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Abstract

Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for 

the transcription factor binding (TFBS) site classification task. However, it remains unclear how 

these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind 

to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo 

Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence 

patterns from deep neural network models for TFBS classification. We demonstrate how to 

visualize and understand three important DNN models: convolutional, recurrent, and 

convolutional-recurrent networks. Our first visualization method is finding a test sequence’s 

saliency map which uses first-order derivatives to describe the importance of each nucleotide in 

making the final prediction. Second, considering recurrent models make predictions in a temporal 

manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, 

indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific 

visualization strategy finds the optimal input sequence for a given TFBS positive class via 

stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent 

architecture performs the best among the three architectures. The visualization techniques indicate 

that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them.

1 Introduction

In recent years, there has been an explosion of deep learning models which have lead to 

groundbreaking results in many fields such as computer vision[13], natural language 

processing[25], and computational biology [2, 19, 27, 11, 14, 22]. However, although these 

models have proven to be very accurate, they have widely been viewed as “black boxes” due 

to their complexity, making them hard to understand. This is particularly unfavorable in the 

biomedical domain, where understanding a model’s predictions is extremely important for 

doctors and researchers trying to use the model.

Aiming to open up the black box, we present the “Deep Motif Dashboard1” (DeMo 

Dashboard), to understand the inner workings of deep neural network models for a genomic 

sequence classification task. We do this by introducing a suite of different neural models and 

1Dashboard normally refers to a user interface that gives a current summary, usually in graphic, easy-to-read form, of key information 
relating to performance[1].
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visualization strategies to see which ones perform the best and understand how they make 

their predictions.2

Understanding genetic sequences is one of the fundamental tasks of health advancements 

due to the high correlation of genes with diseases and drugs. An important problem within 

genetic sequence understanding is related to transcription factors (TFs), which are regulatory 

proteins that bind to DNA. Each different TF binds to specific transcription factor binding 

sites (TFBSs) on the genome to regulate cell machinery. Given an input DNA sequence, 

classifying whether or not there is a binding site for a particular TF is a core task of 

bioinformatics[24].

For our task, we follow a two step approach. First, given a particular TF of interest and a 

dataset containing samples of positive and negative TFBS sequences, we construct three 

deep learning architectures to classify the sequences. Section 2 introduces the three different 

DNN structures that we use: a convolutional neural network (CNN), a recurrent neural 

network (RNN), and a convolutional-recurrent neural network (CNN-RNN).

Once we have our trained models to predict binding sites, the second step of our approach is 

to understand why the models perform the way they do. As explained in section 3, we do 

this by introducing three different visualization strategies for interpreting the models:

1. Measuring nucleotide importance with Saliency Maps.

2. Measuring critical sequence positions for the classifier using Temporal Output 
Scores.

3. Generating class-specific motif patterns with Class Optimization.

We test and evaluate our models and visualization strategies on a large scale benchmark 

TFBS dataset. Section 4 provides experimental results for understanding and visualizing the 

three DNN architectures. We find that the CNN-RNN outperforms the other models. From 

the visualizations, we observe that the CNN-RNN tends to focus its predictions on the 

traditional motifs, as well as modeling long range dependencies among motifs.

2 Deep Neural Models for TFBS Classification

TFBS Classification

Chromatin immunoprecipitation (ChIP-seq) technologies and databases such as ENCODE 

[5] have made binding site locations available for hundreds of different TFs. Despite these 

advancements, there are two major drawbacks: (1) ChIP-seq experiments are slow and 

expensive, (2) although ChIP-seq experiments can find the binding site locations, they 

cannot find patterns that are common across all of the positive binding sites which can give 

insight as to why TFs bind to those locations. Thus, there is a need for large scale 

computational methods that can not only make accurate binding site classifications, but also 

identify and understand patterns that influence the binding site locations.

2We implemented our model in Torch, and it is made available at deepmotif.org
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In order to computationally predict TFBSs on a DNA sequence, researchers initially used 

consensus sequences and position weight matrices to match against a test sequence [24]. 

Simple neural network classifiers were then proposed to differentiate positive and negative 

binding sites, but did not show significant improvements over the weight matrix matching 

methods [9]. Later, SVM techniques outperformed the generative methods by using k-mer 

features [6, 20], but string kernel based SVM systems are limited by expensive 

computational cost proportional to the number of training and testing sequences. Most 

recently, convolutional neural network models have shown state-of-the-art results on the 

TFBS task and are scalable to a large number of genomic sequences [2, 14], but it remains 

unclear which neural architectures work best.

Deep Neural Networks for TFBSs

To find which neural models work the best on the TFBS classification task, we examine 

several different types of models. Inspired by their success across different fields, we explore 

variations of two popular deep learning architectures: convolutional neural networks 

(CNNs), and recurrent neural networks (RNNs). CNNs have dominated the field of 

computer vision in recent years, obtaining state-of-the-art results in many tasks due to their 

ability to automatically extract translation-invariant features. On the other hand, RNNs have 

emerged as one of the most powerful models for sequential data tasks such as natural 

language processing due to their ability to learn long range dependencies. Specifically, on 

the TFBS prediction task, we explore three distinct architectures: (1) CNN, (2) RNN, and (3) 

a combination of the two, CNN-RNN. Figure 1 shows an overview of the models.

End-to-end Deep Framework

While the body of the three architectures we use differ, each implemented model follows a 

similar end-to-end framework which we use to easily compare and contrast results. We use 

the raw nucleotide characters (A,C,G,T) as inputs, where each character is converted into a 

one-hot encoding (a binary vector with the matching character entry being a 1 and the rest as 

0s). This encoding matrix is used as the input to a convolutional, recurrent, or convolutional-

recurrent module that each outputs a vector of fixed dimension. The output vector of each 

model is linearly fed to a softmax function as the last layer which learns the mapping from 

the hidden space to the output class label space C ∈ [+1, −1]. The final output is a 

probability indicating whether an input is a positive or a negative binding site (binary 

classification task). The parameters of the network are trained end-to-end by minimizing the 

negative log-likelihood over the training set. The minimization of the loss function is 

obtained via the stochastic gradient algorithm Adam[12], with a mini-batch size of 256 

sequences. We use dropout [23] as a regularization method for each model.

2.1 Convolutional Neural Network (CNN)

In genomic sequences, it is believed that regulatory mechanisms such as transcription factor 

binding are influenced by local sequential patterns known as “motifs”. Motifs can be viewed 

as the temporal equivalent of spatial patterns in images such as eyes on a face, which is what 

CNNs are able to automatically learn and achieve state-of-the art results on computer vision 

tasks. As a result, a temporal convolutional neural network is a fitting model to 

automatically extract these motifs. A temporal convolution with filter (or kernel) size k takes 
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an input data matrix X of size T × nin, with length T and input layer size nin, and outputs a 

matrix Z of size T × nout, where nout is the output layer size. Specifically, convolution(X) = 

Z, where

(1)

where W and B are the trainable parameters of the convolution filter, and σ is a function 

enforcing element-wise nonlinearity. We use rectified linear units (ReLU) as the 

nonlinearity:

(2)

After the convolution and nonlinearity, CNNs typically use maxpooling, which is a 

dimension reduction technique to provide translation invariance and to extract higher level 

features from a wider range of the input sequence. Temporal maxpooling on a matrix Z with 

a pooling size of m results in output matrix Y. Formally, maxpool(Z) = Y, where

(3)

Our CNN implementation involves a progression of convolution, nonlinearity, and 

maxpooling. This is represented as one convolutional layer in the network, and we test up to 

4 layer deep CNNs. The final layer involves a maxpool across the entire temporal domain so 

that we have a fixed-size vector which can be fed into a softmax classifier.

Figure 1 (a) shows our CNN model with two convolutional layers. The input one-hot 

encoded matrix is convolved with several filters (not shown) and fed through a ReLU 

nonlinearity to produce a matrix of convolution activations. We then perform a maxpool on 

the activation matrix. The output of the first maxpool is fed through another convolution, 

ReLU, and maxpooled across the entire length resulting in a vector. This vector is then 

transposed and fed through a linear and softmax layer for classification.

2.2 Recurrent Neural Network (RNN)

Designed to handle sequential data, Recurrent neural networks (RNNs) have become the 

main neural model for tasks such as natural language understanding. The key advantage of 

RNNs over CNNs is that they are able to find long range patterns in the data which are 

highly dependent on the ordering of the sequence for the prediction task.

Given an input matrix X of size T × nin, an RNN produces matrix H of size T × d, where d is 

the RNN embedding size. At each timestep t, an RNN takes an input column vector xt ∈ 
ℝnin and the previous hidden state vector ht−1 ∈ ℝd and produces the next hidden state ht by 

applying the following recursive operation:
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(4)

where W, U, b are the trainable parameters of the model, and σ is an element-wise 

nonlinearity. Due to their recursive nature, RNNs can model the full conditional distribution 

of any sequential data and find dependencies over time, where each position in a sequence is 

a timestep on an imaginary time coordinate running in a certain direction. To handle the 

“vanishing gradients” problem of training basic RNNs on long sequences, Hochreiter and 

Schmidhuber [8] proposed an RNN variant called the Long Short-term Memory (LSTM) 

network (for simplicity, we refer to LSTMs as RNNs in this paper), which can handle long 

term dependencies by using gating functions. These gates can control when information is 

written to, read from, and forgotten. Specifically, LSTM “cells” take inputs xt, ht−1, and ct−1, 

and produce ht, and ct:

where σ(·), tanh(·), and ⊙ are element-wise sigmoid, hyperbolic tangent, and multiplication 

functions, respectively. it, ft, and ot are the input, forget, and output gates, respectively.

RNNs produce an output vector ht at each timestep t of the input sequence. In order to use 

them on a classification task, we take the mean of all vectors ht, and use the mean vector 

hmean ∈ ℝd as input to the softmax layer.

Since there is no innate direction in genomic sequences, we use a bi-directional LSTM as 

our RNN model. In the bi-directional LSTM, the input sequence gets fed through two LSTM 

networks, one in each direction, and then the output vectors of each direction get 

concatenated together in the temporal direction and fed through a linear classifier.
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Figure 1 (b) shows our RNN model. The input one-hot encoded matrix is fed through an 

LSTM in both the forward and backward direction which each produce a matrix of column 

vectors representing the LSTM output embedding at each timestep. These vectors are then 

averaged to create one vector for each direction representing the LSTM output. The forward 

and backward output vectors are then concatenated and fed to the softmax for classification.

2.3 Convolutional-Recurrent Network (CNN-RNN)

Considering convolutional networks are designed to extract motifs, and recurrent networks 

are designed to extract temporal features, we implement a combination of the two in order to 

find temporal patterns between the motifs. Given an input matrix X ∈ ℝT × nin, the output of 

the CNN is Z ∈ ℝT × nout. Each column vector of Z gets fed into the RNN one at a time in 

the same way that the one-hot encoded vectors get input to the regular RNN model. The 

resulting output of the RNN H ∈ ℝT × d, where d is the LSTM embedding size, is then 

averaged across the temporal domain (in the same way as the regular RNN), and fed to a 

softmax classifier.

Figure 1 (c) shows our CNN-RNN model. The input one-hot encoded matrix is fed through 

one layer of convolution to produce a convolution activation matrix. This matrix is then 

input to the LSTM, as done in the regular RNN model from the original one-hot matrix. The 

output of the LSTM is averaged, concatenated, and fed to the softmax, similar to the RNN.

3 Visualizing and Understanding Deep Models

The previous section explained the deep models we use for the TFBS classification task, 

where we can evaluate which models perform the best. While making accurate predictions is 

important in biomedical tasks, it is equally important to understand why models make their 

predictions. Accurate, but uninterpretable models are often very slow to emerge in practice 

due to the inability to understand their predictions, making biomedical domain experts 

reluctant to use them. Consequently, we aim to obtain a better understanding of why certain 

models work better than others, and investigate how they make their predictions by 

introducing several visualization techniques. The proposed DeMo Dashboard allows us 

visualize and understand DNNs in three different ways: Saliency Maps, Temporal Output 

Scores, and Class Optimizations.

3.1 Saliency Maps

For a certain DNA sequence and a model’s classification, a logical question may be: “which 

which parts of the sequence are most influential for the classification?” To do this, we seek 

to visualize the influence of each position (i.e. nucleotide) on the prediction. Our approach is 

similar to the methods used on images by Simonyan et al.[21] and Baehrens et al.[4]. Given 

a sequence X0 of length |X0|, and class c ∈ C, a DNN model provides a score function 

Sc(X0). We rank the nucleotides of X0 based on their influence on the score Sc(X0). Since 

Sc(X) is a highly non-linear function of X with deep neural nets, it is hard to directly see the 

influence of each nucleotide of X on Sc. Mathematically, around the point X0, Sc(X) can be 

approximated by a linear function by computing the first-order Taylor expansion:
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(5)

where w is the derivative of Sc with respect to the sequence variable X at the point X0:

(6)

This derivative is simply one step of backpropagation in the DNN model, and is therefore 

easy to compute. We do a pointwise multiplication of the saliency map with the one-hot 

encoded sequence to get the derivative values for the actual nucleotide characters of the 

sequence (A,T,C, or G) so we can see the influence of the character at each position on the 

output score. Finally, we take the element-wise magnitude of the resulting derivative vector 

to visualize how important each character is regardless of derivative direction. We call the 

resulting vector a “saliency map[21]” because it tells us which nucleotides need to be 

changed the least in order to affect the class score the most. As we can see from equation 5, 

the saliency map is simply a weighted sum of the input nucleotides, where the each weight, 

wi, indicates the influence of that nucleotide position on the output score.

3.2 Temporal Output Scores

Since DNA is sequential (i.e. can be read in a certain direction), it can be insightful to 

visualize the output scores at each timestep (position) of a sequence, which we call the 

temporal output scores. Here we assume an imaginary time direction running from left to 

right on a given sequence, so each position in the sequence is a timestep in such an imagined 

time coordinate. In other words, we check the RNN’s prediction scores when we vary the 

input of the RNN. The input series is constructed by using subsequences of an input X 
running along the imaginary time coordinate, where the subsequences start from just the first 

nucleotide (position), and ends with the entire sequence X. This way we can see exactly 

where in the sequence the recurrent model changes its decision from negative to positive, or 

vice versa. Since our recurrent models are bi-directional, we also use the same technique on 

the reverse sequence. CNNs process the entire sequence at once, thus we can’t view its 

output as a temporal sequence, so we use this visualization on just the RNN and CNN-RNN.

3.3 Class Optimization

The previous two visualization methods listed are representative of a specific testing sample 

(i.e. sequence-specific). Now we introduce an approach to extract a class-specific 
visualization for a DNN model, where we attempt to find the best sequence which 

maximizes the probability of a positive TFBS, which we call class optimization. Formally, 

we optimize the following equation where S+(X) is the probability (or score) of an input 

sequence X (matrix in our case) being a positive TFBS computed by the softmax equation of 

our trained DNN model for a specific TF:
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(7)

where λ is the regularization parameter. We find a locally optimal X through stochastic 

gradient descent, where the optimization is with respect to the input sequence. In this 

optimization, the model weights remain unchanged. This is similar to the methods used in 

Simonyan et al.[21] to optimize toward a specific image class. This visualization method 

depicts the notion of a positive TFBS class for a particular TF and is not specific to any test 

sequence.

3.4 End-to-end Automatic Motif Extraction from the Dashboard

Our three proposed visualization techniques allow us to manually inspect how the models 

make their predictions. In order to automatically find patterns from the techniques, we also 

propose methods to extract motifs, or consensus subsequences that represent the positive 

binding sites. We extract motifs from each of our three visualization methods in the 

following ways: (1) From each positive test sequence (thus, 500 total for each TF dataset) 

we extract a motif from the saliency map by selecting the contiguous length-9 subsequence 

that achieves the highest sum of contiguous length-9 saliency map values. (2) For each 

positive test sequence, we extract a motif from the temporal output scores by selecting the 

length-9 subsequence that shows the strongest score change from negative to positive output 

score. (3) For each different TF, we can directly use the class-optimized sequence as a motif.

3.5 Connecting to Previous Studies

Neural networks have produced state-of-the-art results on several important benchmark tasks 

related to genomic sequence classification [2, 27, 19], making them a good candidate to use. 

However, why these models work well has been poorly understood. Recent works have 

attempted to uncover the properties of these models, in which most of the work has been 

done on understanding image classifications using convolutional neural networks. Zeiler and 

Fergus [26] used a “deconvolution” approach to map hidden layer representations back to 

the input space for a specific example, showing the features of the image which were 

important for classification. Simonyan et al.[21] explored a similar approach by using a first-

order Taylor expansion to linearly approximate the network and find the input features most 

relevant, and also tried optimizing image classes. Many similar techniques later followed to 

understand convolutional models [17, 3]. Most importantly, researchers have found that 

CNNs are able to extract layers of translational-invariant feature maps, which may indicate 

why CNNs have been successfully used in genomic sequence predictions which are believed 

to be triggered by motifs.

On text-based tasks, there have been fewer visualization studies for DNNs. Karpathy et al.

[10] explored the interpretability of RNNs for language modeling and found that there exist 

interpretable neurons which are able to focus on certain language structure such as quotes. 

Li et al.[15] visualized how RNNs achieve compositionality in natural language for 

sentiment analysis by visualizing RNN embedding vectors as well as measuring the 

influence of input words on classification. Both studies show examples that can be validated 
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by our understanding of natural language linguistics. Contrarily, we are interested in 

understanding DNA “linguistics” given DNNs (the opposite direction of Karpathy et al.[10] 

and Li et al.[15]).

The main difference between our work and previous works on images and natural language 

is that instead of trying to understand the DNNs given human understanding of such human 

perception tasks, we attempt to uncover critical signals in DNA sequences given our 

understanding of DNNs.

For TFBS prediction, Alipanahi et al.[2] was the first to implement a visualization method 

on a DNN model. They visualize their CNN model by extracting motifs based on the input 

subsequence corresponding to the strongest activation location for each convolutional filter 

(which we call convolution activation). Since they only have one convolutional layer, it is 

trivial to map the activations back, but this method does not work as well with deeper 

models. We attempted this technique on our models and found that our approach using 

saliency maps outperforms it in finding motif patterns (details in section 4). Quang and Xie 

[19] use the same visualization method on their convolutional-recurrent model for 

noncoding variant prediction.

4 Experiments and Results

4.1 Experimental Setup

Dataset—In order to evaluate our DNN models and visualizations, we train and test on the 

108 K562 cell ENCODE ChIP-Seq TF datasets used in Alipanahi et al.[2]. Each TF dataset 

has an average of 30,819 training sequences (with an even positive/negative split), and each 

sequence consists of 101 DNA-base characters (A,C,G,T). Every dataset has 1,000 testing 

sequences (with an even positive/negative split). Positive sequences are extracted from the 

hg19 genome centered at the reported ChIP-Seq peak. Negative sequences are generated by 

dinucleotide-preserving shuffle of the positive sequences. Due to the separate train/test data 

for each TF, we train a separate model for each individual TF dataset.

Variations of DNN Models—We implement several variations of each DNN architecture 

by varying hyperparameters. Table 1 shows the different hyperparameters in each 

architecture. We trained many different hyperparameters for each architecture, but we show 

the best performing model for each type, surrounded by a larger and smaller version to show 

that it isn’t underfitting or overfitting.

Baselines—We use the “MEME-ChIP [16] sum” results from Alipanahi et al.[2] as one 

prediction performance baseline. These results are from applying MEME-ChIP to the top 

500 positive training sequences, deriving five PWMs, and scoring test sequences using the 

sum of scores using all five PWMs. We also compare against the CNN model proposed in 

Alipanahi et al.[2]. To evaluate motif extraction, we compare against the “convolution 

activation” method used in Alipanahi et al.[2] and Quang and Xie [19], where we map the 

strongest first layer convolution filter activation back to the input sequence to find the most 

influential length-9 subsequence.
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4.2 TFBS Prediction Performance of DNN Models

Table 2 shows the mean area under the ROC curve (AUC) scores for each of the tested 

models (from Table 1). As expected, the CNN models outperform the standard RNN models. 

This validates our hypothesis that positive binding sites are mainly triggered by local 

patterns or “motifs” that CNNs can easily find. Interestingly, the CNN-RNN achieves the 

best performance among the three deep architectures. To check the statistical significance of 

such comparisons, we apply a pairwise t-test using the AUC scores for each TF and report 

the two tailed p-values in Table 3. We apply the t-test on each of the best performing (based 

on AUC) models for each model type. All deep models are significantly better than the 

MEME baseline. The CNN is significantly better than the RNN and the CNN-RNN is 

significantly better than the CNN. In order to understand why the CNN-RNN performs the 

best, we turn to the dashboard visualizations.

4.3 Understanding DNNs Using the DeMo Dashboard

To evaluate the dashboard visualization methods, we first manually inspect the dashboard 

visualizations to look for interpretable signals. Figure 2 shows examples of the DeMo 

Dashboard for three different TFs and positive TFBS sequences. We apply the visualizations 

on the best performing models of each of the three DNN architectures. Each dashboard 

snapshot is for a specific TF and contains (1) JASPAR[18] motifs for that TF, which are the 

“gold standard” motifs generated by biomedical researchers, (2) the positive TFBS class-

optimized sequence for each architecture (for the given TF of interest), (3) the positive 

TFBS test sequence of interest, where the JASPAR motifs in the test sequences are 

highlighted using a pink box, (4) the saliency map from each DNN model on the test 

sequence, and (5) forward and backward temporal output scores from the recurrent 

architectures on the test sequence. In the saliency maps, the more red a position is, the more 

influential it is for the prediction. In the temporal outputs, blue indicates a negative TFBS 

prediction while red indicates positive. The saliency map and temporal output visualizations 

are on the same positive test sequence (as shown twice). The numbers next to the model 

names in the saliency map section indicate the score outputs of that DNN model on the 

specified test sequence.

Saliency Maps (middle section of dashboard)—By visual inspection, we can see 

from the saliency maps that CNNs tend to focus on short contiguous subsequences when 

predicting positive bindings. In other words, CNNs clearly model “motifs” that are the most 

influential for prediction. The saliency maps of RNNs tend to be spread out more across the 

entire sequence, indicating that they focus on all nucleotides together, and infer relationships 

among them. The CNN-RNNs have strong saliency map values around motifs, but we can 

also see that there are other nucleotides further away from the motifs that are influential for 

the model’s prediction. For example, the CNN-RNN model is 99% confident in its GATA1 

TFBS prediction, but the prediction is also influenced by nucleotides outside the motif. In 

the MAFK saliency maps, we can see that the CNN-RNN and RNN focus on a very wide 

range of nucleotides to make their predictions, and the RNN doesn’t even focus on the 

known JASPAR motif to make its high confidence prediction.

Lanchantin et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Temporal Output Scores (bottom section of dashboard)—For most of the 

sequences that we tested, the positions that trigger the model to switch from a negative 

TFBS prediction to positive are near the JASPAR motifs. We did not observe clear 

differences between the forward and backward temporal output patterns.

In certain cases, it’s interesting to look at the temporal output scores and saliency maps 

together. An important case study from our examples is the NFYB example, where the CNN 

and RNN perform poorly, but the CNN-RNN makes the correct prediction. We observe that 

the CNN-RNN is able to switch its classification from negative to positive, while the RNN 

never does. To understand why this may have happened, we can see from the saliency maps 

that the CNN-RNN focuses on two distinct regions, one of which is where it flips its 

classification from negative to positive. However, the RNN doesn’t focus on either of the 

same areas, and may be the reason why it’s never able to classify it as a positive sequence. 

The fact that the CNN is not able to classify it as a positive sequence, but focuses on the 

same regions as the CNN-RNN (from the saliency map), may indicate that it is the temporal 

dependencies between these regions which influence the binding. In addition, the fact that 

there is no clear JASPAR motif in this sequence may show that the traditional motif 

approach is not always the best way to model TFBSs.

Class Optimization (top section of dashboard)—Class optimization on the CNN 

model generates concise representations which often resemble the known motifs for that 

particular TF. For the recurrent models, the TFBS positive optimizations are less clear, 

though some aspects stand out (like “AT” followed by “TC” in the GATA1 TF for the CNN-

RNN). We notice that for certain DNN models, their class optimized sequences optimize the 

reverse complement motif (e.g. NFYB CNN optimization). The class optimizations can be 

useful for getting a general idea of what triggers a positive TFBS for a certain TF.

Automatic Motif Extraction from Dashboard—In order to evaluate each DNN’s 

capability to automatically extract motifs, we compare the found motifs of each method 

(introduced in section 3.4) to the corresponding JASPAR motif, for the TF of interest. We do 

the comparison using the Tomtom[7] tool, which searches a query motif against a given 

motif database (and their reverse complements), and returns significant matches ranked by 

p-value indicating motif-motif similarity. Table 4 summarizes the motif matching results 

comparing visualization-derived motifs against known motifs in the JASPAR database. We 

are limited to a comparison of 57 out of our 108 TF datasets by the TFs which JASPAR has 

motifs for. We compare four visualization approaches: Saliency Map, Convolution 

Activation[2, 19], Temporal Output Scores and Class Optimizations. The first three 

techniques are sequence specific, therefore we report the average number of motif matches 

out of 500 positive sequences (then averaged across 57 TF datasets). The last technique is 

for a particular TFBS positive class.

We can see from Table 4 that across multiple visualization techniques, the CNN finds motifs 

the best, followed by the CNN-RNN and the RNN. However, since CNNs perform worse 

than CNN-RNNs by AUC scores, we hypothesize that this demonstrates that it is also 

important to model sequential interactions among motifs. In the CNN-RNN combination, 

CNN acts like a “motif finder” and the RNN finds dependencies among motifs. This analysis 
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shows that visualizing the DNN classifications can lead to a better understanding of DNNs 

for TFBSs.

5 Conclusions and Future Work

Deep neural networks (DNNs) have shown to be the most accurate models for TFBS 

classification. However, DNN models are hard to interpret, and thus their adaptation in 

practice is slow. In this work, we propose the Deep Motif (DeMo) Dashboard to explore 

three different DNN architectures on TFBS prediction, and introduce three visualization 

methods to shed light on how these models work. Although our visualization methods still 

require a human practitioner to examine the dashboard, it is a start to understand these 

models and we hope that this work will invoke further studies on visualizing and 

understanding DNN based genomic sequences analysis. Furthermore, DNN models have 

recently shown to provide excellent results for epigenomic analysis [22]. We plan to extend 

our DeMo Dashboard to related applications.
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Figure 1. Model Architectures
Each model has the same input (one-hot encoded matrix of the raw nucleotide inputs), and 

the same output (softmax classifier to make a binary prediction). The architectures differ by 

the middle “module”, which are (a) Convolutional, (b) Recurrent, and (c) Convolutional-

Recurrent.
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Figure 2. DeMo Dashboard
Dashboard examples for GATA1, MAFK, and NFYB positive TFBS Sequences. The top 

section of the dashboard contains the Class Optimization (which does not pertain to a 

specific test sequence, but rather the class in general). The middle section contains the 

Saliency Maps for a specific positive test sequence, and the bottom section contains the 

temporal Output Scores for the same positive test sequence used in the saliency map. The 

very top contains known JASPAR motifs, which are highlighted by pink boxes in the test 

sequences if they contain motifs.
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Table 2

Mean AUC scores on the TFBS classification task

Model Mean AUC Median AUC STDEV

MEME-ChIP [16] 0.834 0.868 0.127

DeepBind [2] (CNN) 0.903 0.931 0.091

Small RNN 0.860 0.881 106

Med RNN 0.876 0.905 0.116

Large RNN 0.808 0.860 0.175

Small CNN 0.896 0.918 0.098

Med CNN 0.902 0.922 0.085

Large CNN 0.880 0.890 0.093

Small CNN-RNN 0.917 0.943 0.079

Med CNN-RNN 0.925 0.947 0.073

Large CNN-RNN 0.918 0.944 0.081
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Table 3

AUC pairwise t-test

Model Comparison3 p-value

RNN vs MEME 5.15E-05

CNN vs MEME 1.87E-19

CNN-RNN vs MEME 4.84E-24

CNN vs RNN 5.08E-04

CNN-RNN vs RNN 7.99E-10

CNN-RNN vs CNN 4.79E-22
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Table 4

JASPAR motif matches against DeMo Dashboard and baseline motif finding methods using Tomtom

Saliency Map
(out of 500)

Conv. Activations[2, 19]
(out of 500)

Temporal Output
(out of 500)

Class Optimization
(out of 57)

CNN 243.9 173.4 N/A 19

RNN 138.6 N/A 53.5 11

CNN-RNN 168.1 74.2 113.2 13
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