02 444 56.13 13 7
13EX03 424 71.19 11 3
13EX04 428 69.48 6 10
13EX06 430 61.17 13 6
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was more or less than two standard deviations from the aver-
age of its parents).

The correlations among environments are high (Figure 
S2), ranging from 0.68 to 0.85. These correlations were cal-
culated only on common hybrids between the tested envi-
ronments, i.e., between 297 and 425 hybrids. Environment 
13EX02 correlates with the others the least, with correla-
tion coefficients between 0.679 and 0.697. This result can be 
explained by the fact that the sowing date for this environ-
ment was 7–20 days after the other sowing dates. In addi-
tion, measurement in this environment was performed less 
regularly. Despite the good correlation among environments, 
we analyzed each one independently to capture environment-
specific associations.

SNPs associated with the trait

Table 3 shows the number of associated SNPs in each model 
by environment. For analysis involving models that consider 
only additive effects (AAIS and AXX′), the number of associ-
ated SNPs ranges between two for model AAIS in environ-
ment 13EX01, for example, and eight for the same model 
in environment 13EX03. In the analysis with model AAIS,  
the number of SNPs associated with the trait is greater or 
equal to the number of SNPs in model AXX′ for all environ-
ments except 13EX01. For association analysis involving 
models other than additive ones (AD, FM, and FMI), the 
eBIC selection only retains a single SNP, despite the fact 
that the non-additive parts of variance are significant for 
some environments (Table S1). In total, among all models 
and all environments, 31 unique SNPs are associated with 
the flowering time.

The MLMM approach selects a single SNP, i.e., the most 
associated one, to explain the effect of the causal poly-
morphism in this genomic region. However, several SNPs 
could be in LD with the causal polymorphism and different 
sources of errors (phenotypic and genotypic), and missing 
data could lead to the selection of different SNPs to explain 
the same causal polymorphism in our different experiments. 

Therefore, we grouped the SNPs to define QTLs and refer 
to regions rather than specific positions. This grouping was 
achieved using linkage disequilibrium between SNPs and 
positions on the sunflower genomic reference sequence 
(Badouin et al. 2017).

Estimation of linkage disequilibrium (LD)

All SNP pairs with r2 (squared Pearson’s correlation) above 
0.155 were considered to be in linkage disequilibrium. This 
significance threshold was defined as the 99% quantile of the 
r2 distribution obtained for 10,000 randomly sampled pairs 
of independent SNPs.

We studied the linkage disequilibrium between the SNPs 
selected by eBIC for all models and environments. Figure 1 
illustrates (according to the physical positions of SNPs in 
the XRQ reference genome) only disequilibria greater than 
the significance threshold of 0.155. Eighteen SNPs of the 
31 SNPs selected by eBIC for all models and environments 
are in desequilibrium with another. Pairs of SNPs located 
on chromosome LG01, LG11, and LG16 are in strong LD. 
An LD block is located on chromosome LG09 (r2 between 
0.29 and 0.93). One SNP in disequilibrium with this group 
is itself located on chromosome LG07. These LDs corre-
spond either to long-range disequilibria that can be caused 
by imperfect positioning of contigs in the reference genome 
or to the limited size of our parental population. With 
the statistical risk at 1% (it should be reduced to take into 
account the multiplicity of LD tests between all pairs of 
discovered SNPs), we obtained a threshold of 0.155, which 
is slightly lower than the linkage disequilibrium thresholds 
used in other association studies on the sunflower [r2 = 
0.2 reported by Cadic et al. (2013) and Nambeesan et al. 
(2015)]. In total, this approach allowed us to build 13 associ-
ated regions (QTLs) for flowering time on 11 chromosomes.

QTL description

Groups of five or two SNPs in LD, together with single 
SNPs define the QTLs presented in Table 4. Figure 2 rep-
resents for each environment and for each model the posi-
tions of the detected SNPs. It is noteworthy that four of 
the five SNPs defining FT09.199 were obtained with non-
additive association models, and this QTL was detected on 
four of five environments. Similarly, the FT11.47 region 
was only detected by non-additive models, but only on one 
environment. It is the only QTL that would not have been 
detected with the conventionally used additive models. 
The FT15.102 region was detected by the model taking 
into account female and male effects, but mainly by both 
additive models in all environments (Fig. 2 and Table S2). 
The remaining ten QTLs were detected by additive models 

Table 3   Number of SNPs associated with flowering time selected by 
the forward approach and eBIC per environment and per model

The results for additive models with different kinships (A
AIS

 and AXX′) 
and non-additive models including dominance (AD), female and male 
effects (FM), and female, male, and their interaction effects (FMI) are 
presented in five environments (13EX01–13EX06)

13EX01 13EX02 13EX03 13EX04 13EX06

 AAIS 2 3 8 4 6
 AXX′ 4 3 5 4 2
 AD 1 1 1 1 1
 FM 1 1 1 1 1
 FMI 1 1 1 1 1
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only and tend to have higher p values than non-additive 
QTLs (Table 4 and Figure S3 to Figure S7). Among these 
ten QTLs, seven QTLs were specific to one environment 
and three were detected on two environments.

QTL effects

We characterized the effects of the SNPs detected in both 
the additive and non-additive models. Regarding QTLs 
detected by the additive models, the majority of SNPs have 
a clearly additive profile similar to Fig. 3a. However, for 
some additive SNPs, Tukey’s mean comparison test did 
not separate the genotypes in three significantly different 
classes, certainly because of a lack of power.

The majority of QTLs detected using non-additive mod-
els have a profile similar to Fig. 3b, with a dominant trend 
for one allele (reference allele of inbred line XRQ for the 
male in the example). Two significantly different classes 
in the mean comparison test, separating one homozygous 
genotype from the other genotypes, is expected for a domi-
nant allele. Figure 3c illustrates SNP profiles that are more 
difficult to interpret. Such profiles could be due to slight 

dominance of the XRQ allele in males or more probably 
to an additive SNP and insufficient power of Tukey’s test.

QTL annotations

For each QTL, the SNP with the lowest p-value in the model 
FMI was selected to represent the region. All redundant 
SNPs were excluded from the GWAS analysis, but in terms 
of the functionality of the gene, information on the location 
of redundant SNPs is important. SNPs redundant with SNPs 
that are representative of a QTL were therefore recovered 
and analyzed in the same way as other SNPs. The results of 
this analysis are presented in Table 5. All SNPs redundant 
with the referent SNP of FT09.199 are also located on chro-
mosome LG09 at positions very close to each other (within 
a 61 kb interval). Two genes are present in this region, but 
none is known to be involved in flowering. Four QTLs are 
also located in the identified genes on chromosomes LG05, 
LG13, LG16, and LG17. These genes do not correspond to 
a flowering-related gene. One SNP located on chromosome 
LG17 is redundant with the referent SNP of FT11.47 and 
another SNP also on chromosome LG11. This situation may 
be due to the imperfect quality of the genome.

Fig. 1   Heatmap of linkage 
disequilibria between SNPs 
associated with the flowering 
time, among all environments 
and models. Only linkage dis-
equilibria above the significance 
threshold of 0.155 were repre-
sented (18 SNPs of the 31 SNPs 
selected by eBIC for all models 
and environments are in linkage 
desequilibrium). Black lines 
highlight linkage disequilibria 
between SNPs on the same 
chromosome. The linkage group 
(LG) is indicated above a group 
of interest in black
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Few of the SNPs are located in genes, but three genes 
known to be involved in the flowering process are located 
on chromosome LG09. Figure 4 presents the positions of 
the associated markers and these three genes in FT09.199. 
GIBBERELLIC ACID INSENSITIVE (GAI, homologous 
to HanXRQChr09g0272901) is a gene involved in flower-
ing time (Wilson and Somerville 1995), whereas FLORI-
CAULA (FLO, homologous to HanXRQChr09g0273821) 
(Coen et al. 1990) and CAULIFLOWER (CAL, homolo-
gous to HanXRQChr09g0273361) (Bowman et al. 1993) 
are genes involved in flowering development. FT09.199 
consists of four SNPs very close together (within a 214 kb 
interval) and a more distant SNP (at 2 Mb down chromo-
some LG09). The most interesting gene based on its func-
tion, namely GAI, is the closest of the four SNPs. This 
region was further examined based on the p-values of all 
SNPs in it. Figure S8 represents the p-values for all SNPs 
of the FT09.199 region and the three genes involved in 
the flowering. The presented p-values were calculated in 
the environment and with the model where the SNP of 
interest was discovered in association. It can be seen that 
the most significant associations are found in the region 
of the first four SNPs. With the FMI model and for the 

environments 13EX03 and 13EX06, we can see the SNP 
with low p-values downstream, i.e., between the two CAL 
and FLO genes.

Discussion

In this study, we propose new GWAS models including 
non-additive effects. These models were developed to bet-
ter model the biological factors involved in sunflower trait 
variability. Indeed, the modeling of intra-locus effects with 
a dominance component can capture part of heterosis (Lar-
ièpe et al. 2012; Reif et al. 2012), a phenomenon usually 
observed in sunflower hybrids (Cheres et al. 2000). In addi-
tion, the modeling of differences in male and female allelic 
effects takes into account the two sunflower breeding groups, 
for which divergence between the maintainer and restorer 
germplasm has previously been observed by Gentzbittel 
et al. (1994). As in the common additive GWAS model, there 
is a one-to-one correspondence, in these models between a 
non-additive fixed effect and its random effect. A correct 
model to test each QTL is a model that has known all causal 
QTLs of the trait genetic architecture and their location in 

Table 4   List of QTLs 
associated with flowering time

For each QTL, the following information on the detected SNP is presented: chromosome (LG), position 
(bp), minor allele frequency (MAF), GWAS model: additive with different kinships (A

AIS
 and AXX′) and 

non-additive including dominance (AD), female and male effects (FM), and female, male and their interac-
tion effects (FMI), and p-values calculated in the FMI model, incorporating only the detected SNP. For 
each QTL composed of several SNPs, the SNP with the smallest p-value is highlighted in bold

QTL SNP LG Position MAF Models p value

FT09.199 ScaffXRQ8f0001036_42553 9 198,931,169 0.26 AD, FMI 1.84 ×10−11

ScaffXRQ8f0026401_16473 9 199,047,735 0.32 AD, FMI, FM 8.67 ×10−13

ScaffXRQ8f0079446_1603 9 199,131,966 0.33 AD, FMI 1.86 ×10−08

ScaffXRQ8f0007921_25083 9 199,145,681 0.29 AXX′ 6.14 ×10−09

ScaffXRQ8f0020380_5685 9 201,493,137 0.24 AD, FMI 3.57 ×10−09

FT11.47 ScaffXRQ8f0013797_23368 11 47,534,503 0.42 AD 4.16 ×10−07

ScaffXRQ8f0013797_23997 11 47,535,132 0.39 FM, FMI 3.62 ×10−07

FT16.167 ScaffXRQ8f0010376_19650 16 167,723,083 0.39 AXX′, AAIS 2.76 ×10−04

ScaffXRQ8f0032750_6184 16 167,689,531 0.42 AXX′ 6.74 ×10−02

FT01.98 ScaffXRQ8f0007580_39617 1 98,035,404 0.17 AXX′, AAIS 6.77 ×10−06

ScaffXRQ8f0022183_17128 1 91,634,676 0.21 AAIS 2.40 ×10−04

FT15.102 ScaffXRQ8f0000770_77572 15 102,863,872 0.26 AXX′, AAIS, FM 1.91 ×10−06

FT02.78 ScaffXRQ8f0070840_1738 2 78,884,560 0.11 AXX′, AAIS 3.55 ×10−06

FT17.184 ScaffXRQ8f0036751_6112 17 184,825,665 0.18 AXX′, AAIS 4.64 ×10−03

FT05.208 ScaffXRQ8f0006894_28213 5 208,225,977 0.21 AAIS 1.42 ×10−01

FT04.144 ScaffXRQ8f0065196_696 4 144,357,532 0.36 AAIS 1.34 ×10−04

FT07.34 ScaffXRQ8f0001757_13384 7 34,580,910 0.11 AAIS 4.15 ×10−02

FT17.13 ScaffXRQ8f0006633_33043 17 13,852,550 0.39 AXX′ 3.10 ×10−02

FT04.74 ScaffXRQ8f0021459_19344 4 74,011,326 0.19 AXX′ 1.65 ×10−03

FT13.190 ScaffXRQ8f0023382_14615 13 190,953,163 0.12 AXX′ 8.91 ×10−01
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the genome. Because the QTL locations are unknown, this 
perfect model is unknown, and a model assuming a QTL 
effect on each marker is considered. However, the number 
of parameters in this model is then larger than the num-
ber of observed individuals, and to address this issue the 

solution is to assume a normal distribution for the marker 
effects in linkage equilibrium with the tested locus �. Then, 
as in the equivalence between the rrBLUP method (Endel-
man 2011) and the GBLUP method (VanRaden 2008), it 
leads to as many fixed effects as random effects, depending 
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Fig. 3   Effects of SNPs on flowering time for the four genotypic 
classes. a Example of an additive SNP. b SNP discovered with non-
additive model and with a dominant trend for one allele. c SNP dis-
covered with non-additive model and with an additive trend. 00 and 
11 correspond to homozygous genotypes, 10 to the heterozygous gen-
otype that received allele 1 from the female parent, and 01 to the het-

erozygous genotype that received allele 1 from the male parent. Each 
symbol indicates membership in a specific class in Tukey’s mean 
comparison test with a 5% statistical risk. Two superimposed symbols 
indicate that the Tukey’s mean comparison test failed to determine a 
single class for the genotype
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on the non-additive model used. The computational burden 
required for computing kinship matrices at each location � 
is then lessened by using the same kinship matrices for all 
�. As shown by Rincent (2014), having different kinship 
matrices improves the power of GWAS analyses, since it 
avoids absorbing a part of the signal roughly proportional 

to the linkage disequilibrium in the region of � when testing 
at location �.

The additive model taking into account the phase in the 
kinship’s computation does not improve the power of the 
QTL detection, compared to the additive model convention-
ally used. The difference between the two additive models 

Table 5   Genes underlying 
QTLs associated with flowering 
time

One SNP per QTL was selected, and its redundancy, if applicable, was also analyzed. The table describes 
QTL name (QTL), chromosome (LG), position (Position), closest gene, location with respect to the closest 
gene (In.Out), and distance to the start of the closest gene (DistToStart)

QTL LG Position Nearest gene In.Out DistToStart

FT01.98 1 98,035,404 HanXRQChr01g0016411 Upstream −11,986
FT02.78 2 78,884,560 HanXRQChr02g0042521 Downstream 295,211
FT04.74 4 74,011,326 HanXRQChr04g0107731 Upstream −93,659
FT04.144 4 144,357,532 HanXRQChr04g0118011 Downstream 129,288
FT05.208 5 208,225,977 HanXRQChr05g0160261 In 81
FT07.34 7 34,580,910 HanXRQChr07g0191191 Upstream −651
FT09.199 9 199,047,452 HanXRQChr09g0272971 In 18,574

9 199,047,477 HanXRQChr09g0272971 In 18,599
9 199,047,735 HanXRQChr09g0272971 In 18,857
9 199,071,389 HanXRQChr09g0272971 In 42,511
9 199,109,369 HanXRQChr09g0272981 In 5822

FT11.47 11 47,260,646 HanXRQChr11g0330951 Upstream −81,868
11 47,535,132 HanXRQChr11g0330981 Upstream −82,521

FT13.190 13 190,953,163 HanXRQChr13g0424551 In 3214
FT15.102 15 102,863,872 HanXRQChr15g0487841 Upstream −44,505
FT16.167 16 167,723,083 HanXRQChr16g0528041 In 31,859
FT11.47 17 175,837,528 HanXRQChr17g0564111 Upstream −5234
FT17.13 17 13,852,550 HanXRQChr17g0537591 In 4839
FT17.184 17 184,825,665 HanXRQChr17g0565411 Upstream −13,145

Fig. 4   Locations of genes 
involved in the flowering 
process, compared to locations 
of SNPs of FT09.199 located in 
the same region of the chromo-
some LG09. Gene and SNP 
positions are indicated in bold 
and normal font, respectively. 
For genes, the two positions 
correspond to the start and end 
of the gene
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lies in the kinship matrix computation: one is the usual (Van-
Raden 2008) matrix and the other an AIS-like matrix that 
takes into account known marker phases in hybrids. Both 
models detected the greatest number of associated SNPs and 
of QTLs in common. Indeed, five QTLs are found associated 
using both additive models and, in particular, FT15.102 was 
detected in all environments. The QTLs that differ between 
these models have higher p values and therefore are less 
strongly associated with the phenotype. Overall, the two 
additive models yield coherent results, especially on strongly 
associated QTLs. Strandén and Christensen (2011) demon-
strated that the use of a VanRaden (2008) or AIS relatedness 
matrix gives the same prediction of additive genetic values 
in the GBLUP genomic selection model, and in particular 
proved that both matrices give the same REML estimates of 
random variance components. Therefore, the Wald tests per-
formed in the GWAS forward approach are identical for the 
two relatedness matrices. Although we used more informa-
tion in our AIS-like matrix because we integrated the known 
marker phases, we did not obtain a power improvement in 
QTL detection, as could be expected.

One QTL, FT09.199, is the most interesting region in our 
study. FT09.199 was found to be associated with flowering 
time with four models out of five. This region is located on 
chromosome LG09, and this chromosome was also high-
lighted by Cadic et al. (2013). In their study, the region is 
found to be associated in six different environments (i.e., 
combinations Sites × Years). In addition, three genes [GAI 
(Wilson and Somerville 1995), FLORICAULA (Coen et al. 
1990), and CAULIFLOWER (Bowman et al. 1993)] known 
to be involved in flower development are also located on 
chromosome LG09. It is surprising that none of our results 
falls exactly into these three genes, but FT09.199 is near 
GAI. It is likely that the causal polymorphism could be 
close and in strong linkage disequilibrium with the associ-
ated SNPs without being located exactly at the same posi-
tion. A QTL confidence interval around FT09.199 would be 
useful to estimate the region where the causal locus should 
be located. Hayes (2013) proposed a method based on the 
difference of QTL positions within the region of interest 
detected in two random subsamples; this method could be 
applied to our QTL.

The most interesting region on LG09 was emphasized 
by non-additive models. Indeed, three models were tested 
to provide additional association to GWAS results usually 
based on additive effect (Yu et al. 2006; Segura et al. 2012). 
This interesting region is indicated by five SNPs, among 
which a single SNP was detected by an additive model. 
The non-additive modeling results increase the reliability 
of this region through the identification of SNPs very close 
to the SNP identified using an additive model. Moreover, 
four SNPs out of five were detected with the FMI model, 
which is the most complex. The usefulness of non-additive 

models is also illustrated by FT11.47 (on chromosome 
LG11), since this QTL was only detected with non-additive 
models despite having a strong impact on flowering time, 
as illustrated by its effects and p-values in the FMI model. 
In addition, models AD and FMI, which include intra-locus 
interaction by modeling dominance or parental allelic inter-
action, both found the most strongly associated regions indi-
cated by FT09.199 and FT11.47. The first exhibits a clear 
deviation from an additive behavior, in contrast to the latter, 
for which an additive behavior cannot be rejected. FT11.47 
was not found by additive models, because there is link-
age disequilibrium between it and the strong FT16.167 on 
LG16 detected by additive models. In our forward detection 
procedure of the additive models, this phenomenon led to 
the addition of FT16.167 first, which likely decreased the 
signal of FT11.47 and prevented its detection. Performing 
GWAS with different models allowed us to increase both 
the number of associated QTLs and the confidence in the 
detected regions. Non-additive models can highlight regions 
with non-additive behavior even for a trait such as flower-
ing time, which is notably genetically additive (Miller et al. 
1980; Roath et al. 1982).

The extended BIC criterion used to select associated 
SNPs has limitations. In our procedure, the eBIC used 
to choose non-additive models had two major drawbacks 
that certainly decreased the number of QTLs detected by 
these models and thus limited their usefulness. eBIC is an 
extension of BIC suitable for handling the so-called “high-
dimension issue” resulting from fewer observations than 
possible regressors to be put in the model. A penalization 
term that depends on the number of possible models formed 
with a given number of regressors is added to BIC in the 
eBIC calculation (Chen and Chen 2008). eBIC was estab-
lished for additive regressor models, and therefore we had 
to adapt it to the non-additive models AD, FM, and FMI. 
We generalized eBIC to non-additive models by computing 
the penalization term as if all possible models formed with 
a given number of regressors were analyzed. Nonetheless, 
it is clear that all possible models are not analyzed during 
the forward selection process. Indeed, each SNP selected 
by the algorithm is added to the current model with all its 
modeling effects. The dominant part of an SNP cannot be 
added without the additive part, if we take the AD model as 
an example. The number of possible models should have 
been reduced to take this constraint into account and the 
penalization term is therefore too high and not completely 
suitable for non-additive models. Furthermore, we calcu-
lated a criterion to make a model choice among models that 
do not share the same number of fixed effects (a new SNP 
is incorporated at each iteration of the forward algorithm). 
The restricted maximum likelihood (REML) used for this 
calculation [on the basis of the calculation of Segura et al. 
(2012)] is not the correct likelihood to use. The maximum 
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likelihood (ML) should have been used instead of REML. 
Moreover, Gurka (2006) demonstrated that REML should 
incorporate the fixed effects using 1∕2 log det (X′X), where 
X is the fixed effect design matrix, and showed by simula-
tions that this added term in REML computation gave simi-
lar or better results than ML. The stringency of eBIC due to 
a too high penalization term and the absence of the term due 
to fixed effects may both explain why only a single SNP was 
selected by the non-additive models for each environment. 
Nevertheless, as it is more acceptable to exclude too many 
false negatives than to select too many false positives, we 
kept the eBIC for our model choice.

The study of the significant differences between geno-
typic effects highlighted FT09.199 as far from an additive 
profile, with homozygotes for the variant allele that flower 
earlier than the other genotypes. Eighty degree days separate 
variant homozygotes from XRQ allele homozygotes, i.e., 
a difference of nearly 6 days. This effect is very important 
regarding the observed variability of approximately 15 days 
in the multi-environment trials. Flowering time is an impor-
tant agronomic trait that impacts crop yield, ecological fit-
ness including adaptation to abiotic factors, and interaction 
with pollinators. Knowledge of the relative lengths of the 
period from sowing to flowering is particularly important 
for breeding yield (Tuteja 2012), as late hybrids accumulate 
more biomass than early hybrids, and this advantage can 
lead to a higher yield (Cadic 2014). For a maximal dry mat-
ter yield, all parts of the plant need to develop. This mor-
phology corresponds to late-flowering genotypes (Gallais 
et al. 1983). The aim of breeders is to find genotypes with 
the best performance; so regarding the selection of sunflower 
lines, studies tend to select late lines. Precocity is linked 
to yield, and therefore the variability of the effect of SNP 
associated with the flowering time for different genotypes 
is of interest.

No clear difference between models differentiating female 
and male effects (FM and FMI models) and the other mod-
els was observed. The two breeding pools of sunflower 
(maintainers and restorers of male sterility) have undergone 
neither the same trait improvement nor the same selection 
pressure (Mandel et al. 2011). It is therefore expected that 
modeling different effects for each parental allele, as in FM 
and  FMI models, will yield different results from other 
models. However, this expected difference in QTL detec-
tion is not obvious in our study, and only a single QTL was 
detected exclusively by the FM and FMI models. A lack of 
differentiation between the two breeding pools in this study 
compared to Mandel et al. (2011) or the too small num-
ber of non-additive QTLs detected because of eBIC could 
explain this result. Furthermore, even if there are highly dif-
ferentiated regions between pools, they may not be involved 
in flowering time variability, as branching and restorer of 

cytoplasmic male sterility are located on chromosomes 
LG10 and LG13.

Intra-environment GWAS in a multi-environment trial 
allows to reveal generalist QTLs whose action does not 
depend on the environment. In our study, we detected 
five generalist QTLs revealed despite the disturbance in 
observed hybrid panel and in trait variation due to different 
experimental sources (location, climate, soil, cultural prac-
tices, and biotic stress). We also detected height QTLs, 
found associated in only one environment. These two 
types of QTLs are usually observed in multi-environment 
GWAS, as in sunflower (Cadic et al. 2013) or in Brassica 
napus (Li et al. 2015); however, it is difficult to claim that 
QTL found in a single environment is environment spe-
cific, as power of GWAS could be different from an envi-
ronment to another, thus leading to detection of less strong 
association signal. Naturally, the confidence is greater for 
generalist QTLs, and a region indicated by several SNPs, 
when they exist, could help to define a confidence region 
for the underlying causal locus.

Non-additive effects, including dominance or overdomi-
nance, have been suggested as underlying heterosis. The 
modeling of non-additive effects in our models captured 
part of the heterosis observed in hybrids. This study shows 
the added value of non-additive modeling of allelic effects, 
and thus the importance of taking into account heterosis, 
to identify genomic regions controlling traits of interest 
for sunflower hybrids.
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