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Transcriptome-wide identification of the RNA-binding
landscape of the chromatin-associated protein PARP1
reveals functions in RNA biogenesis
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Recent studies implicate Poly (ADP-ribose) polymerase 1 (PARP1) in alternative splicing regulation, and PARP1 may
be an RNA-binding protein. However, detailed knowledge of RNA targets and the RNA-binding region for PARP1 are
unknown. Here we report the first global study of PARP1–RNA interactions using PAR–CLIP in HeLa cells. We iden-
tified a largely overlapping set of 22 142 PARP1–RNA-binding peaks mapping to mRNAs, with 20 484 sites located in
intronic regions. PARP1 preferentially bound RNA containing GC-rich sequences. Using a Bayesian model, we determined
positional effects of PARP1 on regulated exon-skipping events: PARP1 binding upstream and downstream of the skipped
exons generally promotes exon inclusion, whereas binding within the exon of interest and intronic regions closer to the
skipped exon promotes exon skipping. Using truncation mutants, we show that removal of the Zn1Zn2 domain switches
PARP1 from a DNA binder to an RNA binder. This study represents a first step into understanding the role of PARP1–
RNA interaction. Continued identification and characterization of the functional interplay between PARPs and RNA may
provide important insights into the role of PARPs in RNA regulation.
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Introduction

Poly (ADP-ribose) polymerase 1 (PARP1) or ADP-
ribosyl transferase 1, a multifunctional nuclear protein,
belongs to the PARP family of proteins. PARP1 is
responsible for initiation, elongation, and branching of
ADP-ribose units from donor NAD+ molecules onto
target proteins, a process known as PARylation. The
major target for PARylation is PARP1 itself, but a
number of other covalently PARylated proteins have
been described, including histones, chromatin remo-
deling proteins, and transcription factors. PARylation
influences the activity of target proteins by modulating
protein–nucleic acid interactions, enzymatic activity,

protein–protein interactions, and/or subcellular
localization.

PARP1 was first characterized as a sensor for DNA
breaks [1]. Besides its DNA damage response, PARP1
plays a crucial role in regulating numerous molecular
processes, such as gene transcription and chromatin
remodeling [2–4]. Some of the best functional examples
of PARP1 in gene regulation are its regulation of
chromatin structure by PARylating histones and
destabilizing nucleosomes [5–7], its competition with
H1 for specific target sites [8] and/or its direct interac-
tion with transcription factors and cofactors, such as
NF-κB or the nuclear factor to activate T-cell gene
expression [9–13]. PARP1 also plays critical roles in
cell division. For instance, PARP1 regulates compo-
nents of the mitotic apparatus, such as centromeres and
centrosomes, to control microtubule organization
during mitosis and chromosome segregation [10].
Taken together, these studies show that PARP1

*Correspondence: Yvonne N Fondufe-Mittendorf
Tel: +1-859-323-0091; Fax: +1-859-323-5505
E-mail: y.fondufe-mittendorf@uky.edu
Received 9 April 2017; accepted 23 October 2017

Citation: Cell Discovery (2017) 3, 17043; doi:10.1038/celldisc.2017.43
www.nature.com/celldisc

http://dx.doi.org/10.1038/celldisc.2017.43
mailto:y.fondufe-mittendorf@uky.edu
http://dx.doi.org/10.1038/celldisc.2017.43
http://www.nature.com/celldisc


exhibits a wide array of subcellular distributions, sug-
gesting a broad and varied role for this protein [14, 15].

Although PARP1 has been implicated in multiple
regulatory processes, one process for which the para-
digm may change is its role in RNA biogenesis. First,
PARP1 is known to PARylate poly (A) polymerase
(PAP), inhibiting its polyadenylation activity [16], with
consequences for pre-mRNA splicing regulation. Sec-
ond, PARP1 binds to noncoding pRNAs to silence
rDNA chromatin [17]. Third, PARP1 PARylates het-
erogeneous nuclear ribonucleoproteins (hnRNPs),
which play important roles in pre-mRNA splicing and
translation regulation [18]. Fourth, we recently identi-
fied PARP1 as an mRNA-binding protein [19, 20],
providing further evidence that PARP1-/PARylation-
mediated events function directly to control pre-
mRNA processing. These findings serve to define
PARP1 as a co-transcriptional splicing regulator [20].
One possible mechanism for this co-transcriptional
function is that PARP1 acts as an adapter, bringing
RNA close to chromatin [20]. In fact, a widespread
association of chromatin-binding proteins with RNA
was shown in vivo, supporting the idea of co-
transcriptional RNA splicing [21].

We previously identified PARP1 as a novel RNA-
binding protein (RBP) using photoactivatable-
ribonucleoside-enhanced crosslinking and immuno-
precipitation (PAR–CLIP). This study raised the
interesting possibility that PARP1 plays crucial roles in
many aspects of RNA processing to alter gene
expression via regulation of mRNAs. Taken together,
the identification and characterization of PARP1−
mRNA interactions may provide important insights
into the role of PARP1 in mRNA regulation and
subsequent human disease. However, the breadth,
range, and functional location of mRNA types bound
by PARP1 has not been explored. In order to identify
the direct RNA targets and precise binding sites of
PARP1 protein in vivo, we again applied PAR-CLIP
followed by deep sequencing (PAR-CLIP-seq). This
method is known for its precise identification of bind-
ing sites resulting from T-to-C sequence conversions
upon RNA–protein crosslinking. We observed that
PARP1 was predominantly crosslinked to mRNAs.
PAR–CLIP-binding regions contained guanine–cyto-
sine-rich sequences, and RNA–protein interaction was
further confirmed by gel mobility-shift assays. Fur-
thermore, we narrowed down the RNA-binding region
of the PARP1 protein. The enrichment of many other
mRNA-binding proteins (mRBPs) among the large
number of PARP1–mRNA targets suggests that
PARP1 has a broad role in the regulation of many

genes. A continuous identification and characterization
of functional interplay between PARPs and RNA may
provide important insights into the role of PARPs in
RNA regulation.

Results

PARP1 binds distinct coding and ncRNA sequences
In our previous experiments we established for the

first time that PARP1 binds to RNA in vivo [20]. In the
present study, we expanded on previous studies [20, 22]
to identify PARP1–RNA targets utilizing the PAR-
CLIP-seq method [23–26] (Figure 1a) in human HeLa
cells. Following UV crosslinking, PARP1-bound
RNAs were immunoprecipitated under stringent con-
ditions. Radiolabeled PARP1-bound RNA complexes
were separated by NuPAGE and observed using a
Phosphorimager (Figure 1b). To ensure that only
PARP1 protein-bound RNAs were used for further
analysis, gels were transferred onto nitrocellulose
membranes, visualized by autoradiography
(Figure 1c), and the presence of PARP1-bound RNAs
was confirmed by western blot analysis (Figure 1d).
The results from these experiments demonstrate the
robustness and specificity of the PARP1–RNA com-
plexes identified by PAR-CLIP (Figure 1).

In the analysis of the phosphorimages of the radi-
olabeled PARP1–RNA complexes, we observed two
major bands, one migrating at ~ 100 kDa and the other
migrating at ~ 140 kDa. This ~ 140-kDa band based on
the estimation from the protein standard we used is
indeed PARP1 (Using other protein standards, this
band runs according to PARP1’s predicted molecular
weight of ~ 116KDa—see Supplementary Materials
and Methods). Indeed, this band was later confirmed
by western blot analysis as PARP1-bound RNA
(Figure 1d). Stringent digest with RNase T1 resolved
the PARP1–RNA bands to within the estimated
molecular weight of PARP1 ~ 140 kDa
(Supplementary Figure S1a). The 100-kDa band con-
tains cleaved PARP1 as identified with antibody that
recognizes the c-terminal domain of PARP1 (data not
shown). In addition to these two bands, we also
observed signals from a higher molecular weight
complex (4260 kDa), possibly due to larger complexes
that did not migrate into the gel (Supplementary
Figure 1a). We suspect that this band likely repre-
sents other abundant RNA binding near PARP1-
binding sites, or PARP1 crosslinked to longer target
RNA segments [27] (Figure 1b–d). This interpretation
is reasonable, given that similar trends have been
observed with other RNA-binding proteins [28].
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Figure 1 Processing of PAR-CLIP RNA samples for sequencing. (a) Outline of experiments. PAR-CLIP of endogenous PARP1
was performed on HeLa cells using 4-thiouridine (4SU). (b) PAR-CLIP samples run on an SDS PAGE gel were imaged with
Typhoon. (c) Protein-bound samples were transferred onto a nitrocellulose membrane and exposed to a phosphoimager screen
and imaged using the Typhoon. (d) The same membrane in a was probed for the presence of PARP1-bound RNAs using an
antibody to PARP1. Red arrows (b–d) indicate PARP1 bound-RNA—one at ~ 140 kDa and a shorter fragment at ~ 100 kDa. As
the antibody recognizes the larger fragment, we considered this as the full-length protein. The lower band could be a proteolytic
fragment as determined by mass spectrometry, lacking the N terminus, and rendering it undetectable by the antibody raised
against the N-terminal domain of the protein. (e) Processing of PARP1-bound RNAs for sequencing. A representative denaturing
(8 M urea) polyacrylamide gel showing the different steps of adapter ligation to RNA samples. PARP1-bound RNAs were eluted
from membrane in c, deproteinized, ligated to 3′ and 5′ adapters (lane 4). Lanes 1 and 6 are control 19-mer and 24-mer labeled
RNAs, ligated to 3′ adapter. These ligated 3′ adapter control RNAs were further ligated to 5′ adapters (lanes 2 and 7). The green
arrow indicates unligated 19-mer and 24-mer RNAs (Lanes 1 and 6, respectively); the blue arrow indicates 3′-adapter ligated
control RNAs; the red arrow indicates 3′ adapter and 5′-adapter ligated control RNAs. These controls were used to test the
ligation efficiency of our samples. The black arrow (lane 4) indicates 3′ and 5′ adapter ligated PARP1-bound RNA samples. (f)
Adapter-ligated samples were subjected to limited PCR amplification. Lanes 1 and 2 show 3′ and 5′ ligated 19-mer and 24-mer
control RNAs converted to cDNA and PCR-amplified. Lanes 3 and 4 are the PARP1-bound RNAs subjected to cDNA conversion
and PCR amplification. The black arrow shows the PCR products used for sequencing.
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To validate the specificity of PARP1–RNA binding,
we performed several control experiments. (1) A con-
trol PAR-CLIP experiment using nonspecific

antibodies (IgG) to precipitate RNA complexes failed
to detect any RNA (not shown). (2) Cells not treated
with thiouridine or non-crosslinked cells failed to

Figure 2 PARP1 RNA binding characteristics. Analyses of PARP1 PAR-CLIP-tags. (a) Fragment length distribution of the PARP-
CLIP-reads. Insert Table 1 shows the length and number of PARP1 PAR-CLIP sequences. (b) The pie chart shows PARP1-PAR-
CLIP peaks. Most PARP1-CLIP tags mapped to intronic regions, indicating PARP1 binding to mRNA. The intron enrichment is
consistent with previous reports that PARP1 binds mainly nascent transcripts. (c) Further analyses of the intergenic regions show
other possible regions that are regulatory. (d) Distribution of PARP1 PAR-CLIP tags within gene regions. (e) Distribution of
PARP1-PAR-CLIP reads within different types of RNA.
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immunoprecipitate a significant amount of PARP1-
bound RNA (Supplementary Figure S1b, lanes 2 and
3, respectively), although PARP1 protein remained
efficiently precipitated as determined by western blot
analysis of the immunoprecipitated complexes
(Supplementary Figure S1c, lane 5, bottom;
Supplementary Figure 1d, Lanes 3 and 5, bottom). (3)
Experiments with stringent RNaseA treatments elimi-
nated the PARP1–RNA bands (Supplementary
Figure S1b, Lanes 6 and 7, Supplementary
Figure S1e). (4) Knockdown of PARP1 abolished the
PARP1–RNA band (Supplementary Figure S1c, lane
6). (5) Lastly, treatment of cells with PJ34 (PARylation
inhibitor) for 1 or 24 h did not change the PARP1–
RNA-binding profile (Supplementary Figure S1c, lanes
3 and 4), suggesting that this binding is specific for
PARP1 and not PAR.

After confirming PARP1–RNA binding, the
PARP1–RNA complexes were cut from the mem-
brane, eluted, deproteinized, purified, and ligated to
adapters (Figure 1e). The resulting ligated RNAs were
converted to cDNA followed by limited PCR amplifi-
cation experiments (Figure 1f and Supplementary
Figure S2a). Initially, these PCR fragments were
cloned into TOPO-blunt vector, checked for correct
insert size by restriction enzyme digest (Supplementary
Figure S2b), and Sanger-sequenced. From these pilot
experiments, the mean fragment length was 21
nucleotides (from the main 140 kDa PARP1–RNA
band), 31 nucleotides (from the 200 kDa–PARP1–
RNA fragment), and 7 nucleotides from (70 kDa–
PARP1–RNA band; Supplementary Figure S2c). For
subsequent studies, only the bands resulting from the
main PARP1-bound RNA bands (~140 kDa) were
used. Seven biological replica experiments were per-
formed, barcoded, and pooled for sequencing using PE
Illumina sequencing on a HiSeq 2500. From the

various biological replicate experiments, we obtained
0.9–97× 106 reads after sequencing (Supplementary
Table S1). These sequences were subsequently trim-
med from adapter sequences yielding a total of 0.6–
39× 106 unique reads, 47% of which mapped to the
human genome (hg38) allowing 0–2 mismatches.

Next, we grouped them by overlaps using the
PARalyzer software [29]. The identified segments of
RNA represented peaks of T-to-C conversion (binding
sites), with a mean length of 21 nucleotides (mean and
mode of 20 nt) from uniquely aligned T-to-C reconciled
reads (Figure 2a and Table 1). Groups of overlapping
PAR-CLIP sequence reads were considered binding
sites if they (1) passed thresholds of ≥ 0.25 for T-to-C
conversion frequency, (2) contained more than five
reads with T-to-C conversion (one mismatch maximum
allowed per read), and (3) showed at least two inde-
pendent T-to-C conversions. Biological replicates,
although with different sequencing depth, showed
similar binding patterns (Supplementary Figure S3).

To identify PARP1–RNA target sites, we analyzed
the distribution of PAR-CLIP tags in the human gen-
ome by defining six regions (exon, introns, promoter, 5′
UTR, 3′ UTR, and intergenic regions). The distribu-
tion of binding sites across individual transcripts pro-
vided insights into PARP1 targeting. Approximately
48% of PAR-CLIP peak tags (see Materials and
Methods) mapped to introns, ~ 8% mapped to exons,
2% to promoter regions, 2% to 3′UTR, 1% to 5′UTR,
and 39%mapped to intergenic regions (Figure 2b). The
over-representation of intronic PAR-CLIP reads indi-
cates that PARP1 binds pre-mRNAs (nascent tran-
scripts) and is consistent with our hypothesis that
PARP1 plays a role in pre-mRNA splicing and pro-
cessing. On the other hand, the observation of a high
percentage of PARP1-PAR-CLIP reads to intergenic
regions suggests the possibility that these PAR-CLIP
tags may correspond to previously unidentified iso-
forms of genes with alternative terminal exons. To test
this idea, we carried out two types of analyses. First, we
examined the distance between intergenic clusters and
neighboring RefSeq genes. An exponential increase in
the cumulative number of tags within 10 kb down-
stream of known stop codons compared to linear
increases beyond 10 kb was detected. For instance,
39% of these intergenic peaks mapped within 10 kb of
the nearest stop or start codon, respectively (Figure 2c
and Supplementary Table S2). This suggests that in
addition to binding known 3′ UTRs (Figure 2b),
PARP1 binds to unannotated 3′ UTR extensions of
known genes (Supplementary Figure S4). Second, we
asked whether the remaining intergenic reads map to

Table 1 Length of PARP1-PAR-CLIP reads

k-mer Number of reads

16-mer 2 142

17-mer 3 897

18-mer 5 271

19-mer 6 894

20-mer 8 935

21-mer 5 883

22-mer 3 535

23-mer 1 888

Abbreviations: PAR–CLIP, photoactivatable-ribonucleoside-enhanced
crosslinking and immunoprecipitation; PARP1, Poly (ADP-ribose) poly-
merase 1.
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genes annotated in other reference genomes, as deter-
mined from the 'RefSeq Other' track in the UCSC
genome browser. We observed that 8% mapped to
genes annotated within other RefSeq genomes. These
analyses show that by doing a more detailed analyses
only ~ 18% (45% of the initial 39% intergenic reads as
shown in Figure 2b) of PARP1-PAR-CLIP tags map to
intergenic regions (Figure 2c and Supplementary
Figure S4).

mRNA is the major species bound by PARP1
Next, we analyzed the distribution of PARP1-PAR-

CLIP reads in coding regions. This analysis showed
that ~ 78% of the reads mapped to introns (Figure 2d),
raising the possibility that PARP1 contributes to the
recognition of specific intronically encoded RNAs such
as mRNAs, microRNAs, small nuclear RNAs, and
heterogenous RNAs, and influences the rates of var-
ious competing RNA processing steps. To examine
this, we analyzed the types of RNAs bound by PARP1
from the PAR-CLIP data. Our analyses show that
most of the PAR-CLIP peaks were within mRNAs
(88%) compared to the other RNA types, demon-
strating that mRNA is the major substrate of the
PARP1–RNA complex. On the other hand, crosslink
sites were also detected in different classes of RNAs:
2 870 peaks (or 11% of total RNAs bound) in long
intergenic noncoding RNAs, 124 peaks (or 1% of the
total RNAs bound) in microRNAs, and 88 peaks
within small nuclear RNAs (Figure 2e and
Supplementary Table S3). These results suggest possi-
ble novel functions for PARP1 in the regulation of the
metabolism of other RNAs as well.

As an alternative method to validate these binding
sites, we performed formaldehyde-crosslink RNA
immunoprecipitation with nuclear extracts [30].
Enrichment of candidate RNAs was similarly observed
using this method (Supplementary Figure S5). Com-
bined, these data support the specificity of PARP1-
PAR-CLIP-seq and suggest that our observed inter-
actions are indeed interactions between PARP1
and RNA.

RNA motifs bound by PARP1
We next asked whether PARP1 binds to a particular

RNA sequence motif. For that, we applied cERMIT
[31] to define the in vivo RNA recognition element for
PARP1. The three highest-scoring motifs were gen-
erally GC-rich (Figure 3a); this nucleotide composition
was observed regardless of the mRNA region of the
identified PAR-CLIP tags (Figure 3a). Failure to
determine a highly conserved binding motif prompted

us to use an unbiased k-mer approach to determine the
enrichment of specific sequences within PAR-CLIP
data. For this, the 2-nt PARP1-PAR-CLIP data set
surrounding the crosslink sites was compared to the
genome as a whole to identify k-mers enriched in
PARP1-PAR-CLIP reads. Our choice of k-mers
allowed us to detect smaller localized signals than
cERMIT, which begins with 5-mer seed regions.
Starting with 3-mers, we observed an enrichment of
GC-rich 3-mers (data not shown). However, as RNA
recognition elements are typically longer than 3-mers,
we performed further analyses using 4-mers. Again,
this analysis showed an enrichment of GC-rich 4-mers
(Figure 3b), whereas AT-rich 4-mers were depleted
(Figure 3c and d). We repeated the analyses with 6-
mers and 8-mers, and clearly the enriched k-mers were
GC-rich k-mers, although these longer GC-rich are
interspersed by AT k-mers (Supplementary Figure S6).
Our data show that PARP1 protein RNA-binding sites
were comparatively GC-rich, suggesting a tolerance for
these GC-rich residues, whereas AT-rich residues were
relatively less well tolerated. This information is of
interest as during PAR-CLIP experiments G-contain-
ing sequences are normally trimmed by RNase T1, and
the only way for these guanosines to survive this clea-
vage is if they are protected by direct binding of the
PARP1 or by stable RNA secondary structure [32].
Our results therefore suggest that PARP1 binds to GC-
rich regions and protects these G-rich regions from
RNase T1 cleavage.

Splicing and gene expression changes in response to
PARP1 loss

To test whether transcripts bound by PARP1 are
affected upon PARP1 depletion, we determined the
global patterns of PARP1-dependent transcription/
splicing changes. For this, cells were transfected with
ONTARGETplus short interfering RNA (siRNA)
targeting PARP1 and for control experiments with
non-targeting siRNAs. Depletion of PARP1 protein
was confirmed by western blot analyses, which showed
an ~ 70% reduction in PARP1 protein levels in the
knockdown cells (Figure 4a). Total RNA was isolated
from control non-targeting siRNA and PARP1
knockdown (KD) cells, and poly(A)-selected mRNA
sequencing was performed on the Illumina platform.
Biological replicas from RNA-seq showed high Pear-
son correlation (Supplementary Table S4), allowing
pooling of samples for further analyses. First, we
measured changes in gene expression at the transcript
level due to PARP1 knockdown. We identified 217
significantly upregulated and 81 downregulated genes,
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including PARP1 (using a cutoff of twofold expression
and P-value of 0.05 versus non-targeting control;
Supplementary Table S5). GO analysis using Gene Set
enrichment analysis (GSEA) showed that the top bio-
logical processes targeted by the genes upregulated in
PARP1 KD cells are NMD, translation, protein
metabolism, selanocysteine synthesis, and gene
expression. Genes that were downregulated in PARP1
knockdown cells are involved in RNA-binding and
poly-A-RNA-binding using GSEA (Figure 4b). We
next compared PARP1 RNA targets to genes affected
by PARP1 knockdown, and did not observe any
meaningful correlation between genes that were bound
and trends in gene expression changes. Nevertheless,
we observed that ~ 29% of genes transcripts affected by
PARP1 knockdown were also bound by PARP1 in our
PAR-CLIP analysis (Figure 4c).

Our previous study inDrosophila cells suggested that
PARP1 plays a role in alternative splicing regulation
[20]. In order to assess the effect of PARP1 in splicing,
we also analyzed the RNA-seq data for differential
alternative splicing events. Using stringent criteria to
identify changes in alternative splicing events, we
showed that PARP1 depletion resulted in changes in
alternative splicing for 791 genes. These changed events
included mutually exclusive exons (42.4%), skipped

exon (25.6%), retained intron (4.2%), alternative 5′
splice site (23.5%), and alternative 3′ splice site (4.4%;
Figure 4d). We validated some of these changes in
alternative splicing due to PARP1 depletion using
qRT-PCR (Supplementary Figure S7). The number of
alternatively spliced genes are slightly lower than those
observed in our previous studies with Drosophila,
where we observed many more changes in alternative
splicing [20]. We attribute this low number to possible
redundancy with other PARP proteins in humans. GO
molecular function terms as determined using GSEA
for the targeted alternative spliced genes include
nucleosome binding, Poly-A-binding, and RNA bind-
ing (Figure 4e).

Positional effects of PARP1 in splicing regulation
To extend the analysis of the role of PARP1 in

alternative splicing, we averaged the presence of
PARP1 PAR-CLIP reads along all exon/intron and
intron/exon boundaries, representing 3′ and 5′ splice
sites, respectively. PARP1 binds uniformly within
introns, whereas its binding is enriched at the ends of
exons—specifically within 50 nucleotides upstream of
start of the exon and 50 nucleotides downstream of
the end of the exon (Figure 5a). The observed exon
bias reflects the distribution of binding sequences

Figure 3 Sequence-binding characteristics of PARP1-bound RNAs. (a) Logo plots of some of the motifs found in the various
PARP1-binding regions as determined by cERMIT. (b) Enriched 4-mer motifs found within percentile regions of the PARP1-
binding site (gray) along with their enrichment scores in the flanking upstream and downstream regions. (c) Depleted 4-mer motifs
within the PARP1-binding site (gray) along with their enrichment scores in the flanking upstream and downstream regions. The
enrichment scores for b, c are determined by the log2 odds score of the frequency of the motif in the region versus the frequency
of the motif in the genome. (d) Average enrichment score for enriched and depleted motifs from (b, c), respectively.
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within target RNAs and suggests that PARP1 binds
mRNA. Although we had observed PARP1 PAR-
CLIP reads in introns (Figure 2b), the density of these
reads at exon–intron boundaries suggests a functional
role of PARP1 in demarcating exons. Thus, the
binding of PARP1 preferentially at exonic sequences,

especially upstream of 5′ and 3′ of splice sites, is
consistent with the model that proteins that
regulate splicing bind pre-mRNA at functional
regions.

To better understand the impact of PARP1 in spli-
cing, we combined PAR-CLIP data with the analysis of

Figure 4 Loss of PARP1 targeted transcriptional and splicing regulation. (a) Experimental and computational workflow for
analyzing the intersection of RNAs bound by PARP1 and RNAs whose expression is mediated by PARP1. Left side shows PAR-
CLIP workflow, whereas the right side shows RNA-seq workflow after PARP1 depletion (b). Gene Ontology (Molecular function
terms) for genes with significantly changed expression in PARP1 knockdown cells. (c) Proportion of genes overlapping in
combined RNA-seq/PARP1-PAR-CLIP data sets. (d) Percentage of the alternative splicing events identified as PARP1 mediated
with PARP1 knockdown: alternative 3′ splice site (orange); alternative 5′ splice site (green); mutually exclusive exons (purple);
retained intron (pink); skipped exon (blue). (e) Gene Ontology analysis (molecular function terms) of the genes identified as
PARP1-regulated at the splicing level.
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splicing profiles upon PARP1 depletion to determine
the position-dependent regulatory effects of PARP1–
RNA interactions. To this end, we analyzed the
rMATS outputs for skipped exon events using the
bioinformatics software rMAPS [33], which system-
atically generates RNA maps for the identification of
position-dependent effects of RNA-binding proteins.
The rMAPS program is extremely useful for the com-
putational detection of binding sites around differential
alternative splicing events for over 100 of known RBPs.
Using the rMAPS-based analysis (with default para-
meters), along with the list of all PARP1 PAR-CLIP
peaks and detected skipped exon events, we identified
binding patterns of PARP1 within the PARP1-depen-
dent alternatively spliced exons (Figure 5b). Restricting
the analyses to only significant exon-skipping splice
events, we found that for those enhanced and included
exons, there is a significant PARP1 binding occurring
about 125 bp downstream of the adjacent 5′ exon, and
binding occurring about 250 bp upstream of the adja-
cent 3′ exon (peaks in red). If the exon is excluded,
there is a significant binding of PARP1 within the exon
itself (in blue) as well as within the upstream and
downstream introns. Although it is possible that fac-
tors related to translational efficiency and/or RNA
stability may affect the regulatory landscape of
PARP1-responsive splicing events, the differential
expression of the PARP1 together with the enrichment
of PARP1-binding and its positional enrichment rela-
tive to the regulated exons suggests that many or most
of the identified skipped exon splicing events are likely
direct targets.

Biochemical characterization of PARP1 protein–RNA-
binding sites

PARP1 encompasses several functional domains:
three zinc-finger domains (Zn1, 2, and 3), a nuclear
localization signal region, a breast cancer suppressor
protein-1 domain (BRCT), a WGR domain (auto-
modification domain), and the catalytic PARP domain
(Figure 6a). To begin to understand PARP1-RNA
binding, we purified recombinant full-length human
PARP1 (PARP1-FL) and truncated mutants lacking
the C-terminal catalytic active site (ΔCAT), the DBD
—the first two zinc fingers (ΔZn1Zn2); the third zinc-
finger domain (ΔZn3), the automodification domain
(ΔWGR), or the protein–protein interaction domain
(ΔBRCT domain) from bacterial cells (Figure 6b).
Their presence was confirmed through western blot
analyses using PARP1 antibody (lanes 1–6, respec-
tively; Figure 6c) and their proper folding confirmed
using circular dichroism spectroscopy analyses

(Supplementary Figure S8a). We addressed whether
PARP1–RNA direct binding is dependent on other
factors, such as contaminating DNA and/or PARP1
PARylation. First, recombinant PARP1-FL was
incubated with a radiolabeled synthetic 19-mer ssRNA
(chrom15: 53554024-53554044) corresponding to one
of the binding sites identified by PAR–CLIP. The
protein–RNA complexes were then resolved on a
native polyacrylamide gel (Figure 6d and
Supplementary Figure S8b). A supershift correspond-
ing to PARP1–RNA complex was observed
(Supplementary Figure S8b, lane 2). Second, the
PARP1–RNA complex was treated either DNase1 or
RNaseA, confirming that RNA is the nucleotide spe-
cies bound by PARP1 as DNase1 treatment did not
change the binding profile but RNaseA completely
digested the RNA (Supplementary Figure S8b, lanes 5
and 6, respectively). In addition, treatment of PARP1
with PJ34 did not inhibit PARP1 binding to RNA
(Supplementary Figure S8b, lane 4), whereas PAR-
ylation of PARP1 by NAD+ abolished its RNA-
binding (Supplementary Figure 8b, Lane 3), indicat-
ing that PARP1–RNA binding is due to PARP1 and
not PAR. As a control, RNA was incubated with
increasing amounts of bovine serum albumin and no
significant shift in RNA mobility was observed (data
not shown).

We next asked which domain of PARP1 is required
for its PARP1–RNA binding. EMSA was performed
using PARP1-FL as well as truncated mutants by
individually incubating them with the radiolabeled
synthetic 19 mer RNA (as above; Figure 6d). As seen
previously, discrete shifted bands corresponding to
PARP1–RNA complexes were observed for all the
proteins tested. We then determined the binding affi-
nities of PARP1-FL and mutants to RNA by per-
forming EMSA, incubating 0.05 μMradiolabeled 19-nt
RNA with increasing concentrations (0–2.5 μM) of
PARP1-FL or truncated proteins (Figure 7a–f). The
fraction bound to total RNA as a function of increased
protein concentration for each protein was used to
calculate the affinity of that particular protein for RNA
(Figure 7g and Supplementary Figure S9). Interest-
ingly, these proteins bind with different stoichiometry,
and this difference in binding stoichiometry was taken
into account when calculating the affinity
constants−Kassoc (Table 2). These results show only a
two- to threefold difference in affinity to RNA between
the PARP1 proteins—with PARP1-FL having the
highest affinity, whereas ΔZn3 showed the lowest affi-
nity, followed byΔZn1ΔZn2 (Table 2). These data are in
line with previous studies that showed that PARP1 binds
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RNA via its zinc-finger 3 domain [34]. Interestingly,
deletion of another region previously implicated in
binding RNA (WGR) did not significantly change the
affinity from that of the PARP1-FL. Similar binding
affinity results were obtained using RNAs of different
lengths (20 and 24 nt; Supplementary Table S6). At first
surprising, similar small differences in affinity have also
been recorded for the binding of these constructs to
DNA [35], although PARP1 is a well-known DNA-
binding protein. These previous results hypothesized that
all the domains of PARP1 contribute to its DNA-
binding interactions. We believe that a similar scenario
is occurring with PARP1 binding to RNA.

Following on these results, we examined the possibi-
lity that RNA activates PARP1 and showed that, just
like DNA, RNA activates PARP1, albeit at a lower
extent (Supplementary Figure S10). Finally, we per-
formed a competition assay to test whether PARP1
preferentially binds DNA to RNA. Equal concentration
of radiolabeled 19-mer RNA and radiolabeled ssDNA
of the same sequence was incubated together with
increasing concentrations of the different PARP1

constructs. As the ssRNA and ssDNA of the same
sequence run with different gel mobility, it allowed us to
quantify the disappearance of the RNA and DNA in the
presence of these recombinant PARP1 proteins. This
analysis revealed that PARP1-FL had a 25-fold affinity
to DNA than RNA (Figure 8a for PARP1-FL). A
similar result was observed with the other constructs
(Table 3) except for theΔZn1ΔZn2mutant. This mutant
switched PARP1’s binding preference from DNA to
RNA, with a sevenfold preference for RNA to DNA
(Figure 8b and Table 3). These results indicate that, once
the Zn1Zn2 site is unavailable, PARP1 preferentially
binds RNA and suggest that the DNA binding is dif-
ferent from the site needed to bind RNA.

Discussion

The transcriptome analysis performed here by high-
throughput PAR-CLIP sequencing provides new
insights into the endogenous RNA targets of PARP1.
We found that PARP1 binds RNA in vivo (Figure 1).

Figure 5 Positional analysis of PARP1-PAR-CLIP tags, with respect to splicing functions. (a) The number of PAR-CLIP
sequences covering exon boundaries (red) compared to the number of sequences covering randomly shuffled exons (blue) and
randomly selected 5 000-bp regions (green). (b) Maps for PARP1-PAR-CLIP read enrichment for the skipped exon events from
RNA-seq of PARP1 knockdown and control (non-targeting siRNA) experiments are shown for enhanced (red) and silenced (blue)
splicing events. Solid lines represent the peak quality score (peak height) as scaled on the left. Dotted lines represent the
significance score (P-value) as scaled on the right. The level of significance was determined by comparison to a ‘Background set’
of 32 114 of non-impacted alternative exons (rMATs FDR 450%) in expressed genes (FPKM45.0). Only events showing
P≤ 0.05, FDR≤ 0.05, and a minimum inclusion level difference ≥ 0.1 were considered. The green box indicates the PARP1-
regulated exon.
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We also observed that, whereas the main target of
PARP1-RNA binding in vivo is mRNA, it also binds
other non-coding RNAs (Figure 2), suggestive of a
functional role of PARP1 in their regulation. Within
mRNAs, we find that PARP1 associates mainly with
intronic sequences (Figure 2). However, since introns
are very long and PARP1–RNA targets could target
different regions of a particular intron, we also ana-
lyzed the density of the reads at functional splice sites.
Our results show that there is a high density of PARP1–
RNA binding at exon–intron boundaries and intron-
exon boundaries (Figure 5). These results could suggest
that PARP1 demarcates exons. Interestingly, we pre-
viously had showed that PARP1 binds GC-rich
nucleosomes at exon boundaries [20]. It is therefore
logical to assume that it binds to similar regions on
chromatin as well as on RNA, possibly by recognizing

specific sequences or structures on DNA and/or RNA.
However, additional studies are needed to determine
the structural implications of PARP1 binding. We
further combined the PAR-CLIP-seq analysis with full
transcriptome-wide analysis of gene expression and
splicing changes upon PARP1 depletion. Combining
PAR-CLIP and RNA-seq data allowed us to draw a
PARP1 RNAmap, which suggested that the binding of
PARP1 on exons and in intronic regions immediately
surrounding the regulated skipped exon leads to silen-
cing of the downstream exon. PARP1 binding to
introns further upstream and downstream of the skip-
ped exon enhances exon inclusion (Figure 5b). The
high distribution of PARP1 in introns (Figure 2)
enhances the idea of a regulatory role of PARP1 in
splicing, as intronic-binding proteins such as
HNRNPU [36], HNRNPH1 [37], and HUR [38] have

Figure 6 PARP1–RNA domain interactions. (a) Schematic structure of PARP1 showing the various functional domains important
in PARP1 activation, localization, and activity. The first three N-terminal domains (residues 1–353) are zinc-finger DNA-binding
domains with distinct functions in PARP1 DNA nick-mediated activation. The central, auto-modification region of PARP1 contains
a BRCT domain (residues 389–487), as well as flanking residues that serve as sites of auto-ADP ribosylation. Adjacent to the
BRCT domain is a WGR domain (residues 518–643) followed by the catalytic domain (residues 662–1 014), which possesses
activities related to the ADP-ribose adduct formation, elongation, and branching activity. Below are the various PARP1 constructs
created to test the RNA-binding activity of PARP1. (b) Coomassie gel staining of purified recombinant full-length PARP1 and the
truncated PARP1 proteins. (c) Western blot analysis of PARP1 and truncated PARP1 proteins. (d) Gel shift assays showing the
binding of RNA by various proteins, PARP1 full-length, and truncations.
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been implicated in splicing decisions. Under this sce-
nario, the binding of PARP1 to intronic sequences
mediates splicing; however, it can also remain asso-
ciated with the mature mRNAs to help in other post-
transcriptional mRNA processes. This seems to be
occurring, as we observe a high PARP1 PAR-CLIP
read density, at the ends of exons (exon–intron and
intron–exon boundaries depicting 3′ and 5′ splice sites,
respectively), and is in line with other intron-binding
proteins [39]. Noteworthy is the fact that proteins that
bind at exons interact with the RNA after transcription
and initial RNA processing, whereas the intron binders
are present during transcription [21], thus supporting
their role in co-transcriptional splicing. However,
because of the low CLIP efficiency (only ~ 1% of
transcripts are crosslinked), it is difficult to distinguish
whether the PARP1–RNA interactions are on pre-

mRNA transcripts or whether a subset of these
mRNAs is subsequently processed (in either alternative
exons or poly (A) sites). On the other hand, our RNA
map of PARP1 binding (Figure 5b) provides a func-
tional landscape of significantly skipped alternative
splicing regulation by PARP1 that can be used in
future studies to further characterize the regulation of
AS by PARP1. PARP1 could be modulating splicing
decisions through two mutually non-exclusive
mechanisms: (i) maintaining a chromatin structure
that affects RNA polymerase kinetics and/or (ii)
recruiting and PARylating splicing factors to splice
sites on nascent mRNAs while bound onto chromatin.

PARP1 has been implicated in many cellular pro-
cesses. In this study, we focused on the observation that
PARP1 is involved in splicing regulation [20]. The
means by which PARP1 regulates alternative splicing is

Figure 7Gel-shift assays for the binding of PARP1 proteins to single-stranded 19-mer RNA. (a–f) Full-length PARP1 proteins and
the truncated mutants bind single-stranded 19-mer RNA. In these experiments, RNA (0.05 μM) was incubated with increasing
concentrations of the six different [PARPs] (0–2.5 μM from left to right). The lower bands indicate free RNA and the upper bands
are PARP1–RNA protein complexes. (g) Associated binding isotherm analysis. The slope of each isotherm is a measure of
stoichiometry for the individual PARP1 protein binding to the RNA. Values of n and K are summarized in Table 2.
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still unknown. Earlier understanding of gene expres-
sion regulation suggested that DNA-binding proteins
responded to sequence composition and chromatin
context to promote transcription of RNA [40, 41].
RNA-binding proteins (RBPs) then bind these nascent
transcripts to direct mRNA splicing, stability, locali-
zation, and translation [42, 43]. However, recent
advances profiling nucleic acid–protein interactions
find that many DNA-binding proteins also associate
with RNA to modulate both transcriptional and post-
transcriptional outcomes [19, 44–46], blurring this
long-standing dogma for gene regulation. The results
presented here also find that PARP1, a well-known
DNA/chromatin-binding factor, binds RNA, adding
to this growing list of proteins interacting with both
DNA and RNA to affect gene regulation. Our study
further suggests that PARP1 binding to RNA may
regulate gene splicing and/or generally different levels
of RNA biogenesis. Collectively, these studies suggest a
more intertwined gene regulatory network (transcrip-
tion and splicing) than had been previously
appreciated.

Indeed, it is now known that splicing is tightly
integrated with gene expression [47, 48], with splicing
controlling gene expression via nonsense-mediated [49]
or spliceosome-mediated [50] decay pathways.
Unspliced and partially spliced transcripts can be
deleterious for the cell [51, 52] and several quality-
control pathways exist to degrade these faulty tran-
scripts. The first and main line of protection (degra-
dation of these faulty transcripts) is through the nuclear
exosome process [53–55]. If this fails, a second line of
defense occurs via cytoplasmic surveillance pathways
[52], leading to cytoplasmic degradation. This can be
triggered in two ways—the nonsense-mediated decay
(NMD) pathway that recognizes premature stop
codons [56, 57] or by the non-stop decay pathway that
identifies transcripts lacking stop codons [58]. Inter-
estingly, PARP1 depletion led to an upregulation in the
expression of transcripts for protein products involved
in the NMD pathway, and a decrease in transcripts of

proteins involved in poly-A-RNA binding, showing a
clear intersection of PARP1 in RNA biogenesis. Sev-
eral studies implicate PARP1 in several steps of RNA
biogenesis such as RNA metabolism [59], mRNA
metabolism, and protein synthesis [3, 60]. Further-
more, splicing factor 3A subunit 1, splicing factor 3B
subunit 1, splicing factor 3B subunit 2 [61], and
alternative-splicing factor 1/splicing factor 3 [62] are
either targets of poly(ADP-ribosyl)ation or bind
directly to PARP1. The function of poly (ADP-ribose)
binding, the binding to PARPs, and ADP ribosylation
of these splicing factors is not well understood.

In these studies, we show that PARP1, a known
DNA-binding protein, binds RNA both in vivo
(Figure 1 and Supplementary Figure S1) and in vitro
(Figure 7). Our forward competition assays of PARP1
binding to DNA and RNA showed that, in the absence
of the Zn1Zn2 domain, PARP1 preferred binding to
RNA than to DNA (Figure 8). These results are con-
sistent with our idea of PARP1’s role in co-
transcriptional splicing [20], where PARP1 binds to
chromatin using the Zn1Zn2 domain, and when that
site is used it still has the ability to bind to nascent
mRNA through another domain. Does PARP1
recognize a specific RNA motif? Previous studies
showed that PARP1 binds the DNA motif, AGGCC
[63], and/or binds to the vicinity of the DNA motif,
GGAAGG [64]. In our analysis, we failed to find an
enriched RNA motif for PARP1 binding; we did,
however, find that PARP1 binds to RNA sequences
enriched in GC-rich sequences (Figure 3 and
Supplementary Figure S6). It is tempting to speculate
that in binding to these GC-rich sequences PARP1
recognizes a structure formed by these sequences. One
such structure is formed by G-quadruplexes, which
have also been implicated in splicing regulation. In
fact, PARP1 binds G-quadruplexes in vivo [65–67].
However, additional studies will be needed to test
whether PARP1 RNA targets form structures such as
the G-quadruplex.

Our results showing that deletion of the third zinc
finger of PARP1 resulted in the lowest affinity of this
mutant protein for RNA (Figure 7 and Table 2) sup-
port the idea that PARP1 uses its Zn3 to bind RNA
in vitro [34] or pRNA [17]. The small difference in
affinity between PARP1-FL and its truncation mutants
could imply that either: (i) all regions contribute to
RNA binding or (ii) as yet, there is an undiscovered
RNA-binding region of PARP1. These possibilities are
not far-fetched since other PARPs lacking of some of
the domains of PARP1 bind to RNA. For instance,
PARP12 and PARP13 bind RNA through its zinc

Table 2 Stoichiometries (n) and association constants (Kassoc) for

PARP1-FL and truncation mutants to 19-mer ssRNA

Protein type Kassoc (M
− 1) Stoichiometry (n)

PARP1-FL (1.95± 0.08) × 106 1.75 ± 0.20

PARP1-ΔWGR (2.91± 0.15) × 106 2.33 ± 0.18

PARP1-ΔCAT (1.05± 0.07) × 106 3.31 ± 0.32

PARP1-ΔBRCT (0.97± 0.06) × 106 1.17 ± 0.10

PARP1-ΔZn1ΔZn2 (0.86± 0.04) × 106 1.26 ± 0.11

PARP1-ΔZn3 (0.78± 0.03) × 106 1.19 ± 0.08
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fingers, whereas PARP14 and PARP10 have possible
RRMs present on different protein domains [68]. In
addition, PARP7, which lacks these zinc-finger
domains, still binds RNA [69]. As of now, it is not
clear whether there is an RNA recognition motif on
PARP1, although in addition to the zinc-finger 3
domain the WGR domain can also bind RNA [34].
Future studies will be critical to determine the exact
RNA recognition motif of PARP1.

In light of PARP1’s in vivo binding to RNA, its
effect on splicing, and its importance in the regulation
of transcript expression of some of the proteins
important for NMD and poly-A binding, it is provo-
cative and highly suggestive to hypothesize that
PARP1 is a protein involved in genome surveillance.
This hypothesis seems plausible if one considers its role
in DNA repair; whereas PARP1 does not execute the

repair itself, it binds to the site of damage and recruits
repair proteins to the site of repair [1]. Furthermore, in
transcription regulation, it stalls polymerase elongation
[6, 70], thereby possibly allowing proper genome sur-
veillance. Once surveillance is complete, in the absence
of any DNA damage, it then PARylates histones,
releasing the repression on polymerase elongation [5,
6]. We believe that this is also a likely scenario in
splicing. PARP1 by itself does not splice, but binds to
specific splice sites [20] (Figure 5), possibly recruiting/
activating splice factors to that region. Although
recruitment of splice factors has not been shown,
PARP1 PARylates and activates splicing factors [62].
In addition, this idea is also further bolstered when one
considers its functions at the 3′ ends of mRNA where
PARP1 PARylates poly-A binding protein (PAP), thus
decreasing the ability of the modified PAP to bind

Figure 8 In the absence of Zn1Zn2, PARP1 preferentially binds RNA in vitro. PARP1 was incubated with radiolabeled ssRNA and
radiolabeled ssDNA of the same sequence in the same reaction. (a) Radiolabeled 19-ntd ssRNA and ssDNA were incubated with
increasing concentrations of PARP1-FL. Left, EMSA of PARP1–DNA and PARP1–RNA complex formation with increasing
concentrations of PARP1-FL. The DNA band disappears faster than the RNA band. Right, graph depicts the relationship between
radiolabeled DNA/RNA and increasing concentration of recombinant PARP1 in the same binding reaction. (b) Radiolabeled 19-
ntd ssRNA and ssDNA were incubated with increasing concentrations ofΔZn1ΔZn2. Left: EMSA analyses showing the formation
of ΔZn1ΔZn2–DNA and ΔZn1ΔZn2–RNA complexes with increasing concentrations of ΔZn1ΔZn2. In the case of ΔZn1ΔZn2,
the RNA band disappears faster than the DNA. Right, graph depicts the relationship between radiolabeled DNA/RNA and
increasing concentration of recombinant ΔZn1ΔZn2 in the same binding reaction. Because of the inability to differentiate
PARP1–DNA complexes from PARP1–RNA complexes on the gel, the rate of disappearance of the DNA and RNA bands was
used as a proxy to measure the affinity of PARP1 for either DNA or RNA.
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RNA. This PARylation effect has also been shown for
several other 3′ processing factors such as PABPN1
and all CPSF subunits [59], pointing to the possibility
that PARP1 might be a general regulator of 3′ pro-
cessing. Lastly, the study of PARP1 under different
scenarios has probably led to the idea that it acts in so
many functions; however, it is also tempting to spec-
ulate that it acts generally as surveillance molecule that
ensures genome stability.

Our understanding of the role of PARPs and PAR in
transcriptional and post-transcriptional regulation of
gene expression through modulation of RNA is still in
its early stages. Our studies, however, provide a very
useful platform to begin to tease, uncover, and decipher
PARP1’s role in the many steps in RNA biogenesis.

Materials and Methods

Cell culture
HeLa cells were used for PAR-CLIP experiments. Cells were

grown at 37 °C in a humidified environment containing 5% CO2

and 95% air in Dulbecco’s modified Eagle’s medium (Sigma)
containing 1 mM sodium pyruvate, 0.1 mM nonessential amino
acids, and supplemented with 10% fetal bovine serum,
100 Uml− 1 penicillin, and 100 μg/ml streptomycin. For each
experiment, ~ 6× 108 cells (~ 60×15 cm cell culture plates)
were used.

PAR-CLIP methodology
Cells were cultured to 80–90% confluency, and then treated

overnight with 4-thiouridine to a final concentration of 100 μM
added directly to the cell culture medium. Cells were washed
with ice-cold phosphate-buffered saline (PBS), the liquid was
aspirated and the plates placed over ice and then irradiated with
UV light at 365 nm (150 mJ cm−2). Cells were then scraped off
the plates and collected by centrifuging at 2000 r.p.m. for
10 min.

PAR-CLIP was performed as previously described [26] with
some modifications. Briefly, 10 ml of packed cell pellet-UV-
treated cells were lysed with 3 volumes of 1 × NP40 lysis buffer
on ice for 5 min. Cells were pelleted by centrifugation at 18 000g
for 15 min using an Eppendorf 5810R centrifuge 5810R with an

A-4-81swing bucket rotor. The supernatant was filtered using a
5 μM syringe filter (Sterile Acrodisc Syringe Filters with Supor
Membrane; Ann Arbor, MI 48103 USA) to remove cellular
debris. The filtrate was partially treated with RNase T1 (Roche,
Pleasanton, CA, USA) to a final concentration of 1 U μl− 1 for
15 min. The RNase-treated supernatant was then incubated for
2 h with 600 μl of protein A dynabeads (Invitrogen, Thermo
fisher Scientific, Waltham, MA,USA) bound to 15 μg of anti-
PARP1 antibody (Active Motif, Carlsbad, CA, USA) or control
IgG antibody. The beads were washed three times and the
immunoprecipitated RNAwas digested again with RNase T1 to
a final concentration of 63 U μl− 1 for 15 min. After depho-
sphorylation, the RNA segments crosslinked to PARP1 were 5′-
radiolabeled using γ-32P-ATP and T4 polynucleotide kinase
(Promega Madison, WI, USA) in one original bead volume.
After several washes, each CLIP sample (on the beads) was then
treated with 5 U of DNase1 (NEB Ipswich, MA, USA) for every
100 μl of bead volume for 15 min at 37 °C. DNase1 was inacti-
vated by adding 5 mM EDTA and heated at 65 °C for 10 min.
Samples were then resuspended in SDS-PAGE loading buffer,
incubated at 95 °C for 5 min to denature, and the PARP1-RNA
crosslinks were release. The samples were then separated on 4–
12% NuPAGE gels (Invitrogen) and transferred onto nitro-
cellulose membranes (1/10th of the sample was used for immu-
noblotting and the rest of the sample was used for
autoradiography). The gel containing 1/10th of the sample and
the membrane containing 9/10th of the sample were exposed to a
phosphorimager screen overnight and visualized by scanning on
a Typhoon FLA 9500. PARP1–RNA complexes were cut from
the membrane, treated with proteinase K (Roche), followed by
Phenol/Chloroform/IAA extractions and ethanol precipitation.
The recovered RNA was used for cDNA library preparation.

For this purpose we used NEBNext Multiplex Small RNA
Library Prep Set for Illumina (Set 1). Library preparation
including 3′ and 5′ SR Adaptor ligations, reverse transcription,
and PCR amplification, which were performed according to the
manufacturer’s protocol. To remove adaptor-only ligation
products, after every step of the protocol (3′ adapter ligation and
5′ adapter ligation) samples were purified using 15% acrylamide-
8M Urea gels. Lastly, after limited PCR amplification PCR
products were size-selected on a 3.5% NuSieve (Lonza Walk-
ersville MD, USA) low-melting point agarose gel. Expectant
PCR products were eluted using the ‘crush and soak’ method,
followed by purification using a Qiagen min-elute PCR column.
Samples were then first cloned into the Topo TA vector for pilot
analysis and then sequenced using 100 bp paired-end sequencing
on an Illumina HiSeq 2500.

Western blot analysis
Protein samples were resuspended in SDS sample buffer, and

then separated on 4–12% NuPAGE gel (Invitrogen, Thermo
fisher Scientific, Waltham, MA, USA), transferred onto nitro-
cellulose membranes, blocked with 5% fat-free milk in PBST,
and incubated with primary antibodies for 16 h at 4 °C. After
several washes with PBST, the membranes were incubated with
secondary antibodies conjugated to alkaline phosphatase for 1 h
at room temperature, and a signal was developed with ECL

Table 3 Relative binding affinities from competition EMSA

experiments for PARP1-FL and truncation mutants to 19-mer

ssDNA compared to 19-mer ssRNA

Protein type KDNA/KRNA KRNA/KDNA

PARP1-FL 25.3± 3.0 0.001± 0.02

PARP1-ΔWGR 26.5± 2.4 0.024± 0.011

PARP1-ΔCAT 15.7± 3.9 0.046± 0.021

PARP1-ΔBRCT 42.3± 1.2 0.001± 0.016

PARP1-ΔZn1ΔZn2 0.015 3± 0.021 7.2± 0.7

PARP1-ΔZn3 23.1± 5.2 0.032± 0.017
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reagents (GE Healthcare, Pittsburg, PA, USA). Images were
obtained using a Typhoon 9400.

Antibodies. The following antibodies were used in this study:
CHIP-grade PARP1 antibody (Active Motif: 39559).

PARP1 knockdown. The ON-TARGETplus Human PARP1
siRNAs (purchased from GE Healthcare Dharmacon, Dhar-
macon, Lafayette, CO, USA) and DharmaFECT 1 transfection
reagent were used to deliver siRNAs into HeLa cells according
to the manufacturer’s protocol. In brief, 2 × 105 cells/well plated
on six-well plates were starved by incubating the cells in 2 ml of
antibiotic-free complete medium with 10% serum for 2 h. Then,
50 nM of the ON-TARGETplus Human PARP1 siRNAs were
added to serum-free DMEM (180 μl) in one tube, and Dhar-
maFECT 1 (2.4 μl) was added to 197.6 μl of serum-free medium
in another tube. The contents of each tube were gently mixed
individually for 5 min at room temperature and then combined.
This mixture was then incubated at room temperature for an
additional 20 min. For control samples 2.4 μl of DharmaFECT
1 was added to 400 μl serum-free medium. Subsequently, an
additional 1600 μl serum-free medium was added to each mix-
ture of 400 μl for a final volume of 2 000 μl transfection medium
and a final siRNA concentration of 50 mM. The starvation
media from the cells were then removed and replaced with the
2000 μl transfection mixture. Cells were further incubated for 1 h
at 37 °C before 10% serum was added. Cells were then allowed
to grow for 24–48 h. This procedure was repeated three times,
every 24–48 h. After that, the cells were collected and analyzed
for mRNA or PARP1 protein to check the target gene knock-
down efficiency. A total of seven independent experiments were
performed.

Purification of human full-length PARP1 and its truncated
mutants. His-tagged PARP1 expression vectors were a kind
gift from the Pascal Laboratory (University of Montreal), and
purified as previously described [71]. Briefly, the sequences
corresponding to full-length PARP1 (aa 1–1 014), ΔCAT (aa 1–
662),ΔZn1ΔZn2 (aa 216–1 014), ΔZn3 (truncated aa: 232–374),
ΔBRCT (truncated aa: 367–494), and ΔWGR (truncated aa:
518–654) were cloned into pET28 expression vector. Proteins
were expressed in One Shot BL21 (DE3) pLysS competent cells
(E. coli) and purified using three subsequent chromatographic
fractionations: (1) a Ni2+ affinity column (Ni-NTA agarose,
Qiagen Valencia, CA, USA), (2) a heparin column (5-ml HiTrap
Heparin HP Column, GE Healthcare), and (3) a gel filtration
column (Superdex S200 size exclusion column, GE Healthcare,
Pittsburg, PA, USA). Pooled fractions were required to monitor
expression, purity and analyze fractions; we used SDS-PAGE
(NuPage, 4-12% Bis-Tris, Invitrogen). The desired fractions
were then concentrated using an Amicon Ultra spin con-
centrator with a 10 000 molecular weight cutoff (Millipore,
Billerica, MA 01821 USA). Protein concentrations were deter-
mined with the Pierce BCA Protein Assay Kit (Thermo Scien-
tific, Thermo fisher Scientific) and by absorbance at 280 nm
using the molar extinction coefficients calculated for each
PARP1-protein: 1.19× 105 M− 1 cm− 1 (PARP1-FL), 1.14× 105

M− 1 cm− 1 (ΔBRCT), 9.23 × 104 M− 1 cm− 1 (ΔWGR), 9.82 × 104

M-1cm− 1(ΔZn3), 8.82× 104 M− 1 cm− 1 (ΔZn1ΔZn2), and
8.43 × 104 M− 1cm− 1 (ΔCAT).

Electrophoretic mobility-shift assay
Electrophoretic mobility-shift assay (EMSA) analysis was

performed according to standard procedures. RNA oligonu-
cleotides (19-mer with the sequence: CGUACGCGGG
UUUAAACGA) containing the binding sites for PARP1 were
labeled at the 5′ termini with 32P. For binding assays, a constant
amount (0.05 μM) of labeled RNA probe was preincubated with
increasing concentrations of PARP1 protein range 0–2.5 μM in
a final volume of 20 μl at room temperature for 30 min in 25 mM
Tris (pH 7.5), 75 mM NaCl, 50 mM arginine, 0.1 mM TCEP,
and 0.1 μg μl− 1 bovine serum albumin. The RNA–protein
complexes were then analyzed by electrophoresis on native 10%
polyacrylamide gels (75:1 acrylamide:bisacrylamide) in Tris-
borate-EDTA buffer, followed by autoradiography. Auto-
radiographic images were captured on a storage phosphor
screens (type GP, GE Healthcare, Pittsburg, PA, USA) detected
with a Typhoon FLA 9500 and quantitated with Image-Quant
TL software (GE Healthcare).

Self-consistent estimates of binding stoichiometry (n) and the
association constant (Kn) were obtained by the method of Fried
and Crothers [72, 73]. For a single binding step in which n
protein molecules associate with RNA (R is used to represent
RNA in the equation) the association constant is Kn = [PnR] /
[R][P]nfree. Separating variables and taking logarithms gives:

ln PnR½ �= R½ �ð Þ ¼ nln P½ �free þ lnKn

For these experiments, [R]totaloo [P]total, so [P]total is an
acceptable estimate of [P]free. Thus, a graph of ln([PnR]/[R) as a
function of ln[P]free has a slope equal to the stoichiometry of the
binding step, n. The equilibrium constant is most simply esti-
mated at the midpoint, where ln([PnR]/[R]) = 0 and lnKn =− n
ln[P]free. Because the assessed stoichiometries differ for different
complexes, we estimated the equilibrium constants for the
overall reactions, Kn (M− n) and the corresponding monomer-
equivalent association constants, K (M− 1).

For competition assays, equimolar amounts (0.05 μM) of
radiolabeled ssRNA and radiolabeled ssDNA of the same
nucleotide sequence were mixed in a 20 μl reaction and incu-
bated with increasing concentrations of PARP1-FL or its trun-
cated mutants (0–2.5 μM). The binding reaction was performed
as described above. The ratio of binding affinities KDNA/KRNA

was determined from the relationship [72, 73]

KDNA=KRNA ¼ PmD½ �= D½ � P½ �mð Þ= PnR½ �= R½ � P½ �nð Þ
Wherem and n are the stoichiometries of the binding of protein
to DNA and RNA, correspondingly, calculated from single
titration experiments of PARP1 proteins (PARP1-FL and
mutants) to DNA and RNA (PARP1–DNA titration is not
shown). As PARP1–RNA and PARP1–DNA complexes co-
migrate under the electrophoretic conditions of our experiments,
[PmD] and [PnR] were calculated according to the relationships
[PmD] = ([D]0–[D]free) ×m and [PnR] = ([R]0–[R]free) × n. [D]0
and [R]0 are the initial concentrations of DNA and RNA,
respectively, and [D]free and [R]free are the free concentrations of
the competitors at each PARP1 concentration in the initial
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titration experiment. Because all the components of the equation
can either be measured or calculated from our experimental
data, KDNA/KRNA for the modest values of [PARP1] was cal-
culated from the plots and the ratio of binding affinities esti-
mated from the linear part of the plot by extrapolation to the
[PARP1] = 0.

RNA markers used in PAR-CLIP experiments. 19-mer: CCG
UACGCGGGUUUAAACGA 24-mer: CGUACGCGGA
AUAGUUUAAACUGU

ssRNA used for gel-shift. 19-mer: UAGGCACCGGCAUC
UUGAC 20-mer: CCGUACGCGGGUUUAAACGA
24-mer: CGUACGCGGAAUAGUUUAAACUGU

ssDNA used for gel-shift. 19-mer: TAGGCACCGGCA
TCTTGAC

DNA and RNA sequences used for PARP1 activation studies.
dsDNA is the 601 widom sequence: 5′-ctggagaatccc
ggtgccgaggccgctcaattggtcgtagacagctctagcaccgcttaaacgcacgtacg
cgctgtcccccgcgttttaaccgccaaggggattactccctagtctccaggcacgtgtca-
gatatatacatcctgt-3′ dsRNA was made from in vitro tran-
scription of the widom sequence using the MEGAscript T7
Transcritpion kit (AM1334).

PARP-1 enzymatic assay. PARP1 (constant at 1 μM) and
'activators' (DNA or RNA; 1–2 μM) were mixed to a final
volume of 20 μl in 50 mM Tris (pH 8), 50 mM NaCl, 10 mM
MgCl2, and 1 mM DTT and allowed to incubate for 1 h at 30 °
C. Twenty microliters of the NAD+ stock (1 mM) were added to
the above tubes for the final 500 μM [NAD+]. Reactions were
quenched after 1 min with 5×Laemmli buffer, were immedi-
ately boiled for 3 min, and were analyzed by 8% SDS-PAGE.
Gels were stained with coomassie. If the protein is active, with
NAD+ in the presence of 'activators', it makes higher molecular
weight smeared band.

Bioinformatic analyses. CLIP-seq analyses: Replicate libraries
were multiplexed and sequenced on an Illumina Hi-seq 2500
using 100 bp paired-end sequencing. Each library yielded
between 0.9 and 97 million unique reads (Supplementary Table
S1). Biological replicates were performed to avoid possible
confounds in the data sets introduced by Illumina sequencing
artifacts; all bioinformatics analyses were performed indepen-
dently for each CLIP sample and all conclusions were inde-
pendently validated for all CLIP samples. Since very similar
conclusions were obtained, the replicates were combined for the
subsequent analyses. Adapters and primers were trimmed
from the sequences using a custom script trimAdapters.pl, which
incorporated Trimmomatic v0.33 [74]. Quality control was
checked using FastQC [75] v0.11.4. Trimmed reads were then
concatenated as single-end reads and aligned to the human hg38
genome assembly. Reads were then aligned to the genome both
without a reference transcriptome using bowtie v1.1.1 [76] and
with a reference transcriptome using tophat v2.0.13 [77, 78] and
the Ensembl v82 gtf [79, 80]. PAR-CLIP peaks were analyzed
using PARalyzer (v1.5) [29]. The PARalyzer analysis required
several steps. In addition to considering the samples

independently, the samples were combined as they theoretically
represent technical replicates. The first step to prepare sequences
for PARalyzer was to filter the sequences using fastx_collapser
v0.0.14, which is part of the FASTX Toolkit [81]. The collapsed
sequences were then aligned to the human hg38 reference gen-
ome assembly using bowtie with the PARalyzer-suggested
parameters. Results from PARalyzer were then parsed into
evidence and sequence files using a custom script, which pre-
pares the files for input into the motif detection program cER-
MIT v1.0.1 [31]. Correlation between replica was performed as
follows: normalized read counts for each PAR-CLIP peak were
obtained by first dividing the total number of aligned reads in
the sample by one million and then dividing the number of reads
for each peak by this value. A Pearson correlation was calcu-
lated on normalized read counts for intersecting peaks across the
samples. Intersecting peaks were those peaks covering the same
genomic location by one or more nucleotides.

Genomic feature determination. In order to assign mappings to
each of the PAR-CLIP peaks (including intronic, exonic, intergenic,
promoter, 5′UTR, and 3′UTR), each of these regions was marked
on the hg38 assembly of the human genome using Ensembl genes
and transcripts [80]. Annotations for each region were obtained
using the Biomart [82] tools from Ensembl for the GrCh38 (hg38)
assembly. A custom perl script was used to parse out each of these
features into chromosome-specific files. Once all files were parsed,
all of the regions of each chromosomewere assigned to a value. The
peaks (in bed format) along with the alignments for the collapsed
sequences (in bowtie format) were used to create genome tracks for
the UCSC genome browser (see Supplementary Data 1).

Motif analysis. K-mer enrichment motif analysis was carried
out calculating 4-mer enrichments by sliding within a 20-nt-long
window along PAR-CLIP clusters and using the shuffled (10 000
times) hg38 human protein-coding open reading frames as
background sequences.

Exon–intron and intron–exon boundary analyses. Exonic
regions on the Homo sapiens reference genome assembly hg38
were retrieved from the Ensembl database [83]. The exonic
regions were filtered to include only exons on protein-coding
transcripts. In addition, duplicated exon start and end locations
across transcripts for the same gene were removed from the
analysis. Specifically, for the analysis of exon to intron bound-
aries, duplicated exon end locations on the forward DNA strand
and duplicated exon start locations on the reverse DNA strand
were removed. For the analysis of intron to exon boundaries,
duplicated exon start locations on the forward DNA strand and
duplicated exon end locations on the reverse DNA strand were
removed. This resulted in 281 967 unique exon–intron locations
and 278 090 unique intron–exon locations. A custom C++
program was created to count the number of PAR-CLIP
sequences covering each base for a distance of 100 bases in the
exon and 300 bases in the intron from all exon boundaries. Two
complementary methods were used to establish the number of
PAR-CLIP sequences expected to cover a genomic region at
random. One method utilized the Shuffle tool in the Bedtools
package [84] to randomly position exon starting and ending
locations while preserving the number and size of exonic regions
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on individual chromosomes. The second method utilized the
Random tool in the Bedtools package to obtain 150 000 random
sequences of 5 000 bases in length, the maximum length of the
majority of intronic regions [85]. With this method, the starting
location for each region represented an exon to intron boundary,
and the ending location represented an intron to exon boundary.
Half of the sequences were used in the analysis of exon to intron
boundaries with the other half used for the analysis of intron to
exon boundaries. The C++ program mentioned above was used
to count PAR-CLIP sequences covering each base for 100 bases
into a simulated exonic region and 300 bases into a simulated
intronic region.

RNA-seq analysis after PARP1 knockdown. RNA-seq librar-
ies were constructed using the TruSeq stranded mRNA LT
Sample preparation Kit with poly-A enrichment according to
the manufacturer's instruction. The libraries corresponded to the
three control samples (cells treated with non-targeting, siRNA,
Dharmacon Inc.) and three PARP1 knockdown (Dharmacon
Inc). These libraries were multiplexed and sequenced on the
Illumina NextSeq 500 using the NextSeq 500/550 2× 75 cycle
High Output Kit v2 (Cat# FC-404-2002).

Differential gene expression and alternative splicing analysis.
RNA-seq reads were mapped to the hg38 reference genome
assembly using tophat2 (version 2.0.13) [78], generating align-
ment files in bam format. PARP1 regulated differentially
expressed genes were detected using the tuxedo suite of pro-
grams including cufflinks-cuffdiff2 (version 2.2.1). Differentially
expressed genes were considered significant with P-value≤ 0.05
and |FC| Z1: We next identified PARP1-regulated differ-
ential alternative splicing events corresponding to five major
types of alternative splicing event patterns by rMATS (v3.2.5)
[86]. For each alternative splicing event, both the reads mapped
to the exon–exon junction and the reads mapped to the exon
body were used as rMATS input. Putative PARP1-regulated AS
events were identified as those with significant difference in
inclusion levels (|ΔPSI|≥ 5%) between knockdown and control
at an false discovery rate (FDR)o5%.

rMAPS. In order to determine the binding patterns of PARP
within significantly detected skipped exon events, the PAR-
CLIP peaks and all detected skipped/retained exon events were
used as input into the rMAPS [33] server. The rMAPS server
differentiates between significant skipping and inclusion events,
and determines differential binding associated with each type of
event in comparison to background introns and exons.

Data deposition. RNA-seq data are deposited in GEO
(GSE91051) along with the PAR-CLIP data (GSE95360). The
processed files for the PARCLIP peaks, differential gene
expression, and alternative splicing analysis are provided as
Supplementary Data 1. Visualization tracks for PARCLIP and
RNASeq data are provided as a track hub on the UCSC Gen-
ome Browser (http://bit.ly/2l7f5OY).
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