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Technologique, Institut Universitaire d’Hématologie, Paris, France; and 9Unité de Médecine Interne, Maladies Autoimmunes et Pathologie Vasculaire, UF 04, AP-HP, Centre de
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Key Points

•Clinical response of
SSc patients after
AHSCT is associated
with thymic and bone
marrow rebounds.

• Responder patients
showed higher Treg
and Breg counts and
lower pre-/post-
AHSCT TCR repertoire
overlap than non-
responder patients.

To evaluate the immunological mechanisms associated with clinical outcomes after

autologous hematopoietic stem cell transplantation (AHSCT), focusing on regulatory T- (Treg)

and B- (Breg) cell immune reconstitution, 31 systemic sclerosis (SSc) patients underwent

simultaneous clinical and immunological evaluations over 36-month posttransplantation

follow-up. Patients were retrospectively grouped into responders (n 5 25) and nonre-

sponders (n 5 6), according to clinical response after AHSCT. Thymic function and B-cell

neogenesis were respectively assessed by quantification of DNA excision circles generated

during T- and B-cell receptor rearrangements. At the 1-year post-AHSCT evaluation of the

total set of transplanted SSc patients, thymic rebound led to renewal of the immune system,

with higher T-cell receptor (TCR) diversity, positive correlation between recent thymic

emigrant and Treg counts, and higher expression of CTLA-4 and GITR on Tregs, when

compared with pretransplant levels. In parallel, increased bone marrow output of newly

generated naive B-cells, starting at 6 months after AHSCT, renovated the B-cell populations

in peripheral blood. At 6 and 12 months after AHSCT, Bregs increased and produced higher

interleukin-10 levels than before transplant. When the nonresponder patients were

evaluated separately, Treg and Breg counts did not increase after AHSCT, and high TCR

repertoire overlap between pre- and posttransplant periods indicated maintenance

of underlying disease mechanisms. These data suggest that clinical improvement

of SSc patients is related to increased counts of newly generated Tregs and Bregs after

AHSCT as a result of coordinated thymic and bone marrow rebound.

Introduction

Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular damage and
progressive fibrosis within the skin and internal organs.1,2 Conventional therapy has limited benefit on
disease control and modest impact on mortality.3-6 Three randomized studies have shown that
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autologous hematopoietic stem cell transplantation (AHSCT) has
superior efficacy when compared with conventional therapy for
SSc.7-10 Nevertheless, clinical guidelines and immune monitoring
studies after AHSCT aim to further improve patient care and
transplant outcomes.11-13

In SSc, decreased regulatory T-cell (Treg) counts and im-
paired immunosuppressive function have been associated with
loss of self-tolerance, correlating with disease severity.14-17 Di-
minished thymopoiesis and abnormalities of T-cell receptor (TCR)
repertoire, with fewer polyclonal families, overexpression of skewed
families, and reduced overall TCR diversity were described.18,19

The role of B cells in the pathogenesis of SSc has been
investigated,20 with reports of B-cell hyperactivation,21-23 autoan-
tibody production,24 decreased regulatory B-cell (Breg) counts,
and impaired interleukin-10 (IL-10) production.25,26

AHSCT aims to deplete the autoimmune repertoire and gener-
ate a new immune system, thereby reestablishing a state of
autotolerance, already shown in multiple sclerosis,27,28 systemic
lupus erythematosus,29,30 juvenile arthritis,31 Crohn disease,32 and
SSc.19,33 In SSc, we previously showed how posttransplant CD4
T-cell reconstitution correlates with long-term clinical response to
AHSCT.19,33 However, recovery of specific lymphocyte subpopu-
lations, including those with regulatory functions, as well as thymic
and bone marrow functions, and how they may be associated with
clinical outcomes remain to be assessed. Here, we analyzed the
immunological profile and T- and B-cells immune reconstitution of
SSc patients that underwent AHSCT.

Methods

Study design

We prospectively analyzed and compared the determinants of
immunological and clinical response in a group of 31 severe and
rapidly progressive SSc patients who underwent AHSCT from
2010 to 2015, at the Ribeirão Preto Medical School University
Hospital (Brazil). All patients met the 1980 American College of
Rheumatology (ACR) and/or 2013 ACR/European League against
Rheumatism classification criteria for SSc.34 The transplantation
protocol and inclusion and exclusion criteria were previously
published.35 Briefly, autologous hematopoietic stem cells were
mobilized from the bone marrow with 2 g/m2 of cyclophosphamide
plus granulocyte colony-stimulating factor (10 mg/kg/d, subcutane-
ous) and subsequently harvested from the peripheral blood by
leukoapheresis. Then, patients were treated with total dose of
200 mg/kg cyclophosphamide plus 4.5 mg/kg rabbit antithymocyte
globulin in 4 days, followed by infusion of nonmanipulated,
previously cryopreserved autologous hematopoietic stem cells.

Sixteen nontransplanted severe SSc patients prospectively
followed and clinically monitored at the Hôpital Saint-Louis, APHP
(France), who were part of the control group of the ASTIS trial8 or
for whom AHSCT was refused or unfeasible due to contraindi-
cations, were evaluated as control group for quantification of
thymic and bone marrow functions (supplemental Table 1).

This study has been approved by the institutional review boards of
both Brazilian and French centers, where the patients were
enrolled, and complied with country-specific regulations. The study
was conducted according to the Declaration of Helsinki and Good

Practice Guidelines. All patients read and signed informed
consents, which are available at each research site.

Immune monitoring and clinical follow-up

Clinical follow-up before and after AHSCT was performed as
previously described during the first year19 and semiannually
thereafter, until 36 months. The same observer assessed clinical
response using repeated functional and physical examination of
organ involvement. Clinical evaluations included assessment of
modified Rodnan’s skin score (mRSS), lung, kidney, gastrointesti-
nal, and heart function, and quantification of antitopoisomerase
(anti-Scl-70) autoantibodies and C-reactive protein. Relapsing
disease post-AHSCT was defined by 1 of the following criteria:
increase of the mRSS by 25% from best improvement, or decline in
forced vital capacity by 10%, renal crisis, start of total parenteral
nutrition, or restarting of immune suppressive or modulating
medication, as previously described.33,35 According to clinical
response at long-term post-AHSCT, SSc patients were retrospec-
tively classified as “responders” and “nonresponders.” According to
the European Group for Blood and Marrow Transplantation
guidelines,13 peripheral blood samples were collected at baseline
and every 6 months until 36 months after transplantation for immune
monitoring.

Flow cytometry analysis

Whole blood was collected into EDTA-containing tubes and
immunophenotyped with predetermined optimal antibody concentra-
tions to quantify lymphocyte subsets and regulatory molecule
expressions.36-38 Antihuman monoclonal antibodies (mAbs) included
the following: CD3 (UCHT1), CD4 (RPA-T4), CD8 (RPA-T8), CD19
(HIB19), CD31 (WM59), CD45RA (HI100), CD45RO (UCHL1),
CD27 (L128), CD25 (2A3), immunoglobulin D (IgD) (IA6-2), CD38
(HIT2), CD24 (ML5), and CTLA-4 (BNI3) from BD Pharmingen (San
Diego, CA), and GITR (eBioAITR) and FoxP3 (PCH101) from
eBioscience (San Diego, CA). Cells were acquired in FACSCalibur
(BD Biosciences) cytometer and analyzed with Flow Jo (TreeStar)
software. All analyses were performed on fresh blood.

Cell isolation

Heparinized peripheral blood samples were collected, and peripheral
blood mononuclear cells (PBMCs) were isolated through Ficoll-
Hypaque (Amersham-Pharmacia, Uppsala, Sweden) density-gradient
separation. PBMCs were cryopreserved in 10% dimethyl sulfoxide
and stored in liquid nitrogen or lysed and stored in TRIzol reagent
(Invitrogen, Carlsbad, CA) at 280°C.

Quantification of thymic (T-cell) and bone marrow

(B-cell) functions

Genomic DNA was extracted with TRIzol according to the
manufacturer’s instructions. Signal-joint or b-chain TCR (TCRb)
excision circles (sjTREC or bTREC), as well as coding and signal-
joint K-chain recombination excision circles (Cj and sjKREC), were
quantified by real-time quantitative polymerase chain reaction (RT-
PCR) as previously described.39-41 Primers and probes were
obtained from Eurogentec (Paris, France) (supplemental Table 2).

Multiplex preamplification. A first PCR reaction was
carried out in multiplex with different outer primer mixes (supple-
mental Table 2), with 1 to 2 mg of genomic DNA, 200 mM of each
29-deoxynucleoside 5’-triphosphate, 2.5 mM MgSO4, 13 buffer,
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and 1.25 unit of Platinum Taq DNA pol High Fidelity (Thermo Fisher
Scientific, Courtaboeuf, France) in 50 mL (3 minutes at 95°C, then
18 cycles of 95°C for 15 seconds, 60°C for 30 seconds, and 68°C
for 30 seconds). Samples were stored at 220°C.

Quantification of sjTREC, bTREC, Cj, and sjKREC.
Final quantification was made on a ViiA7 Real-Time PCR System
(Applied Biosystems, Foster City, CA), in duplicate with a second
multiplex reaction containing 4 mL of 1/200 or 1/2000 dilution of
the first PCR product, primers and probes for albumin gene,
sjTREC, Cj, sjKREC, or 1 of the Db-Jb segments and 23 Takyon
Low Rox Probe MM (Eurogentec) in 10 mL (5 minutes at 95°C, then
40 cycles of 95°C for 15 seconds, and 60°C for 1 minute). The sum
of the 10 Db-Jb segments were finally multiplied by 1.3 to take into
account the 3 Db-Jb that were not quantified (Db2-Jb 2.5, 2.6, and
2.7). sjTREC, bTREC, Cj, and sjKREC were normalized to 150 000
cells (;1 mg of DNA) using albumin gene quantification. Data were
expressed as Log10/150 000 PBMC.

Analysis of IL-10 production

PBMCs were thawed rapidly in preheated media, washed, and
seeded in 96-well U-bottom plates at a concentration of 1 3 106

cells per well in fresh RPMI 1640 medium (Sigma-Aldrich, St. Louis,
MO) supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin, and 1% glutamate (Sigma-Aldrich). Cell viability was
determined by Trypan blue exclusion and Annexin/PI (BD Pharmin-
gen) staining and exceeded 95%.

T-cell IL-10 production. Cells were either mock treated or
cultured in the presence of anti-CD3/CD28 Dynabeads (Life Technol-
ogies) following themanufacturer’s instructions (bead-to-cell ratio5 1:1).
Phorbol myristate acetate (50 ng/mL; Sigma-Aldrich), ionomycin
(1 mg/mL; Life Technologies, Waltham, MA), and brefeldin A (BFA,
10mg/mL; Sigma-Aldrich) were added during the last 6 hours of culture.
All 3 stimulants were added together, here cited as PIB. Cells were
harvested, washed, and stained for CD4 and CD25 surface marker and
then permeabilized with fluorescence-activated cell sorter (FACS)
permeabilization solution (BD Bioscience) following the manufacturer’s
instructions. IL-10 was detected with anti–IL-10 antibody (JES3-9D7)
from eBioscience or by an isotype-matched control at the same time as
FoxP3 intracellular staining. FoxP31IL-101 gate positioning was de-
termined in the mock-treated cells and cultured with BFA only during the
last 6 hours. FACS determined relative lymphocyte percentages.

B-cell IL-10 production. To evaluate the immunosuppressive
capacity of Bregs, IL-10 production was assessed by 2 different
in vitro methods (cytosine guanine dinucleotide [CpG] 6
CD40L).25,42,43 Cells were cultured in the presence of 10 mg/mL
CpG control (InvivoGen, San Diego, CA), 10 mg/mL CpG-B (ODN
2006), or CpG-B and recombinant human CD40L (1 mg/mL; R&D
Systems, Minneapolis, MN) for 24 hours, as previously published.25,42

PIB was added in the last 6 hours. Cells were harvested, washed,
stained for CD19 surface marker, and permeabilized. IL-10 was
detected by anti–IL-10 or isotype-matched control. IL-101 gate
positioning was determined in cells cultured with CpG control, and
BFA (instead of PIB) was added to the cultures in the last 6 hours.
FACS determined relative lymphocyte percentages.

Analysis of TCRb repertoire by NGS

According to the manufacturer’s instructions, total RNA was extract-
ed from PBMCs using TRIzol. TCR new generation sequencing
(NGS) protocol was adapted from Mamedov et al.44 First-strand

complementary DNA (cDNA) was synthesized for 1 hour using
Smartscribe RT (Clontech) with primers bc1R (specific to both
constant regions of the human TCRb; for primer sequences, see
supplemental Table 3) and the adapter primer Smart NNN
(containing bar-coding sequence) and 1.5 mg of total RNA. A first
PCR amplification used 1 mL of cDNA, Taq platinum high fidelity
(Invitrogen), and primers Smart20 and BC2R for 15 cycles (95°C 20
seconds, 65°C 20 seconds, and 72°C 50 seconds). The PCR
product was purified using QiaQuick MinElute (Qiagen). A second
PCR used Mix Step1 and Mix Hum bcj primers identically to PCR1
but for 10 cycles only. The library was prepared using Nextera XT
index kit (Illumina) and Taq platinum high fidelity according to
manufacturer’s instructions before purification using AMPure XP
beads. Denatured library was paired-end (23 250) sequenced on a
MiSeq (Illumina). Unique molecular identifiers were treated using
pRESTO,45 and CDR3 clonotypes were assembled using MiTCR
software.46 Postanalysis of TCR repertoire diversity, segment usage,
spectratyping, clonotype tracking, and repertoire overlap were
performed by VDJTools.47 Raw sequencing data were deposited in
the NCBI SRA database (SRP106516).

Statistical analysis

Patient characteristics are described as mean 6 standard error
(SE). Nonparametric 2-tailed Wilcoxon’s signed-rank test was
performed to compare pre- and posttransplant values. Continuous
variables in 2 different groups were compared by nonparametric
2-tailed Mann-Whitney U test, and results were expressed as
median 6 interquartile range (IQR). Correlations were assessed
using nonparametric Spearman test. When indicated, logarithmic
transformation was performed on skewed data prior to correlation.
SPSS Statistics 20 (IBM, Armonk, NY), GraphPad 7 (La Jolla, CA)
or R Project Package in VDJTools environment were used for
figures and analyses.47 Significance was set at 0.05.

Results

SSc patient clinical characteristics

Thirty-one transplanted patients (26 women) with a median (range)
age of 34 (19-58) years and disease duration of 27 (8-340) months
were included in the study (supplemental Table 1). Sixteen
nontransplanted severe SSc patients (14 women), median (range)
age of 45 (30-63) years and disease duration of 16 (2-295) months,
were included as control group for thymic and bone marrow
function evaluations (supplemental Table 1). Transplanted patients
showed significant improvement in the mRSS (P , .01) from 6 to
at least 24 months of follow-up and stabilized pulmonary function
(P . .05) when compared with pretransplant scores. There was
also significant decrease in the antitopoisomerase (anti-Scl-70,P5 .01)
and C-reactive protein serum (P5 .03) levels, starting at 6 months,
until 18 and 24 months after AHSCT, respectively (supplemental
Figure 1). Twenty-five patients were classified as responders,
because they remained stable or improved at clinical evaluations,
and 6 were classified as nonresponders (Table 1), and underwent
subgroup analyses. One responder patient died at 7 months post-
AHSCT because of pulmonary embolism.

Thymic function rebound after AHSCT

sjTREC and bTREC values reflect generation of thymic-derived
cells, whereas the sj/bTREC ratio allows estimation of intrathymic
thymocyte proliferation rates (supplemental Figure 2).48 At
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6 months after AHSCT, both sjTREC and bTREC values were low,
when compared with pretransplant and nontransplanted SSc group
levels. At 1 year after AHSCT, sjTREC reached pretransplant levels,
progressively increasing after the 18 months’ time point and
becoming higher than pretransplant levels at 3 years (Figure 1A).
Similarly, bTREC values increased at 1-year post-AHSCT, present-
ing higher levels than the nontransplanted patients (Figure 1B).
Nontransplanted patients did not change sjTREC and bTREC
levels along the entire follow-up. For both transplanted and
nontransplanted patients, no change in intrathymic thymocyte
proliferation rates was observed (Figure 1C).

Thymic reactivation was assessed after AHSCT through
CD45RA/CD31 coexpressions by naive T cells.49 After a decline
at 6 months post-AHSCT, both the percentages and the absolute
numbers of recent thymic emigrant (RTE) increased to pretrans-
plant levels from 12-month post-AHSCT until the end of follow-up
(Figure 1D-E), correlating (rs 5 0.68, P , .0001) with sjTREC
values (Figure 1F). These findings confirm the posttransplant
thymic function rebound, with the exportation of newly generated
thymic-derived naive T cells. Responder and nonresponder
groups did not differ for sjTREC, bTREC, or RTE quantifications
(supplemental Figure 3).

The effect of AHSCT on the distribution of naive and memory T cells
was assessed by CD27 and CD45RO expressions.50 CD271

CD45RO2 naive and CD271CD45RO1 central-memory cells
were depleted at 6 months and started to increase afterward,
whereas CD272CD45RO2 effector cells presented the opposite
profile (Figure 1G-H). The ratio between CD41 naive/central-
memory T cells increased from 0.25 6 0.05 at 6 months to 0.64 6
0.11 (P 5 .004) at 12 months, suggesting that thymic reactivation
induces phenotypic rejuvenation of the CD41 repertoire despite
slow reconstitution of CD41 T cells (supplemental Figure 4).

Low clonotype overlap and high TCR diversity are

related to clinical response after AHSCT

Normalized unique clonotype counts were used to estimate the
TCR diversity in 5 responder and 3 nonresponder transplanted
patients (Table 2).47 Minimal transplant-induced changes in the
TCR repertoire and clonotype specificities were assessed by
NGS.28,51 At 1-year posttransplantation, the TCR diversity had
significantly increased from pretransplant levels, indicating the
generation of a new immune system (Figure 2A). These data were
further confirmed by an increase of Chao1 diversity estimation52 at
1-year post-AHSCT (supplemental Figure 5A), with higher fre-
quency of singletons (clonotypes with single occurrence in the
sample) (supplemental Figure 5B).

Estimation of TCR diversity showed that, for responder patients,
overall specificities increased following thymic rebound at 1 and 2
years (Figure 2B). Nonresponder patients failed to achieve higher
TCR diversity, with reduced frequencies of singletons (supplemen-
tal Figure 5B).

Both clonotype and variable segment spectratyping analyses
depicted a skewed TCRb CDR3 distribution at baseline
(Figure 2C; supplemental Figures 6-8), as observed for an
autoimmune profile.19,27,28,30 After transplant, responder patients
achieved a Gaussian distribution for clonotype and V-segment
spectratyping at 2 years (Figure 2C; supplemental Figures 6-8).
Nonresponder patients maintained a skewed and oligoclonallyT
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expanded profile, demonstrating a persistent autoimmune
repertoire.

The overlapping and shared clonotype frequencies increased from
before to the 6-month posttransplant time point in both responder and
nonresponder patient groups (Figure 2D). Six months post-AHSCT,
shared clonotype frequenciesmet only 25%of the total TCR repertoire
in responder patients, whereas it was 60% of the repertoire in
nonresponders (Figure 2D). Two years after transplantation, reflecting
thymic reactivation, these shared clonotype frequencies comprised
;10% of the overall TCR repertoire in responders, whereas still 50%
in nonresponders (Figure 2D; supplemental Figure 9).

Next, the complete TCR repertoire overlap was analyzed to compare
clonotype distribution and abundance. Weak correlations between

pre- and post-AHSCTclonotypes indicate low repertoire overlap and high
renewal of the immune system.47 Individual patient scatter plots show
that at 6-months post-AHSCT, repertoire overlaps were lower in the
responder (representative patient 1, r2, 0.09) than in the nonresponder
patients (representative patient 5, r2 . 0.51) (Figure 2E; supplemental
Figure 10). At 2-years post-AHSCT, TCR overlap correlation rates
were even lower in responder (representative patient 1, r2 5 0.0183),
when compared with nonresponder patients (representative patient 5,
r2 5 0.202) (supplemental Figure 10). Clonotype tracking heat map
confirmed these changes, evidencing that for responder patients the
most frequent clonotypes at baseline disappeared at 2-years post-
transplantation, whereas remaining high in nonresponders patients after
AHSCT (Figure 2F; supplemental Figure 11).
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Figure 1. Exportation of thymic-derived newly generated naive T cells correlates with posttransplantation thymic recovery. Median (6 IQR) of (A) sjTREC and

(B) bTREC values as measured by quantitative RT-PCR analysis on PBMC genomic DNA at baseline (0 months, pretransplant) and at the following time points in transplanted

(AHSCT, n 5 26 patients at baseline, n 5 15 at 6 and 12 months, and n 5 11 at 18, 24, and .24 months) and nontransplanted (non-AHSCT, n 5 14 patients at baseline

and at 6 months, n 5 13 at 12 months, and n 5 8 at 18, 24, and .24 months) SSc patients. The results were expressed by log10 in 150 000 PBMCs. (C) Intrathymic T-cell

division (n) as calculated using following formula: n 5 LOG(sjTREC/bTREC)/LOG2. *P , .05, AHSCT vs non-AHSCT (Mann-Whitney U test). §P , .05, §§P , .01 comparing

posttransplant values to baseline (Wilcoxon’s). Panels D-H include transplanted patients only. (D) Percentage of CD45RA and CD31 coexpression by CD31CD41 T cells

immunophenotyped by flow cytometry. The boundaries of the boxes indicate the 25th and 75th percentiles; the lines within the boxes indicate the median, and the whiskers

mark the 10th and the 90th percentiles. (E) Mean (6 SE) of RTEs absolute values (cells per microliter). *P , .05; **P , .01 comparing posttransplant values to baseline

(Wilcoxon’s). (F) Correlation between absolute values of CD31CD41CD311CD451 T cells and sjTREC values (Spearman’s). Mean (6 SE) percentage of Naive

(CD271CD45RO2), Central Memory (CD271CD45RO1), Effector Memory (CD27-CD45RO1), and Effector (CD272CD45RO2) (G) CD41 and (H) CD81 T cells.
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Increased natural Tregs after AHSCT correlate with

thymic function

In transplanted patients, higher percentages of Tregs were
detected at 6 (P 5 .01), 12 (P , .01), and 18 (P 5 .03) months
after AHSCT when compared with pretransplant levels (Figure 3A).
Absolute Treg numbers increased significantly (P 5 .01) at 12
months posttransplantation (Figure 3B), concurrent with thymic
rebound. Following AHSCT, there was positive correlation between
RTE and Treg counts (rs 5 0.61, P , .0001; Figure 3C), and
between Treg and sjTREC levels (rs 5 0.45, P , .001;
supplemental Figure 12).

To evaluate the Treg anti-inflammatory phenotype, GITR and
CTLA-4 expressions and IL-10 production were assessed before
and after AHSCT. At 12 months posttransplant, Tregs presented
significantly increased CTLA-4 (P , .01) and GITR (P 5 .02)
expressions, and a trend toward higher IL-10 production, from
15.75 6 11 to 17.0 6 1.4 (P . .05), when compared with
pretransplant levels (Figure 3D).

When compared with values before transplant, responder patients
presented higher CD41CD25highFoxP31 Treg percentages (P5 .02),
higher FoxP3 expression by CD41CD25high Tregs (P 5 .02), and
higher absolute CD41CD25highFoxP31 Treg counts (P 5 .04) than
nonresponders (Figure 3E). At 12-months post-AHSCT, only the
responder patients presented increased counts of Tregs (P 5 .03)
and increased expression of GITR and CTLA-4 by CD41CD25hi

Tregs (P 5 .02), compared with baseline (Figure 3F).

B-cell ontogeny after AHSCT

B-cell ontogenesis was assessed in transplanted and non-
transplanted patients by multiplex evaluation of sjKREC and
CjKREC values (supplemental Figure 2). sjKREC reflects newly
generated B cells, whereas CjKREC is representative of total
B cells.40,53 When compared with pretransplant values and to
those from nontransplanted SSc patients, sjKREC values pro-
gressively increased (P , .01) from 12 to 36 months post-
AHSCT (Figure 4A). Cj values, on the other hand, transiently
increased (P 5 .01) from 12 to 18 months posttransplant
(Figure 4B) and total CD191 B cells increased (P 5 .02) only at
12-months posttransplant, as compared with pretransplant
values (Figure 4C). In transplanted patients, there was positive
correlation (rs 5 0.54, P , .0001) between Cj values and B-cell
counts (Figure 4D).

The ratio between Cj and sjKREC values reflects the mature
B-cell replicative history division in the peripheral blood (supplemental
Figure 2).40,53 Transplanted patients had significant decrease
(P , .01) in B-cell replication starting at 6-months posttransplant,
persisting until the end of follow-up (Figure 4E). No difference in
sjKREC, Cj, or B-cell replication was observed between re-
sponder and nonresponder patients (supplemental Figure 13).
Nontransplanted patients did not experience any change in B-cell
proliferation.

Increased output of naive B-cells after AHSCT

Increasing sjKREC values and lower B-cell replication in the
peripheral blood indicate that there is a continuous supply of more
quiescent B cells after AHSCT. Except for transient decline in
switched memory cell counts at 6 months post-AHSCT, no
changes were observed in plasma cell, unswitched memory, orT
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double-negative B-cell absolute values, as compared with pretrans-
plant (Figure 5A-B). In contrast, naive B-cell counts increased (P5 .01)
from 6 months until the last time point of 36 months. After AHSCT,
naive B-cell counts positively correlated (rs 5 0.46, P 5 .002) with
sjKREC values (Figure 5C).

Through IgD and CD38 expressions, CD191 B cells were
classified into Bm1 to Bm5 subsets, reflecting several steps

of B-cell differentiation.54 After AHSCT, although Bm1 and
Bm5 cell counts transiently decreased (P 5 .01) at 6 months
and Bm29 cell numbers increased (P5 .02) from 6 to 12 months,
activated naive Bm2 cell counts progressively increased
(P5 .03), starting at 6 months until end of follow-up (Figure 5D-E)
and positively correlated (rs 5 0.47, P5 .001) with sjKREC values
(Figure 5F).
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A Figure 2. Low clonotype overlap and high TCR diversity are

related to favorable clinical response to AHSCT. (A) Comparisons

of the observed TCR repertoire diversity based on unique clonotypes

(n5 8 transplanted SSc patients at baseline, n5 5 at 6 months, n5 4

at 12 months, and n5 5 at 24 months). The boundaries of the boxes

indicate the 25th and 75th percentiles; the lines within the boxes indicate

the median, and the whiskers mark the 10th and the 90th percentiles.

*P, .05 comparing posttransplant values with baseline (Wilcoxon’s). (B)

Rarefaction analysis of repertoire samples from a representative responder

(patient P6, left) and nonresponder (patient P5, right) patient. Number of

unique clonotypes in a subsample is plotted against its size (number of

TCR cDNA molecules). Solid and dashed lines mark interpolated and

extrapolated regions of rarefaction curves, respectively, and points mark

exact sample size and diversity. Shaded areas mark 95% confidence

intervals. (C) Representative spectratype profile of a responder (patient P8,

left) and nonresponder (patient P3, right) patient at baseline (upper panels)

and at 2 years after AHSCT (lower panels). Panels display distribution of

clonotype frequency by CDR3 length. Most abundant clonotypes are

explicitly shown. The nonresponder patient did not achieve a Gaussian

distribution even at later periods after transplant. (D) Clonotype tracking

stackplot shows details for highly frequent clonotypes shared between

baseline and posttransplant time points. Overlapping clonotype shows

average frequencies of a responder (patient P6, left) and a nonresponder

(patient P5, right) patient. Clonotypes are colored by the peak position of

their abundance profile. Other low-frequency clonotypes that were

observed in both samples are marked as “Not-shown” and the remaining

clonotypes are marked as “Non-overlapping.” (E) Representative joint

clonotype abundance scatter plot of a responder (patient P1, upper

panels) and nonresponder (patient P5, lower panels) SSc patient, showing

the overlap between baseline and 6 months (left panels) as well as

between baseline and 2 years (right panels). The main frame contains a

scatter plot of clonotype abundances (overlapping clonotypes only) and a

linear regression. Point size is scaled to the geometric mean of clonotype

frequency in both samples. Scatter plot axes represent log10 clonotype

frequencies in each sample. R2 represents squared Pearson’s correlation

coefficient. (F) Clonotype tracking heat map of a responder (patient P6,

left) and nonresponder (patient P5, right) patient showing joint clonotype

abundances. For the responder patients, the most frequent clonotypes at

baseline disappear at 2 years posttransplant.
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Increased output of IL-10–producing Bregs

after AHSCT

Percentage and absolute numbers of CD24highCD38high Bregs
increased significantly at 6 (P , .01 and P 5 .02, respectively) and
12 (P 5 .02 and P , .01, respectively) months post-AHSCT
(Figure 6A-C). Higher Breg/unswitched memory (P 5 .01)
(Figure 6D) and Breg/switched memory (P 5 .01) (Figure 6E)
ratios were observed starting at 6-months posttransplantation, until
the end of follow-up. Breg counts positively correlated (rs 5 0.51,
P, .0001) with sjKREC values after AHSCT (Figure 6F). Following
CpG stimulation, IL-10–producing Breg frequency increased at 6
(P5 .03) and 12 (P, .01) months after AHSCT as compared with
pretransplant values. Similar increase (P5 .02) was observed using
CpG plus CD40L stimulation (Figure 6G), therefore confirming
increased IL-10 production posttransplantation.

Among the 31 SSc patients studied before and after AHSCT,
negative correlation was observed between Breg percentages
and C-reactive protein serum levels (Figure 6H). Responder
subjects presented significantly higher (P 5 .01) frequencies of
Bregs than nonresponders (Figure 6I). sjTREC and sjKREC levels
positively correlated (rs 5 0.38, P 5 .008) (Figure 6J) as well as
Treg and Breg values (rs 5 0.27, P 5 .02) (supplemental
Figure 14), indicating simultaneous reestablishment of immuno-
regulatory processes after AHSCT as the result of immune
rejuvenation.

Discussion

Mechanistic studies have shown profound transplant-induced
changes in the immune system of SSc patients, some of
which are disease specific, whereas others may be more
widely observed across different autoimmune diseases.55-57
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Figure 3. Increased natural Tregs after AHSCT correlate with thymic function and are associated with clinical response. (A) Percentage of CD41CD25high-

FoxP31 Tregs within CD31CD41 T cells and (B) Treg absolute values at baseline (0 months, pretransplant) and following time points in the transplanted patients

immunophenotyped by flow cytometry. N 5 26 transplanted patients at baseline, n 5 15 at 6 and 12 months, and n 5 11 at 18, 24, and .24 months. The boundaries of the

boxes indicate the 25th and 75th percentiles; lines within the boxes indicate the median, and the whiskers mark the 10th and the 90th percentiles. Plots show mean 6 SE.

*P , .05; **P , .01 comparing posttransplant values to baseline (Wilcoxon’s). (C) Correlation between the absolute values of RTEs and Tregs (Spearman’s). (D) GITR (left)

and CTLA-4 (right) median of fluorescence intensity (MFI) expression by CD41CD25high Tregs at baseline (Pre-Tx) and 12 months posttransplant. *P , .05; **P , .01

comparing posttransplant values to baseline (Wilcoxon’s). (E) Median (6 IQR) baseline percentage of (left) CD41CD25hiFoxP31 Tregs and (right) FoxP3 expression by CD41
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(Mann-Whitney U test) and *P , .05 comparing posttransplant values to baseline (Wilcoxon’s).
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Persistent increase of Th1/Th2 ratios,58 recovery of Treg
function,14 changes in thymic output,19,33,59 and lower
profibrotic serum cytokine levels60 have been described.
Several questions still remain, especially concerning the
immunological determinants of clinical outcomes. Here, we
investigated the immune reconstitution process in SSc
patients after AHSCT, focusing on thymic and bone marrow

function, searching for potential biomarkers of response.
Complementary immunological and molecular approaches
have enabled us to show unprecedented evidence in SSc that
thymic rebound, as well as increased bone marrow output of
newly generated naive B cells, are exclusive of the posttrans-
plant setting and are not observed in SSc patients receiving
conventional treatment.
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Although AHSCT includes high-dose immunosuppression, poten-
tially pathogenic T cells are not completely depleted, because
specific T-cell clones can still be detected post-AHSCT.27,61 In
responder patients, thymic reactivation led to replacement of the
previous immune system, and an important TCR repertoire di-
versification was evidenced by the low overlap rates and reduced
number of shared clonotypes, similar to what was previously reported
in multiple sclerosis patients.28 In the nonresponder patients after
AHSCT, conversely, high clonotype overlap was observed even after
periods that correspond to thymic rebound, indicating that residual
autoreactive cells may be associated with clinical reactivation.19,33

Indeed, the noticeable presence of overlapping clones in non-
responder patients, early after transplant, suggests that further
immunosuppression after engraftment, or perhaps CD341 graft
selection, may be beneficial for this subgroup.62,63

Expansion of the Treg compartment following transplantation starts
with lymphopenia-induced proliferation, followed by thymic gener-
ation of natural Tregs.64 This mechanism appears to be non–
disease-specific and has been reported in other autoimmune
diseases.14,30,31,36-38,65-67 Indeed, as already shown in multiple
sclerosis,37 our group of responder SSc patients experienced
significantly increased expression of regulatory molecules after
AHSCT, when compared with nonresponders. Of note, non-
responder SSc patients presented lower FoxP3 expression before
transplantation and consequently lower Treg percentage when
compared with responders, indicating a possible selection bias or
perhaps a potential biomarker to predict response to AHSCT.

We were able to identify sustained bone marrow output of newly
generated B cells posttransplantation, evidencing bonemarrow rebound
as a contributing mechanism to the renewal of the immune system.
Increasing sjKREC levels and reduced B-cell proliferation rates were
detected in the peripheral blood over the entire follow-up after
transplant. This indicates that in SSc patients, starting early after
AHSCT, the reconstitution of the peripheral B-cell compartment is
mostly due to the high output of bone marrow newly generated naive
B cells rather than to clones that may have resisted the procedure and
undergone homeostatic expansion. High rate of B-cell divisions is related
to a B-cell hyperactivation state in vivo,40 and conventional therapies
have failed to reset defective B-cell tolerance checkpoints.68 We show
that transplanted SSc patients present reduced B-cell division rates long
term, suggestive of a more tolerant immune status over time, probably by
an immunological balance established by tolerant B cells.

CD191CD24hiCD38hi B-cell populations are well-characterized
Bregs in humans, playing an important role in the control of
autoreactivity.43 Their decreased numbers and function have been
reported in several autoimmune diseases.69-71 In SSc patients, low
levels of Bregs are associated with higher disease activity.26 To
date, there are no available reports on Breg levels after AHSCT.
Here, we show that Breg frequencies transiently increased after
AHSCT, tending to remain higher than pretransplant values for at
least 2 years. These cells may be involved in the reestablishment of
autotolerance after AHSCT, as suggested by persistently increased
Breg/memory B-cell ratio, as well as higher IL-10 production.

Although Breg ontogeny is still not completely understood,43 Breg
counts positively correlated with sjKREC values, indicating that Bregs
could be bone marrow–derived, increasing after AHSCT due to
higher output of newly generated B cells.56 In this scenario, studies
have shown that donor-derived Bregs are important for suppression
of murine sclerodermatous chronic graft-versus-host disease.72 In the
present study, we found a correlation between favorable clinical
outcomes and Breg levels after AHSCT in SSc patients.

The low number of nonresponders and possible influence of
posttransplant immunosuppressive therapy on immunological
outcomes limit the conclusions of our study. However, we learned
that in addition to established clinical AHSCT guidelines,11,12

transplant protocols may still be improved at specific points.
Future studies are required to evaluate T- and B-cell profile in the
autografts and possible immunological effects of posttransplant
immunization and immunosuppression. Furthermore, adjuvant
therapies aiming to enhance immunoregulatory function or
adoptive Treg and/or Breg therapy may improve rates of clinical
remission.

In conclusion, we describe the coordinated recovery of Treg and
Breg compartments after AHSCT in SSc patients. Here, both
thymus and bone marrow proved important for successful immune
reconstitution and clinical responsiveness to AHSCT. Their
improved function after AHSCT in responder SSc patients
contributes to an efficient reset of both the Treg and Breg
populations.
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Faculdade de Medicina de Ribeirão Preto–Universidade de São
Paulo) andHemotherapy Regional BloodCenter of Ribeiraõ Preto staff
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