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SUMMARY

The balance between phosphorylation and de-phosphorylation, which is delicately regulated by 

protein kinases and phosphatases, is critical for nearly all biological processes. The Apicomplexa 

are a large phylum which contains various parasitic protists, including human pathogens, such as 

Plasmodium, Toxoplasma, Cryptosporidium and Babesia species. The diverse life cycles of these 

parasites are highly complex and, not surprisingly, many of their key steps are exquisitely 

regulated by phosphorylation. Interestingly, many of the kinases and phosphatases, as well as the 

substrates involved in these events are unique to the parasites and therefore phosphorylation 

constitutes a viable target for antiparasitic intervention. Most progress on this realm has come 

from studies in Toxoplasma and Plasmodium of their respective kinomes and phosphoproteomes. 

Nonetheless, given their likely importance, phosphatases have recently become the focus of 

research within the apicomplexan parasites. In this review, we concentrate on serine/threonine 

phosphatases in apicomplexan parasites, with the focus on comprehensively identifying and 

naming protein phosphatases in available apicomplexan genomes, and summarizing the progress 

of their functional analyses in recent years.
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Introduction

Apicomplexa are a phylum of the Alveolata, a superphylum of eukaryotic protists that 

harbor a set of sacs, called alveoli, underneath their plasma membrane (Cavalier-Smith, 

1993). Apicomplexans have a unique apical complex structure made up of a system of 

spirally arranged tubulin filaments called the conoid, which make them distinct from the 

other alveolates. The known apicomplexans are mainly classified into five taxa, including 

Haemosporidia, Piroplasmorida, Coccidia, Cryptosporida and Gregarinasina, but only the 

first three are supported by phylogeny (Hinchliff et al., 2015). Except for Gregarinasina, 

each of the apicomplexan taxa includes parasites that infect vertebrates, many of which can 

be pathogenic in humans. For example, the coccidian Toxoplasma gondii, can cause severe 

disease and even death in the immunocompromised or immunosuppressed, and in the 

congenitally infected; the piroplasmid Babesia spp., which is tick-borne, is responsible for 

the hemolytic disease babesiosis; Cryptosporidium spp. can cause cryptosporidiosis, a 

gastrointestinal illness responsible for severe diarrhea in the immunocompromised and in 

children; the representative blood-infecting haemosporidians, Plasmodium spp., cause 

malaria, perhaps the most serious of parasitic diseases in the world, resulting in hundreds of 

thousands deaths annually. However, due to the resistance, toxicity and inefficacy of current 

anti-apicomplexan agents, more efficient drugs are greatly needed (Antony & Parija, 2016). 

In pursuit of potential anti-apicomplexan targets, the top priority should be given to those 

proteins that are unique and essential to apicomplexan life cycles. In fact, apicomplexans 

possess a set of plant-like genes, which could be descended from their photosynthetic 

common ancestor (Janouskovec et al., 2010). Given no counterparts are present in 

mammalians, the proteins encoded by these plant-like genes are considered as potential anti-

apicomplexan targets, and have been aggressively studied, especially for those plant-like 

protein kinases and phosphatases.

Protein kinases and phosphatases oppositely regulate the most common post-translational 

modification, phosphorylation. A recent phosphoproteomics study estimated that nearly half 

of the total proteins from any of human, mouse or yeast are phosphoproteins (Vlastaridis et 
al., 2017). Therefore, it is reasonable to estimate that a comparable ratio of apicomplexan 

proteins is under the regulation of phosphorylation. In fact, studies of the last few decades 

have shown that phosphorylation plays essential roles in every aspect of apicomplexan 

parasites, such as including the parasite propagation, conversion and pathogenesis. The 

propagation of apicomplexan parasites starts from invasion of host cells and ends with egress 

when exhausting the nutrient. Within host cells, the parasites reside in parasitophorous 

vacuoles (PVs), which the parasites formed upon invasion, and replicate exponentially. 

Distinct from their host cells, apicomplexans adopt special division manner for their asexual 

replication, such as endodyogeny for T. gondii and schizogony for P. falciparum. 

Accordingly, it is reasonable to infer that the cell cycle regulation of apicomplexan parasites 

is somewhat different from their host cells. As we know, cell cycle in higher eukaryotic cells 

is exquisitely regulated by two key classes of regulatory molecules, cyclins and cyclin-

dependent kinases (CDKs). Without exception, all apicomplexan genomes encode a variety 

of cyclins and CDKs, and studies has shown that they are critical cell cycle regulators 

(Gubbels et al., 2008, Francia & Striepen, 2014, Khan et al., 2002). Moreover, 
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apicomplexans such as T. gondii contain a number of atypical cyclins and CDK-related 

kinases (CRKs), which are essential for the regulation of endodyogeny (Alvarez & 

Suvorova, 2017). Therefore, the apicomplexan cell cycle is regulated by phosphorylation 

events, some of which are unique to Apicomplexa.

Events that occur during apicomplexan propagation such as parasite invasion and egress are 

mostly unique and essential to survival and pathogenesis, and, accordingly, have received 

much attention. Host cell invasion and egress of apicomplexans are largely regulated by the 

secretion protein from the apicomplexan specialized organelles, the micronemes, rhoptries, 

and dense granules (Lebrun et al., 2014). Studies of the last few decades have identified 

phosphorylation, especially calcium dependent phosphorylation driven principally by the 

unique family of calcium dependent protein kinases (CDPKs), as playing essential roles in 

regulating the protein secretion from these unique organelles. For example, the CDPK1 of T. 
gondii has been shown to be part of a signaling pathway that leads to secretion of 

microneme proteins needed for T. gondii motility, invasion and egress (Lourido et al., 2010). 

P. falciparum’s CDPK1, which is localized to the periphery of the parasite (Zhao et al., 
1994, Green et al., 2008, Moskes et al., 2004) has also been shown to play key roles in 

motility (Kato et al., 2008), secretion (Bansal et al., 2013), and development (Azevedo et al., 
2013) during the blood stages of the parasite. Its closest T. gondii homolog, TgCDPK3, is 

critical for rapid exit from the cell (McCoy et al., 2012, Garrison et al., 2012, Lourido et al., 
2012), a process which this kinase appears to regulate through the phosphorylation of the 

motor protein myosin A (MyoA) (Gaji et al., 2015). MyoA is one of the components of the 

unique molecular machine termed the glideosome, an actin-myosin motor complex which 

the apicomplexans adopt for gliding motility, host cell invasion and egress (Opitz & Soldati, 

2002, Keeley & Soldati, 2004). The glideosome anchors to a structure composed of alveoli 

known as the inner membrane complex (IMC), and lies in the space between the IMC and 

the plasma membrane (Boucher & Bosch, 2015). Besides MyoA, the glideosome includes 

short actin filaments, actin accessory proteins, myosin light chain (MLC) proteins and the 

glideosome associated proteins (GAPs) (Boucher & Bosch, 2015). The phosphorylation 

status of the glideosome components is known to regulate their activation. For example, the 

phosphorylation of the P. falciparum MyoA tail interacting protein (MTIP) is essential for its 

interaction with MyoA (Green et al., 2008), and the phosphorylation of T. gondii GAP45 is 

important for its anchoring to the IMC (Gilk et al., 2009, Ridzuan et al., 2012).

Another biological context in which phosphorylation plays an important role in the 

apicomplexans is conversion between the different stages of their life cycles. Apicomplexans 

have complex life cycles that can include both insect and mammalian hosts (e.g. 

Plasmodium and Babesia spp.), latent tissue cysts stages (e.g. T. gondii) and environmentally 

exposed stages (e.g. T. gondii and Cryptosporidium spp.). Many studies have shown the key 

role of phosphorylation in different stage conversions. For example, phosphorylation of the 

eukaryotic initiation factor-2α (eIF2α) in P. falciparum sporozoites within the salivary gland 

of the mosquito vector represses translation of key transcripts that become expressed upon 

dephosphorylation of eIF2α once parasites are injected into human host (Zhang et al., 2010, 

Zhang et al., 2016). Similarly, in T. gondii, eIF2α phosphorylation and the ensuing 

translational repression accompany the transition for the rapidly replicating tachyzoite stage 

to the latent encysted bradyzoite form (Narasimhan et al., 2008). The importance of this 
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phosphorylation event for the establishment and maintenance of the latent stage is evidenced 

by the fact that two inhibitors of eIF2α dephosphorylation, salubrinal and guanabenz induce 

bradyzoite formation and inhibit reconversion of encysted parasites to tachyzoites (Konrad et 
al., 2013, Benmerzouga et al., 2015). Cyclic nucleotide dependent phosphorylation also 

appears to play a role in T. gondii stage conversion as inhibition of cAMP and cGMP 

kinases induces bradyzoite formation (Eaton et al., 2006). Pathogenesis of apicomplexan 

parasites are also under the control of phosphorylation. Many apicomplexan virulence 

factors are rhoptry organelle proteins (ROPs) with protein kinase activities, which are 

secreted directly into host cells and interfere the innate immunity of the host. Studies have 

shown that ROP17 and 18 are the two protein kinases in T. gondii that phosphorylate and 

inactivate immunity related GTPases (IRGs), which are responsible for early immune 

response (Fentress et al., 2010, Steinfeldt et al., 2010, Etheridge et al., 2014).

Through its involvement in cell division, propagation, stage conversion, and pathogenesis, 

phosphorylation is central to the life cycles of apicomplexan parasites. Compared with the 

extensive studies of protein kinases, protein phosphatases have received relatively less 

attention. However, many phosphorylation events key to propagation, conversion and 

pathogenesis occur in response to specific cues or at specific timing, and thus are transitory. 

Accordingly, phosphatases and their regulatory proteins are expected to play important roles 

in the life cycle of apicomplexans, and have gradually become the focus of functional 

studies in recent years. In this study, we comprehensively compare the protein serine/

threonine phosphatases in the representative apicomplexans, Cryptosporidium parvum, 

Plasmodium falciparum, T. gondii, and Babesia bovis. These chosen species are 

representatives of each the four taxa that infect vertebrates (Cryptosporida, Coccidia, 

Haemosporidia and Piroplasmorida) and are all pathogenic in humans. Moreover, these four 

apicomplexan parasites are among the most studied at the molecular and cellular level and 

their genomes have been sequenced and annotated. Besides listing, classifying and naming 

the protein phosphatases present in these genomes, we summarize recent progress in the 

functional analysis of phosphatases in apicomplexans.

The phosphatases of eukaryotic cells

Reversible phosphorylation is an extensively used and highly ubiquitous regulatory 

mechanism. Protein kinases and phosphatases respectively take the responsibility to add and 

remove phosphate to/from amino acids, commonly the three hydroxyl-containing amino 

acids, serine, threonine and tyrosine, in eukaryotes and histidine in prokaryotes, as well as 

some others including arginine, lysine, and cysteine (Ciesla et al., 2011). The presence of 

phosphate groups on any of these amino acids can alter the structure, stability, interactions, 

and function of proteins.

Protein phosphatases are typically subdivided into three major categories based on the amino 

acid targeted: serine/threonine phosphatases, tyrosine phosphatases, and dual specificity 

phosphatases, which act on all three residues. Based on a proteomic analysis of more than 

6000 phosphorylation sites on more than 2,000 phosphoproteins the relative abundance of 

phosphoserine, phosphothreonine and phosphotyrosine in human cells was determined to be 

86.4%, 11.8% and 1.8% respectively (Olsen et al., 2006). Protein tyrosine kinases (PTKs) 
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and phosphatases (PTPs) usually have comparable numbers in each eukaryotic genome, but 

most organisms commonly have more protein serine/threonine kinases (PSKs) than the 

corresponding phosphatases. The discrepancy between the numbers of PSKs and protein 

serine/threonine phosphatases (PSPs) can be explained by the fact that a single catalytic 

subunit of PSPs can act on multiple substrates, with specificity conferred by interactions 

with a large number of regulatory and structural subunits.

PSPs, which are the focus of this review, are divided into three major families: 

phosphoprotein phosphatases (PPPs), protein phosphatases Mg2+/Mn2+ dependent (PPMs), 

and aspartate based phosphatases (Shi, 2009). The PPP family is represented by protein 

phosphatase 1 (PP1), PP2A, PP2B (a.k.a. calcineurin), PP4, PP5, PP6, and PP7. For many 

members of the PPP family, the catalytic subunit interacts with a large array of regulatory 

subunits. By contrast, members of the PPM family, which includes the Mg2+/Mn2+ 

dependent PP2C and pyruvate dehydrogenase phosphatase (PDP), do not possess regulatory 

subunits but instead have additional domains and conserved motifs that impart substrate 

specificity. Much less is known about aspartate based phosphatases, which are represented 

by TFIIF-associating carboxyl-terminal domain (CTD) phosphatases (FCP) and small CTD 

phosphatase (SCP), accordingly known as FCP/SCP family phosphatases. In mammals and 

yeast FCP1 dephosphorylates the CTD of RNA polymerase II (Eick & Geyer, 2013), and 

SCP1 dephosphorylates the linker regions of Smad 1, 2 and 3 in human (Sapkota et al., 
2006).

The apicomplexan phosphatases

While many apicomplexan genomes have been sequenced and annotated (available at 

EuPathDB.org), the designation of proteins as phosphatases is likely imperfect and in many 

instances, does not account for classification. Protein phosphatases have been 

comprehensively annotated in P. falciparum based on three independent previous studies 

(Wilkes & Doerig, 2008, Pandey et al., 2014, Guttery et al., 2014). Accordingly, we 

performed a bioinformatics analysis to comprehensively identify putative protein 

phosphatases in the other three apicomplexan genomes: T. gondii, C. parvum and B. bovis, 

and investigated their identities and homolog relationships. Specifically, the PSPs of P. 
falciparum annotated in EuPathDB, and the listed PSPs of the genomes of human, budding 

yeast and Arabidopsis listed in the database EKPD 1.1 (Wang et al., 2014) were used as 

queries in BLASTP searches to identify homologs in the other three apicomplexan genomes. 

The sequences of the identified putative phosphatases were used as queries in reciprocal 

BLASTP searches using the most recent genome databases (EuPathDB release 30) to 

confirm identification and establish most similar gene pairs between genomes. This was 

followed by protein phosphatase domain prediction with SMART and PFAM online service 

for further validation. Importantly, when we perform PFAM as the primary search method 

we obtain the same list of phosphatases. The number PSPs present in all the four 

apicomplexan genomes studied are summarized in Table 1. Below, within sections for the 

various protein phosphatase categories, we discuss the specific findings from the analysis of 

the four pathogenic apicomplexans that are the focus of our review, as well as current 

knowledge of the function of particular phosphatases.
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Serine/Threonine Phosphatases: The PPP Family

As mentioned above, most eukaryotes have seven subfamilies of PPPs (PP1, PP2A, PP2B, 

PP4, PP5, PP6, and PP7). Of the four apicomplexan parasites we analyzed, both T. gondii 
and P. falciparum contain a whole set of the above-mentioned PPP subfamilies, with one 

member in each subfamily, except for PP2A of which there are two in T. gondii (Table 1). 

Interestingly, the other two genomes both lack members of two subfamilies: C. parvum lacks 

PP6 and PP7, and B. bovis lacks PP2B and PP6 (Table 1). Nonetheless, another Babesia 
species B. microti appears to encode a putative PP2B homolog. The lack of PP2B and PP6 is 

also seen in the Theileria, which is one of the closest related genera to B. bovis. This would 

suggest that gene loss is the likely cause for lack of these two PP1 family members in these 

parasites rather than incomplete genomic sequencing.

Unsurprisingly, the PPP family members of the apicomplexans are extraordinarily 

conserved, sharing the consensus core motifs that are conserved throughout eukaryotes, 

including “GDxHG”, “GDxVDRG”, “RG”, “GNHE”, “HGG” and “H” (x represents any 

amino acid) (Fig. 1). The subfamilies are clustered into monophyletic branches with high 

support values (Fig. 1). Besides having homologs of phosphatases from each of the seven 

subfamily members that are common across eukaryotic phyla, the apicomplexans analyzed 

possess members of the Kelch-like domain containing protein phosphatase (PPKL) 

subfamily, present only in plants and other alveolates. In addition, all the genomes except 

that of B. bovis possess a bacterial-like phosphatase subfamily that is known in the 

apicomplexans as the Shewanella-like phosphatases (SLP). Moreover, an EF-hand motif 

containing phosphatase subfamily, previously named EFPP (Kutuzov & Andreeva, 2008), is 

present in all the four apicomplexan genomes.

PP1

PP1 was the first identified phosphatase, characterized initially as the enzyme that 

dephosphorylates glycogen phosphorylase (Cori & Cori, 1945). PP1 is now known to be 

involved in a wide range of biological processes, such as glycogen metabolism, protein 

synthesis, transcription, cellular division and apoptosis (Ceulemans & Bollen, 2004). A 

holoenzyme of PP1 contains both a catalytic and a regulatory subunit. The catalytic subunit 

of PP1 is highly conserved among all eukaryotes and contains three histidines, two aspartic 

acids, and one asparagine that coordinate two metal ions, Mn2+ and Fe2+ (Shi, 2009). These 

two ions are hypothesized to interact with a water molecule to initiate a nucleophilic attack 

on the phosphate (Goldberg et al., 1995). Although humans have only three PP1 catalytic 

subunits, which are nearly identical to each other in sequence, it has been estimated that 

around one third of protein dephosphorylation events are conducted by PP1 (Rebelo et al., 
2015). Thus, substrate specificity is likely conferred by the about 200 proteins identified as 

potential PP1 regulatory subunits (Rebelo et al., 2015). Each of the four apicomplexans 

encodes for one PP1 catalytic subunit with comparable protein sequence length and high 

similarity to human homologs. These four PP1s are CpPP1 (cgd7_2670), TgPP1 

(TGME49_310700), PfPP1 (PF3D7_1414400) and BbPP1 (BBOV_III006130), respectively.

In T. gondii, the presence of PP1 activity was first deduced from experiments showing that 

exposure to PP1 inhibitors significantly impaired parasite invasiveness, suggesting a role for 
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this phosphatase in host cell invasion (Delorme et al., 2002). Genome sequencing allowed 

the identification of the T. gondii PP1 homolog, and transient transfection of its coding 

sequence fused to a cMyc epitope tag showed that is present in both the cytoplasm and 

nucleus (Daher et al., 2007). The PP1 homolog from P. falciparum, PfPP1, was determined 

through subcellular fractionation to also have nucleocytoplasmic localization (Daher et al., 
2006). Moreover, when expressed in Saccharomyces cerevisiae lacking PP1, PfPP1 can 

complement the low glycogen phenotype observed with the lack of yeast PP1 

(Bhattacharyya et al., 2002). Abrogation of PfPP1 with short interfering RNA (siRNA) led 

to inhibition of DNA synthesis and cell cycle progression (Kumar et al., 2002). Interestingly, 

PfPP1 has also been detected in the Maurer’s clefts, membranous structures in the cytoplasm 

of erythrocytes infected with P. falciparum that are associated with parasite protein sorting 

and export. Within the Maurer’s clefts PfPP1 appears to modulate the phosphorylation of the 

N-terminal domain of Skeleton Binding Protein 1 (PfSBP1), a Maurer’s cleft 

transmembrane protein, whose C-terminal interacts with host cell membrane. Inhibition of 

PP1 with calyculin A leads to the hyperphosphorylation of PfSBP1, which impacts the 

release of parasites from the host cells (Blisnick et al., 2006). Thus, as in other systems, 

apicomplexan PP1s are involved in many types of processes including glycogen metabolism 

and protein sorting and export and are likely to have a diversity of substrates.

Given the functional diversity of apicomplexan PP1s and the high conservation of PP1 

across eukaryotic taxa, it is not surprising that many of the PP1 regulators found in 

mammalians are also present in apicomplexans. Two independent studies reported that the 

leucine rich repeat protein 1 (LRR1) in both T. gondii and P. falciparum, similarly to their 

homologs LRR1 in mammalians and Sds22 in yeast, function as negative regulators of PP1 

(Daher et al., 2006, Daher et al., 2007). The direct interaction between PfPP1 and PfLRR1 

has been confirmed through several interaction-trap and biochemical approaches (Daher et 
al., 2006). The same study also confirmed that PfLRR1 indeed functions as an inhibitor of 

PfPP1 as shown through inhibition of the phosphatase activity of recombinant PfPP1 upon 

pre-incubation with recombinant PfLRR1 (Daher et al., 2006). In T. gondii the physical 

interaction between TgPP1 and TgLRR1, and the function of TgLRR1 as a TgPP1 inhibitor 

have also been confirmed (Daher et al., 2007).

PP1 specific inhibitory proteins I-2 and I-3 are both negative regulators of PP1 in human 

cells, and homologs of both proteins are present in all the four representative apicomplexans 

(Table 2). Studies with P. falciparum PfI2 showed that the phosphatase activity of PfPP1 was 

severely decreased when it was preincubated with wild-type recombinant PfI2, but not with 

mutant versions of the inhibitor lacking either of the two main PP1 interacting motifs 

(Freville et al., 2013, Freville et al., 2014). Surprisingly, by contrast to other eukaryotes, PfI3 

is a PP1 activator in P. falciparum and it has an essential role in the growth and survival of 

blood stage parasites (Freville et al., 2012). A more recent study combined co-affinity 

purification followed by mass spectrometry (MS), yeast two hybrid (Y2H) screening and in 

silico analysis for P. falciparum proteins with RVxF motif, which is present in most PP1 

regulators, to define the PfPP1 interactome (Hollin et al., 2016). This effort identified 186 

potential PP1 interactors in P. falciparum, of which 35 have been validated as PfPP1 

interactors in an ELISA based assay (Hollin et al., 2016). However, further experimentation 

is needed to confirm their roles as PfPP1 regulators.
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PP2A, PP4 and PP6

The catalytic subunits of PP2A, PP4 and PP6 cluster as a monophyletic branch, suggesting 

that they are derived from a common ancestor (Uhrig et al., 2013). Not only do these three 

enzymes share sequence similarity, they also have common functional mechanisms by 

forming heterodimeric and heterotrimeric complexes that combine catalytic, structural and 

regulatory subunits.

PP2A—Like PP1, PP2A is also involved in numerous biological processes, such as cell 

proliferation, cell death, cell motility and cell cycle control (Lillo et al., 2014). The human 

genome contains two catalytic (PPP2CA and B), two structural (PPP2R1A and B) and 15 

regulatory subunits. The human PP2A core enzyme is a heterodimeric complex formed by 

the combination of a catalytic and a structural subunit, and the PP2A holoenzyme is a 

heterotrimeric complex with the addition of a regulatory subunit to the PP2A core dimeric 

complex. The structural subunit, which acts as a scaffold, contains 15 tandem HEAT repeats 

that form a horseshoe-shaped structure (Groves et al., 1999). The 15 PP2A regulatory 

subunits are subdivided into four families: B, B′, B″ and B′″, which share high sequence 

similarities within families, but are distinct across families (Table 2). The B subfamily is 

also known as B55 or PR55 and is comprised of PPP2R2A, B, C and D; the B′ subfamily, 

also known as B56 or PR61, includes PPP2R4, PPP2R5A, B, C, D and E; the B″ subfamily 

contains three members, PPP2R3A (also known as PR48), PPP2R3B (PR72/PR130) and 

PPP2R3C (G5PR); the B′″ subfamily includes STRN (PR110), STRN3 (PR93) and STRN4 

(Table 2).

Like in the case of human cells, C. parvum and T. gondii both have two genes encoding 

catalytic subunits referred to as PP2A1 (cgd7_810, TGME49_224220) and PP2A2 

(cgd5_4070, TGME49_215170), but P. falciparum and B. bovis both have only one each 

(PF3D7_0925400, BBOV_I000740) (Table 2). Detailed phylogenetic analysis of all PP2As 

from the four apicomplexans showed that PfPP2A shows higher similarity to CpPP2A2 and 

TgPP2A2, while BbPP2A shows higher similarity to CpPP2A1 and TgPP2A1 (Fig. 1), 

suggesting that two copies of PP2A were present in ancient apicomplexan ancestors, and 

that either one of them was lost in some taxa. This scenario is supported by the fact that 

CpPP2A1, TgPP2A1 and BbPP2A all have the motif “HAG” instead of the consensus 

“HGG”, which is found in PfPP2A, CpPP2A2 and TgPP2A2 (Fig. 1). T. gondii, P. 
falciparum, and B. bovis, but not C. parvum, have one putative structural subunit 

(TGME49_315670, PF3D7_1319700 and BBOV_II001110), and all four have a variable 

number of regulatory factors all belonging to the B′ and B″ subfamilies, four in C. parvum 
(cgd7_4970, cgd6_4380, cgd1_2470 and cgd4_290), three in T. gondii (TGME49_200400, 

TGME49_283720 and TGME49_246510), and two in both P. falciparum (PF3D7_1356400 

and PF3D7_1430100) and B. bovis (BBOV_IV010340 and BBOV_IV000610) (Table 2). 

The apparent lack of a structural subunit in C. parvum is possibly due to incomplete 

sequencing because its close relative Cryptosporidium muris contains one (CMU_017370) 

and the corresponding region coding this gene is absent in the sequenced genome of C. 
parvum. Hence, theoretically C. parvum could have eight possible combinations of PP2A 

holoenzymes if the structural subunit is present, six for T. gondii, and two for both P. 
falciparum and B. bovis.
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Within the apicomplexans, PP2A has only been studied in Plasmodium spp. The first 

PfPP2A gene was isolated with multiple degenerate PCR primers designed based on the 

conserved amino acids among PP1, PP2A and PP2B phosphatases (Li & Baker, 1997). 

Investigation of the expression pattern of the PfPP2A transcript showed that PfPP2A is 

specifically expressed in gametocytes (Li & Baker, 1997). Biochemical characterization of 

PfPP2A was performed in a later study, which showed that it required Mn2+ for activity and 

was sensitive to nanomolar concentrations of okadaic acid (OA) (Dobson et al., 1999). A 

member of SET/TAF-family, PfARP (asparagine (N)-rich protein, PF3D7_0909300) has 

been shown to be a specific inhibitor of PfPP2A with an IC50 of approximately 8 nM 

(Dobson et al., 2003). The interaction between PP2A and Phosphotyrosyl Phosphatase 

Activator (PTPA), an activator of PP1A, has been reported to be conserved in P. falciparum, 

as evidenced by co-immunoprecipitation experiments performed in Xenopus oocytes 

following injection of recombinant His-tagged PfPTPA and capped mRNA encoding Myc-

tagged PfPP2A (Vandomme et al., 2014). Although no study has been performed in the other 

three species, PTPA is conserved in these genomes (cgd1_2470, TGME49_283720 and 

BBOV_IV010340), and the T. gondii PTPA appears to be important for propagation based 

on a low relative fitness score determined through a genome-wide CRISPR knock-out of all 

T. gondii genes (Sidik et al., 2016). PP2A is also regulated by reversible methylation in 

mammalians and it involves two proteins: leucine carboxyl methyltransferase (LCMT1) and 

PP2A methylesterase (PPME1) (Shi, 2009). Homologs of LCMT1 are present in all the 

apicomplexan genomes discussed here but C. parvum (TGME49_237570, PF3D7_1439700 

and BBOV_III003160). In contrast, PPME1 is only present in T. gondii (TGME49_262140), 

suggesting that the methylation-based regulation of PP2A might only be retained in T. 
gondii.

PP4—PP4 plays roles in many processes such as protein complex assembly (e.g. 

centrosome maturation and spliceosome assembly) and cell signaling (e.g. NF-kB pathway, 

Jnk pathway and apoptotic signaling) (Cohen et al., 2005). Like PP2A, the catalytic subunit 

of PP4 can also form dimers and trimers with regulatory subunits. The human genome 

contains one catalytic subunit gene (PPP4C) and five regulatory subunit genes (PPP4R1, 2, 

3A, 3B and 4). PPP4R1 and PPP4R4 both contain HEAT repeats similar to those found in 

the structural subunits of PP2A. Both PPP4R1 and PPP4R4 can form heterodimeric 

complexes with the catalytic subunit. PPP4R2 and either of the PPP4R3 isoforms interact 

with the catalytic subunit to form the heterotrimeric complex PP4-PP4R2-PP4R3, which is 

conserved between humans and budding yeast (PPH3- PSY4 -PSY2), and functions in DNA 

damage responses in both organisms (Lillo et al., 2014). All the four apicomplexans 

described here contain one catalytic subunit coding gene in their genomes (Table 2). No 

homologs of PPP4R2 and PPP4R4 have been identified in the apicomplexan genomes 

analyzed, but C. parvum, T. gondii and P. falciparum all seem to have a potential homolog of 

PPP4R1 (cgd6_5000, TGME49_220910 and PF3D7_1034500), and C. parvum, T. gondii 
and B. bovis seem to have one potential homolog of PPP4R3 each (cgd3_240, 

TGME49_265440, and BBOV_II006300) (Table 2). As they are relatively less similar to 

their human homologs than the proposed regulators of PP2A, their identities as PP4 

regulators need closer inspection for confirmation. Unfortunately, no PP4 functional studies 

have been conducted in apicomplexans to date, although it appears to be essential in T. 
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gondii based on its relative fitness score in the genome wide CRISPR screen described 

above (Sidik et al., 2016).

PP6—This multifunctional phosphatase has roles in DNA damage responses, initiating 

repair of double stranded DNA breaks and ER-to-Golgi traffic (Lillo et al., 2014). The 

human genome encodes for one catalytic subunit of PP6 and three regulatory subunits, 

which contain Sit4-associated protein (SAP) domains. Another three proteins with ankyrin 

repeat domains that have been reported to serve as structural subunits (Stefansson et al., 
2008). It is thought that the catalytic, regulatory and structural subunits form heterotrimeric 

holoenzymes in a manner analogous to PP2A (Lillo et al., 2014). No PP6 catalytic subunit 

coding genes have been identified in C. parvum and B. bovis. Nonetheless, one copy is 

present in both T. gondii (TGME49_301010) and P. falciparum (PF3D7_0314400) (Table 2). 

Additionally, T. gondii and P. falciparum each have a potential regulatory and a structural 

subunit (Table 2). As is the case of PP4, no functional studies have been conducted to 

elucidate the roles of PP6 in apicomplexans.

PP2B, PP5 and PP7

Another monophyletic group within the PPP family consists of PP2B, PP5 and PP7, 

indicating a common ancestor. Unlike most PPP family phosphatases, which function as 

multimers of catalytic and regulatory subunits, both PP5 and PP7 are monomeric enzymes 

without any regulatory subunits. Instead of using regulators for the binding to target 

substrates, PP5 and PP7 have evolved with extra domains, which helps convey substrate 

specificity. By contrast PP2B, which is commonly referred to as calcineurin, is made up of a 

catalytic and a regulatory subunit.

PP2B—Also known as calcineurin or protein phosphatase 3 (PP3), PP2B is a calcium-

dependent serine-threonine phosphatase, and participates in a diversity of calcium-dependent 

biological processes, including Ca2+-dependent T-cell signaling (Musson & Smit, 2011). 

The holoenzyme of PP2B consists of a catalytic subunit (CnA) and a regulatory subunit 

(CnB), which binds calcium through a number of EF hand domains. CnA contains four 

functional domains: a phosphatase domain in its N-terminal region, a helical CnB-binding 

domain, a Ca2+-calmodulin-binding domain, and an autoinhibitory domain in its C-terminus 

(Fig. 1) (Shi, 2009). The CnB-binding domain forms a helix which is physically distant from 

the catalytic domain, facilitating the binding with CnB (Shi, 2009). Binding of CnA to Ca2+-

calmodulin causes a conformational change that displaces the autoinhibitory domain from 

the active site resulting in activation of the phosphatase. The autoinhibitory domain interacts 

with the catalytic domain when the phosphatase is inactive, blocking the interaction between 

the catalytic domain with substrates (Shi, 2009). The human genome encodes for three PP2B 

catalytic subunits and two regulatory subunits. Of the apicomplexan genomes studied, all 

except B. bovis contain one copy of the catalytic subunit and one of the regulatory subunit 

(Table 2). Nonetheless, another Babesia species B. microti contains one potential PP2B gene 

in its genome (BmR1_III07610), although is not present in all other Piroplasmid genomes.

PP2B first garnered attention in apicomplexans because of their sensitivity to Cyclosporin A 

(CsA) and FK506 (Dobson et al., 1999), two immunosuppressants known to act through 
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calcineurin inhibition in mammalian cells (Jun Liu et al., 1991). Both FK506 and CsA 

inhibit the secretion of microneme proteins in P. falciparum, suggesting a relationship 

between calcineurin with the effector(s) of Ca2+-dependent microneme exocytosis (Singh et 
al., 2014). Similarly, CsA was shown to block T. gondii egress, which is also dependent on 

calcium dependent secretion and motility (Moudy et al., 2001). Nonetheless, more recent 

studies using genetic manipulation have refined our understanding of calcineurin in these 

parasites. Calcineurin in both parasites is predominantly cytoplasmic in the schizont stage 

(Kumar et al., 2005, Paul et al., 2015), but both TgCnA and TgCnB become enriched at the 

apical end when the parasites are released into extracellular medium (Paul et al., 2015). 

Direct knockout of either subunit of calcineurin in both P. falciparum and T. gondii proved 

unsuccessful, suggesting that both proteins are essential within their respective parasites 

(Paul et al., 2015). Nonetheless, conditional knockdown of either PfCnA and TgCnB was 

accomplished by adding a destabilizing domain (DD) to the endogenous genes, which leads 

to degradation of the protein unless the cell permeable small molecule Shield-1 (Shld1) is 

present. Removal of Shld1 in both the PfCnA-DD and PfCnB-DD expressing strains led to 

strong reduction in parasite proliferation (Paul et al., 2015). Detailed analysis revealed that 

degradation of calcineurin did not affect P. falciparum egress or intra-erythrocytic 

development but significantly disrupted re-invasion, due to a defect in attachment (Paul et 
al., 2015). Similar results were observed in T. gondii when expression of TgCnA was 

knocked down using a tetracycline repressible promoter system. Interestingly, knockdown of 

calcineurin in T. gondii did not impact egress, suggesting that the previous blockage of 

egress by CsA is likely due to off target effects. In both T. gondii and P. falciparum, 

attachment and the subsequent invasion event are primarily dependent on proteins that are 

secreted from the micronemes upon calcium fluxes (Lourido et al., 2012). Interestingly, 

while genetic disruption of calcineurin in both parasites significantly impairs attachment to 

the host cell, neither microneme nor rhoptry secretion is affected. Thus, calcineurin appears 

to regulate microneme independent attachment of both extracellular P. falciparum and T. 
gondii parasites to host cells before intracellular entry (Paul et al., 2015). Identification of 

the substrates of calcineurin in either of these parasites would shed light into this poorly 

understood form of attachment.

PP5—Unlike most PPP family members, which contain separate catalytic and regulatory 

subunits, PP5 is a monomeric phosphatase with both the catalytic and regulatory domains in 

a single polypeptide. PP5 is involved in cellular proliferation, differentiation, apoptosis, 

survival and DNA damage repair (Hinds & Sanchez, 2008). The presence of N-terminal 

tetratricopeptide repeat (TPR) domains, which usually serve as protein-protein interaction 

motifs, is one of the unique characteristics of PP5. Like in other eukaryotes, all the four 

apicomplexans analyzed have a single PP5, all with three TPR domains (Fig. 1). 

Identification of the PP5 gene in P. falciparum was based on PCR reactions with degenerate 

primers designed on the basis of conserved peptide sequences of PPP family phosphatases 

(Dobson et al., 2001b, Lindenthal & Klinkert, 2002). Stage-specific expression analysis at 

the transcript level showed that PfPP5 is present in the entire asexual erythrocytic life cycle 

and gametocytes of P. falciparum, and immunofluorescence assays using polyclonal 

antiserum showed that PfPP5 is concentrated in the nucleus but also present in the cytoplasm 

(Lindenthal & Klinkert, 2002). Heat shock protein 90 (hsp90) is a binding partner of PP5 in 
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mammalian cells (Hinds & Sanchez, 2008) and co-immunoprecipitation studies have 

confirmed that this interaction is conserved in P. falciparum (Dobson et al., 2001b).

PP7—This phosphatase is also known as PPEF in mammalian cells or PPJ in P. falciparum. 

Like PP5, PP7 is also a monomeric phosphatase with both the catalytic and regulator 

domains in a single polypeptide. PP7 has both an N-terminal IQ calmodulin-binding motif 

and a C-terminal set of EF-hands, which make PP7 unique among PPP family members. 

Contrary to what is observed with calcineurin, the Ca2+-calmodulin binding domain of PP7 

inhibits its phosphatase activity based on in vitro assays with the Arabidopsis phosphatase 

(Kutuzov et al., 2001). The functions of PP7 involve various cellular processes, including the 

pathways of light and stress signaling in plants, and stress protective responses, cell survival, 

and growth in mammalian systems (Andreeva & Kutuzov, 2009). Of the four parasite 

species analyzed all but C. parvum possess a PP7 gene each. Compared with PP7 from other 

eukaryotes including those from P. falciparum and B. bovis, T. gondii PP7 is unique in that it 

has a cytoskeletal-associated protein glycine rich (CAP-Gly) domain in its N-terminus 

before the calmodulin-binding motif. Consistent with the presence of this domain, TgPP7 

localizes to the apical cap compartment of the IMC (Peter Bradley’s comments in ToxoDB), 

where it might be associated with the tubulin filaments of the conoid. By contrast the P. 
falciparum PfPP7, which lacks the cytoskeleton association domain, is predominantly 

cytoplasmic (Dobson et al., 2001a). Given that the function of PP7s is associated with 

calcium signaling and that TgPP7 is localized to the apical end where calcium-dependent 

secretion and conoid protrusion occurs, it is plausible that TgPP7 plays a potential role in 

host cell invasion, egress, and/or motility. Nonetheless, functional studies of PP7 in any 

apicomplexan are currently lacking.

PPKL, EFPP and SLP

Besides the phosphatases also found in animals, apicomplexans possess three additional 

phosphatase classes within the PPP family: Kelch-like domain containing protein 

phosphatases (PPKL) and Shewanella-like protein phosphatases, which are both also present 

in plants, and a parasite specific PPP phosphatase with EF-hand motifs within their N-

terminus.

Kelch-like domain containing protein phosphatases (PPKL)—PPKL is a unique 

PPP family member, which is shared by Viridiplantae and Apicomplexa. The Kelch domain 

usually has a set of five to seven Kelch repeats that form a β-propeller tertiary structure 

generally involved in protein-protein interactions. Four PPKL members in Arabidopsis have 

been identified, known as BSU1, BSL1, BSL2 and BSL3. PPKLs in Arabidopsis have been 

shown to positively regulate brassinosteroid signaling (Maselli et al., 2014). A single PPKL 

with three to four Kelch-like domains is present in each apicomplexan genome discussed 

here (Fig. 1). Two independent studies showed that PfPPKL is highly expressed in female 

gametocytes and in ookinetes, and that the deletion of PfPPKL resulted in abnormal 

ookinete morphology, which caused deficiency in forward gliding motility and in mosquito 

transmission (Guttery et al., 2012, Philip et al., 2012). No information about the function of 

this unique phosphatase within T. gondii is currently known.
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EFPP—Besides calcineurin and PP7, apicomplexans have another PPP family phosphatase 

that contains calcium binding EF-hand motifs. A previous review (Kutuzov & Andreeva, 

2008) named these protein phosphatases as EFPP to distinguish from PP7/PPEF. It is 

worthwhile to note that the catalytic domains of these EFPPs have varied degrees of 

mutations in the core catalytic domains of PPP family members, which puts their 

phosphatase activity into question. All the four apicomplexans each possesses one EFPP, 

each with one or two EF-hand motifs (Fig. 1, Table 2). Despite their uniqueness, no studies 

have been conducted to investigate their functions.

Shewanella-like phosphatases (SLP)—Another PPP family phosphatase member that 

is absent in animals but present in both plants and apicomplexan parasites is a “bacterial-

like” phosphatase, which is more closely related to bacterial PPP phosphatases than 

eukaryotic ones. Based on the similarities to different bacterial sources, the “bacterial-like” 

phosphatases have been classified into three categories: SLPs (Shewanella-like 

phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like 

phosphatases) (Kerk et al., 2013). The category with homologs within certain apicomplexans 

is the SLPs. While no SLPs have been identified in B. bovis, P. falciparum contains two SLP 

coding genes, and both T. gondii and C. parvum have one (Table 1). Despite their divergence 

from other PPP family members, the SLPs contain most of the six core catalytic motifs of 

PPP family phosphatases (Fig. 1). Studies of apicomplexan SLPs have been limited to P. 
falciparum where PfSLP2 was shown to possess tyrosine phosphatase activities like other 

SLPs and to localize to the apical end of invasive merozoites within some vesicles distinct 

from dense granule, rhoptry and micronemes (Fernandez-Pol et al., 2013). Prior to parasite 

invasion, the interaction between Band3, an erythrocyte membrane protein, and the 

erythrocyte cytoskeleton is disrupted by the phosphorylation of Band3 to facilitate invasion 

(Fernandez-Pol et al., 2013). It has been proposed that, after the completion of parasite 

invasion, secreted PfSLP2 dephosphorylates Band3 and restores the interaction between 

erythrocyte Band3 and cytoskeleton (Fernandez-Pol et al., 2013). In a separate study PfSLP1 

was shown to be expressed in all stages of parasite life cycle, and its deletion affected 

microneme formation, and ookinete development and resulted in complete inhibition of 

oocyst formation (Patzewitz et al., 2013).

PPM (PP2C) family of Serine/Threonine Phosphatase in Apicomplexa

PPM family phosphatases, which require Mg2+/Mn2+ for their phosphatase activity, include 

PP2Cs and PDPs. Unlike most PPP family phosphatases, which have separate catalytic and 

regulatory subunits, PPM family phosphatases are monomeric enzymes with both catalytic 

and regulatory domains in a single polypeptide. Although having similar three-dimensional 

structure in terms of the catalytic domains, and similar mechanism of catalysis (Shi, 2009), 

PPM family phosphatases do not share much similarity at the amino acid level with PPP 

family phosphatases. Moreover, in contrast to the significant conservation among members 

of the PPP family of phosphatases across eukaryotic phyla, the PP2C phosphatase domains 

are much more divergent from each other. Nonetheless, residues that are involved in metal 

coordination and phosphate binding, such as RxxxED, DGxxG, DGxWD and DN, are all 

maintained in most PP2Cs (Shi, 2009). In addition, the number of PP2C members among 
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eukaryotic taxa vary widely, with a notable expansion in plants. For example, Arabidopsis 
contains about 80 PP2C members, in contrast to only 7 in budding yeast and 18 in human. 

The main role of PP2Cs appears to be regulation of stress signaling, although they also are 

involved in other biological processes, such as cell differentiation, survival and apoptosis 

(Lu & Wang, 2008).

All putative PP2Cs found in the four apicomplexan genomes used for our bioinformatics 

analysis are listed in Table 3. It is worth noting the variation in the number of PP2C 

members present in each of these four apicomplexans: 4 in B. bovis, 13 in P. falciparum, 14 

in C. parvum, and 33 in T. gondii (Table 3, numbers include potential PDPs). To investigate 

the evolution of PP2Cs in these apicomplexans, we performed a phylogenetic analysis based 

on the PP2C phosphatase domain amino acid sequences (Fig. 2). We included the human 

and yeast PPM family members in the analysis to investigate possible correlation with 

phosphatases with known functions. As shown in Figure 2, the apicomplexan PP2Cs are 

mainly clustered into ten groups. For the convenience of citation, we arbitrarily numbered 

these groups from I to X. Also, because most P. falciparum PP2Cs have been designated 

names in a previous study (Guttery et al., 2014), we designated names for the rest of the P. 
falciparum PP2Cs and for those from T. gondii ones based on their homology relationships 

with those from P. falciparum. The designated names are shown in Table 3.

Among the ten clusters, groups II and X are of note. Group II includes the yeast PDP 

ScPTC5 and the two human PDPs, which suggests that the apicomplexan PP2Cs in this 

group are possibly PDPs. Group X contains a single P. falciparum PP2C, PfPPM3, and eight 

T. gondii homologs TgPPM3A to H, indicating that an expansion of this PP2C likely 

occurred during the evolution of T. gondii. Duplication appears to be one of the mechanisms 

behind this expansion based on the fact that TgPPM3H and TgPPM3G are two nearly 

identical PP2Cs with tandem localization. Interestingly, of the eight T. gondii PP2Cs in 

group X, six contain signal peptides, suggesting that they might be secreted phosphatases 

functioning in either the parasitophorous vacuole (PV) or the host cell.

A number of studies have been conducted to investigate the functions of several PP2Cs in P. 
falciparum and T. gondii. The first identified PP2C in P. falciparum was PfPPM2 

(PF3D7_1138500), which contains two PP2C catalytic domains both with validated 

phosphatase activity (Mamoun et al., 1998). Substrates of PfPPM2 include the translation 

elongation factor 1-beta (PfEF-1β), suggesting a role in the regulation of translation 

(Mamoun & Goldberg, 2001). Another P. falciparum phosphatase implicated in translation 

regulation is UIS2 (PF3D7_1464600) (Zhang et al., 2016). This phosphatase was shown to 

be responsible for the dephosphorylation of eIF2α-P, a translational factor whose 

phosphorylation status is critical for host infection (Zhang et al., 2016). UIS2 was validated 

as a PP2C based on the fact that it can be inhibited by EDTA and Cd2+, and that it shows 

preference for Mn2+ and Mg2+, which are required for the activity of PP2Cs (Zhang et al., 
2016). However, this protein lacks a canonical PP2C catalytic domain and shows high 

similarity to purple acid phosphatases, which have been reported to possess protein 

phosphatase activity (Kaida et al., 2010). Interestingly, two orthologs of this phosphatase are 

present in T. gondii (TGME49_228160 and TGME49_228170) tandemly localized within 

chromosome X, suggesting a duplication event.
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In a genome-wide functional analysis of P. falciparum protein phosphatases complete 

knockout was achieved for 7 out of 9 PP2Cs targeted (Guttery et al., 2014). Knockout of 

PfPPM2 (group VII) and PfPPM5 (group III) resulted in the most significant phenotypes. 

Parasites lacking PfPPM2 parasites exhibited reduced macrogamete numbers and ookinete 

conversion rate, and ΔPfPPM5 parasites had a defect in both number and size of oocysts 

formed (Guttery et al., 2014). Further analysis revealed that PfPPM2 is essential for 

gametocyte sex allocation and ookinete differentiation, and PfPPM5 is involved in the 

modulation of oocyst development (Guttery et al., 2014). There are two homologs of 

PfPPM2 and three of PfPPM5 in T. gondii, although the function of these expanded PP2Cs 

are not currently known.

One of the few studied PP2Cs from T. gondii (TGME49_231850, PPM13) was shown to act 

in conjunction with casein kinase II to regulate the phosphorylation status of Toxofilin, an 

actin binding protein known to be secreted into the host (Delorme et al., 2003, Jan et al., 
2007). Another T. gondii PP2C (TGME49_282055, TgPPM20 akaPP2Chn) was shown to be 

localized in the rhoptries and to be secreted into the host nucleus during invasion (Gilbert et 
al., 2007). The disruption of this PP2C results in a slight deficiency in parasite growth, but 

the particular substrate in either the host or parasite are not known (Gilbert et al., 2007).

FCP/SCP family phosphatases

FCP/SCP family phosphatases use an aspartate-based catalysis mechanism, which 

distinguishes them from PPP and PPM family phosphatases. Their most conserved catalytic 

domain motif is DxDT/V, which is present in nearly all phosphatases within this family. 

Humans have eight members of this family of phosphatases while yeasts have five. For the 

four apicomplexans discussed here, five putative FCP/SCP family phosphatases are present 

in C. parvum, eight in T. gondii, four in P. falciparum and six in B. bovis (Table 4). FCP1 

(also named as CTDP1) is the only member of this family that has been extensively 

investigated in humans and yeasts because it serves as a phosphatase of the CTD of the large 

subunits of RNA polymerase II (Corden, 2013). This region of the polymerase contains 

multiple heptapeptide repeats with a consensus sequence YSPTSPS in humans and yeasts, in 

which all positions except the two prolines can be phosphorylated (Yang & Stiller, 2014). 

Both human and yeast genomes have only one FCP gene, but interestingly, two putative 

orthologs are present in all the four apicomplexan genomes (Table 4). Also of remark is the 

fact that, compared with human and yeast which contain 52 and 26 tandemly repeated 

heptapeptides respectively, some apicomplexans have highly degenerate CTDs. For example, 

although T. gondii has ten heptapeptides, only two of them are tandemly repeated while all 

the others are dispersed throughout the domain. Previous studies in yeasts showed that the 

smallest CTD functional unit lies in heptapeptide pairs (Stiller & Cook, 2004), thus the 

dispersed single heptapeptides of T. gondii might have lost the conventional CTD functions. 

In contrast, the other three apicomplexans focused in this study all have more than ten 

tandemly repeated heptapeptides in their CTDs (Yang & Stiller, 2014). A particularly 

dynamic CTD evolution might have occurred in the genus Plasmodium, in which two 

independent expansions of tandem repeats happened in primate-infecting Plasmodium 
species, including P. falciparum (Kishore et al., 2009). As the CTD plays a role as a docking 

platform to interact with various transcription and processing factors in transcription cycles 
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(Corden, 2013), the fluid evolution of this domain in Apicomplexa suggests diverse features 

for these processes in these taxa. Additionally, the presence of two copies of FCP 

phosphatases, if validated, could be a consequence of the life cycles and multiple 

developmental stages observed in these parasites. Unfortunately, almost no studies have been 

performed to investigate the role of differential phosphorylation of the CTD in regulating the 

activity of the RNA polymerase II in apicomplexans. A genome-wide analysis of the 

occupancy of differential phosphorylated RNA polymerase II CTD in P. falciparum revealed 

that the most genes with serine 2 and 5 double phosphorylated CTD are divided into two 

phases, early and late, during the infectious intraerythrocytic developmental cycle (Rai et al., 
2014). In depth study of the RNA polymerase II CTD and the FCP/SCP family phosphatases 

in these parasites is likely to reveal valuable information as to the evolution of these 

processes and factors.

Conclusion and future perspective

The precise dynamic phosphorylation status of proteins is critical for their functions. Protein 

kinases and phosphatases play equal important roles in the regulation of phosphorylation. 

However, like ugly ducklings, protein phosphatases have not received equivalent attention in 

most systems including in parasites. This is likely due to the low level of specificity shown 

by the phosphatases themselves and the high level of complexity that arises when one starts 

considering regulatory and structural domains. Many studies of apicomplexan phosphatases 

were performed without the advantage of sequenced genomes or the modern molecular tools 

that now make these parasites more tractable. Therefore, the knowledge of the phosphatases 

in this taxon is very limited (phosphatases for which function is known are listed in table 5). 

As reversible phosphorylation is now recognized as a key regulator of many essential and 

unique processes of the Apicomplexa, phosphatases will inevitably come into focus. A 

particular aspect of the biology of these parasites in which the study of phosphatases is 

likely to yield important functional information is parasite motility. The motility machinery 

of the so-called “glidesome” is extensively regulated by calcium dependent phosphorylation, 

and while the theoretical roles for phosphatases in motility dependent events have been 

alluded to the identity of these remain unknown.

Identification of new drug targets is always a priority in the study of the biology of these 

parasites. The activity of Cyclosporin A and FK506 would support the concept of 

phosphatases as valid targets for antiparasitic drugs. Importantly, most PPP family members, 

a few PPM and FCP/SCP family members appear to be essential according to the recent 

genome-wide CRISPR screen performed in T. gondii (Sidik et al., 2016). Not only does this 

study underscore the important role of these proteins and their potential as drug targets, but 

it also provides a roadmap to prioritize their study. Moreover, apicomplexans contain three 

families of phosphatases that are not present in mammalians and, thus, likely to regulate 

parasite specific processes. The last decade has brought great technical advances to the study 

of these parasites, including gene editing and phosphor-proteomics. Thus, the field is well 

poised to explore the role of phosphatases in the biology and pathogenesis of these 

important human parasites. Given the unique place of these organisms in the tree of life, 

such studies would also provide valuable information as to the evolution of protein 

phosphatases.
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Figure 1. The PPP family phosphatases of T. gondii, P. falciparum, B. bovis, and C. parvum
The phylogenetic tree shown was assembled based on the alignments of the catalytic 

domains of the PPP family phosphatase members found in the genomes of T. gondii (Tg), P. 
falciparum (Pf), C. parvum (Cp), and B. bovis (Bb). Protein alignment was performed with 

MUSCLE, and Gblocks 0.91b was used to select conserved blocks for tree-building. The 

phylogenetic analysis was performed using PHYML 3.0 with a maximum likelihood method 

under the LG model of amino acids substitution. Branch support values were estimated by 

Approximate Likelihood-Ratio Test (aLRT). The final tree was condensed with a cut-off 
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value 50%. The branches of each subfamily are displayed in an individual color. The domain 

architecture of each phosphatase is shown to the right of its branch. Domains shown include 

PPPc, PPP catalytic domain; Kelch, kelch domain; EF-hand, EF-hand motif; BBH, CNB-

binding helix; CBD, Ca2+-calmodulin-binding motif; AI, autoinhibitory sequence; TPR, 

Tetratricopeptide repeat domain; IQ, Calmodulin-binding motif; CAP_GLY, Cytoskeleton-

associated protein glycine-rich domain. The alignments of the core catalytic motif sequences 

are displayed to the right of each corresponding domain architecture. The relative location 

and consensus sequences of each core catalytic motif are shown underneath the alignments. 

The residues shown in red or green are those contribute to metal coordination or phosphate 

binding.
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Figure 2. The PPM family phosphatases of T. gondii, P. falciparum, B. bovis, and C. parvum.
The phylogenetic tree was constructed based on the alignments of the PP2C catalytic 

domains of the PPM family members from the four apicomplexans and the 20 PPM 

members (18 PP2Cs and 2 PDPs) of human and 8 (7 PP2Cs and 1 PDP) of budding yeast. 

Alignments and tree assembly were performed as in figure 1. Domain architecture and 

alignments of the core catalytic motif sequences are also shown as in figure 1. Domains 

include PP2Cc, PP2C catalytic domain; SP, Signal peptide; Coiled coil, Coiled coil motif; 

TM, Transmembrane domain; LRR, Leucine-rich repeats; PH, Pleckstrin homology domain. 
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The PPM family phosphatase are clustered into 10 groups, each annotated with a different 

color and a group name from I to X.
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Figure 3. The FCP/SCP family phosphatases of T. gondii, P. falciparum, B. bovis, and C. parvum
The phylogenetic tree shown was built based on the alignments of the catalytic domains of 

the FCP/SCP family phosphatases from humans, budding yeast, and the four apicomplexans 

studied. Alignments and tree assembly were done as for figure 1. The FCP/SCP family 

phosphatase are clustered into five groups, each annotated with a different color. Domain 

architecture and alignments of the core catalytic motif sequences are shown as in figure 1. 

Domains include CPDc, CTD-like phosphatase catalytic domain; TM, Transmembrane 
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domain; BRCT, Breast cancer carboxy-terminal domain; UBQ, Ubiquitin homologue 

domain.
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Table 4
FCP/SCP family phosphatase members of the apicomplexans

The proteins of the four apicomplexans with predicted FCP/SCP family phosphatase domains are listed. 

Specific names are designated for the homologs among species that are shown in same rows. Once for which 

identity is not as clear include asterisks. Fitness scores of the T. gondii proteins (Sidik et al., 2016) are 

included in parenthesis next to the gene IDs.

Designation T. gondii P. falciparum C. parvum B. bovis

CTDSPL1 TGME49_310660 (0.77) cgd2_3810 BBOV_III004040

CTDSPL2 TGME49_263380 (0.65) cgd4_3240

CTDSPL3 TGME49_202550 (-0.39)

NEP1 TGME49_243990* (-1.94) PF3D7_0515900* BBOV_II003180

CTDP1/FCP1 TGME49_269700 (-4.37) PF3D7_1355700 cgd7_4250 BBOV_IV000150

CTDP2/FCP2 TGME49_228330 (-3.54) PF3D7_1012700 cgd8_4810 BBOV_III000220

TIM50 TGME49_222010* (-0.63)

TGME49_283590 (-3.76) PF3D7_0726900 cgd8_3400 BBOV_III011630

BBOV_III011240
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